AMERICIUM SEPARATIONS FROM NITRIC ACID PROCESS EFFLUENT STREAMS

PDF Version Also Available for Download.

Description

The aging of the US nuclear stockpile presents a number of challenges, including the ever-increasing radioactivity of plutonium residues from {sup 241}Am. Minimization of this weak gamma-emitter in process and waste solutions is desirable to reduce both worker exposure and the effects of radiolysis on the final waste product. Removal of americium from plutonium nitric acid processing effluents, however, is complicated by the presence of large.quantities of competing metals, particularly Fe and Al, and-strongly oxidizing acidic solutions. The reprocessing operation offers several points at which americium removal maybe attempted, and we are evaluating two classes of materials targeted at different ... continued below

Physical Description

20 p.

Creation Information

BARR, M.; JARVINEN, G. & AL, ET August 1, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 28 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The aging of the US nuclear stockpile presents a number of challenges, including the ever-increasing radioactivity of plutonium residues from {sup 241}Am. Minimization of this weak gamma-emitter in process and waste solutions is desirable to reduce both worker exposure and the effects of radiolysis on the final waste product. Removal of americium from plutonium nitric acid processing effluents, however, is complicated by the presence of large.quantities of competing metals, particularly Fe and Al, and-strongly oxidizing acidic solutions. The reprocessing operation offers several points at which americium removal maybe attempted, and we are evaluating two classes of materials targeted at different steps in the process. Extraction chromatography resin materials loaded with three different alkylcarbamoyl phosphinates and phosphine oxides were accessed for Am removal efficiency and Am/Fe selectivity from 1-7 molar nitric acid solutions. Commercial and experimental mono- and bifunctional anion-exchange resins were evaluated for total alpha-activity removal from post-evaporator solutions whose composition, relative to the original nitric acid effluent, is reduced in acid and greatly increased in total salt content. With both classes of materials, americium/total alpha emission removal is sufficient to meet regulatory requirements even under sub-optimal conditions. Batch distribution coefficients, column performance data, and the effects of Fe-masking agents will be presented.

Physical Description

20 p.

Notes

INIS; OSTI as DE00768246

Medium: P; Size: 20 pages

Source

  • Marc V Conference, Kona, HI (US), 04/2000

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-00-3549
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 768246
  • Archival Resource Key: ark:/67531/metadc716526

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 2000

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • April 7, 2017, 7:11 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 28

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

BARR, M.; JARVINEN, G. & AL, ET. AMERICIUM SEPARATIONS FROM NITRIC ACID PROCESS EFFLUENT STREAMS, article, August 1, 2000; New Mexico. (https://digital.library.unt.edu/ark:/67531/metadc716526/: accessed March 26, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.