Autonomous Optical Sensor System for the Monitoring of Nitrogen Dioxide from Aging Rocket Propellant

PDF Version Also Available for Download.

Description

An optical sensor system has been developed for the autonomous monitoring of NO{sub 2} evolution in energetic material aging studies. The system is minimally invasive, requiring only the presence of a small sensor film within the aging chamber. The sensor material is a perylene/PMMA film that is excited by a blue LED light source and the fluorescence detected with a CCD spectrometer. Detection of NO{sub 2} gas is done remotely through the glass window of the aging chamber. Irreversible reaction of NO{sub 2} with perylene, producing the non-fluorescent nitroperylene, provides the optical sensing scheme. The rate of fluorescence intensity loss ... continued below

Physical Description

22 pages

Creation Information

COX, TRISHA D.; SINGH, SEEMA; HUNTER, JOHN A.; JONES, GARY D.; SINCLAIR, MICHAEL B.; ROHWER, LAUREN E. S. et al. September 1, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 15 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

An optical sensor system has been developed for the autonomous monitoring of NO{sub 2} evolution in energetic material aging studies. The system is minimally invasive, requiring only the presence of a small sensor film within the aging chamber. The sensor material is a perylene/PMMA film that is excited by a blue LED light source and the fluorescence detected with a CCD spectrometer. Detection of NO{sub 2} gas is done remotely through the glass window of the aging chamber. Irreversible reaction of NO{sub 2} with perylene, producing the non-fluorescent nitroperylene, provides the optical sensing scheme. The rate of fluorescence intensity loss over time can be modeled using a numerical solution to the coupled diffusion and a nonlinear chemical reaction problem to evaluate NO{sub 2} concentration levels. The light source, spectrometer, spectral acquisition, and data processing were controlled through a Labivew program run by a laptop PC. Due to the long times involved with materials aging studies the system was designed to turn on, warm up, acquire data, power itself off, then recycle at a specific time interval. This allowed the monitoring of aging HE material over the period of several weeks with minimal power consumption and stable LED light output. Despite inherent problems with gas leakage of the aging chamber they were able to test the sensor system in the field under an accelerated aging study of rocket propellant. They found that the propellant evolved NO{sub 2} at a rate that yielded a concentration of between 10 and 100 ppm. The sensor system further revealed that the propellant, over an aging period of 25 days, evolves NO{sub 2} with cyclic behavior between active and dormant periods.

Physical Description

22 pages

Source

  • Other Information: PBD: 1 Sep 2001

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2001-2953
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/787637 | External Link
  • Office of Scientific & Technical Information Report Number: 787637
  • Archival Resource Key: ark:/67531/metadc716462

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • April 11, 2016, 1:44 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 15

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

COX, TRISHA D.; SINGH, SEEMA; HUNTER, JOHN A.; JONES, GARY D.; SINCLAIR, MICHAEL B.; ROHWER, LAUREN E. S. et al. Autonomous Optical Sensor System for the Monitoring of Nitrogen Dioxide from Aging Rocket Propellant, report, September 1, 2001; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc716462/: accessed June 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.