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Exact and Variational Solutions of
3D Eigenmodes in High Gain FELs

Ming Xie

Lawrence Berkeley National Laboratory, Berkeley, California 9~720, USA

Abstract

Exact solution and variational approximation of eigenmodes in high gain FELs
are presented. These eigenmodes specifi transverse profiles and exponential growth
rates of the laser field before saturation. They are self-consistent-solutions of coupled
Maxwell-Vlasov equations describing FEL interaction taking into account the effects
due to energy spread, emittance and betatron oscillations of the electron beam, as
well as diffraction and optical guiding of the laser field. A new formalism of scaling
is introduced and based on which solutions in various limiting cases are discussed.
In addition, a fitting formula is obtained from interpolating the variational solution
for quick calculation of exponential growth rate of the fundamental mode.
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1 Introduction

The main objective of this article is the determination of exponential growing
modes (eigenmodes) in high gain FELs, taking into account the effects due
to energy spread, emittance and betatron oscillations of the electron beam,
as well as diffraction and optical guiding of the laser field. To deal with all
these effects simultaneously, the most effective approach for analytical inves-
tigation is through coupled Maxwell-Vlasov equations. An equation satisfied
by the modes of laser field was first derived by Kim [1], but without provid-
ing a solution. The first approximate solution of the equation was obtained
by Yu et al. [2] for the fundamental mode, using a variational technique first
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introduced by Xie et al. [3]. The solution by Yu et al. assumes a waterbag
model for unperturbed electron distribution in transverse phase space. Later,
a special 2D case (sheet beam) of Gaussian model was considered by Hafizi et
al. [4] for the fundamental mode, using also the variational technique. Taking
a different approach from that of Kim [1] in handling the coupled Maxwell-
Vlasov equations, Chin et al. [5] derived an equation satisfied by the mode
of perturbed distribution function and obtained another approximate solu-
tion for the fundamental mode. However, this solution is known [5] to have a
significant systematic error when approaching to the ID limit.

In this article, we present the first exact solutions of 3D FEL eigenmodes,
both fundamental and higher order. The unperturbed electron distribution is
assumed to be of Gaussian shape in four dimensional transverse phase space
and in energy variable, but uniform in longitudinal coordinate. For the funda-
mental mode, a variational solution is derived and from this solution a fitting
formula is generated for the growth rate. A new formalism of scaling is intro-
duced and based on which solutions are presented and discussed in various
limiting cases.

2 Eigenmode Equation

The eigenmodes of laser field independent of initial condition can be deter-
mined by the following equation [1]

(1)

where @ = [q/2Lld + i2kWrjI– ikwAv – ik,k~(.2 + p2/k$)/2]s,~ ==(?– ?0)/?’0,

AU = (u – W,)/wT, k. = 27~kW/(1 + a;), and h = (2/@3. The trans-
verse profile of the slowly varying laser field, E(x), is defined by ~(x, z, t) =
E(x, z) exp[i(kz – ut)] and E(., z) = E(x) eXp(~~/2&f)”. To comply with a
new scaling to be introduced later, here the complex exponential growth rate
(eigenvalue), q, is scaled by the lD power gain length, L~d = l/2fikWp,

where p = {~ is the Pierce parameter, AW = a. for helical
wiggler, Aw = aw[Jo(a~/2(1 + a%)) – J1(a~/2(1 + a;))] for planar wiggler,
aW= 0.934& [cm]l?.~~ [T], no is the peak electron density on the axis, and r.
is the classical radius of electron. It is noted that the term proportional to X2
was absent from the phase factor O in the original equation derived by Kim
[1], apparently due to a typo, and corrected later by Yu et al. [2].
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The focusing system for the confinement of electron beam in wiggler is assumed
to have a transverse gradient invariant along the beam axis. It is characterized
by a constant betafunction ~ in both transverse planes. Thus betatron motion
is governed by p = cZx/dz,dp/dz = –l$x. In particular for natural wiggler

focusing, k@ = kWaW/fi~O. Respectively, the unperturbed longitudinal and
transverse distribution functions are normalized according to f:? dqfil (q) = 1
and U(X = O) = 1, where u(x) = .(~~ d2pfL(X2+ p2/k~).

Equation (1) can be reduced to a more convenient form [2]

(:+~,)E(x)=~d2x,r(x,x,)E,x),

where

r(x,x’) =

o m

//
ds

—co —CO
(x)!

X2 + X12—2x$x’ cos(kps)
X s X2+ p2/k; =

sin2(kPs) “

3 Scaling and Limiting Cases

We now specify the unperturbed electron distribution as:

.f~(x2+p2/kj)= 2m~2kje-(x2+p2’k;)’2u:
z

(2)

(3)

(4)

Here the transverse distribution is matched to the betatron focusing channel,
giving rise to a constant beam size, crZ.With Eqs. (3,4) and X = x/oZ, ~ =
s/2L1~, Eq. (2) can be expressed in a scaled form

(5)
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~ = (q – hj’w)T– 27fT2 –
(1+iq,r)[xz+X’2-2X. X’COS(2-T)]

2 sin2(2%-r)

There are four scaling parameters [6] in Eq. (5): q~ = l/l?~ is a diffraction
parameter, where & = 2kT0~/Lld is the Fresnel number of electron beam
corresponding to a length scale of Lid; q, = 4m(Lid/~@) kre and q~ =
47r(Lid/Aw)a~ characterize the effective spread in longitudinal velocity due
to emittance and betatron focusing and due to energy spread, respectively,
where A@ = 27r~, e = kpcf is rms beam emittance and an is relative rms
energy spread; finally, qw = 47r(LIJAW) AU is a frequency detuning parame-
ter. The Pierce parameter can now be expressed in a more convenient form

p = 3 (1/IA) (LAW/27TO~)2(l/270 )3, where 1 is the peak beam current and
1A = 17,05 kA is the Alften current.

It has been shown [2,7] that FEL equations can be scaled with a minimum
number of scaling parameters and in different ways. The scaling formalism
introduced here, termed Lld scaling, differs from the previous ones in the
following aspects. First, parameter qc is chosen to emphasize the combined
effect of emittance and betatron focusing, rather than using IG.Cor kB/kwp
separately. Second, by employing the scaling with Lid, rather than with p or
D, the formulation is made more transparent and elegant, and its presentation
and elucidation more convenient, as it will become evident later on.

In the lD limit without diffraction, qd = O, all modes are degenerate with the
same eigenvalue and Eq. (5) bcomes

Further, if q. = O and VT= O, then, q(q – iqw)2 – ih = O. This is the well-
known lD cubic equation [8] which admits root with the highest growth rate,
q = 1 + z/fi, at q. = O. From now on we will refer the origin, {O, 0,0, O}, in
the scaled parameter space {~d, q,, q7, % } as the lD, ideal beam limit. In this
limit, the scaled growth rate, q. - -Lid/Lg, reaches the absolute maximum of
unity, where Lg is the power gain length by definition.
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Another limiting case is known as the parallel beam limit, which can be ob-
tained from Eq. (5) with qe = O

[

a2
o

%j’d~ + iq – he-X2/2 / 1~f_i7_e(q-iq”)T-2+_2E(X) = O. (7)
—co

firther, if qv = O, then for axially symmetric modes

F“d*(R+)+i’+(~:~.)2e-R2’2‘8)
This is the same equation systematically studied earlier by Xie et al. [3,9],
where both exact solutions for all modes and variational approximation for
the fundamental mode were obtained.

4 Exact Solutions

In polar coordinate X = {B, ~}, Eq.(5) assumes the following form

where m is the azimuthal mode index and

o
rdri–mh

Gm(R; R’) = ~ ~in2(2mT) e“Jm(V),
—CN

u = (q – iq.)r – 27:72 –
(1+ iqeT)(R2 + R’2)

2 sin2(2@T) ‘

v = i(l + iq,T) COS(2-T)RR’

sin2(2@T) “

Applying Hankel transform pair

W

Em(Q) = ~ RdRrlm(QR)Em(R),
o

5
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IL(R) = ~QdQJm(QRp3m(Q),
o

Eq. (9) can be converted into an integral equation

IL(Q) = ~Q’dQ’Tm(Q,Q’)Em(Q’),
o

(lo)

where

2!’’(Q, Q’)=
Zq-&Q2~R’R~R’dR’Jm(QR)Jm(Q’R’)Gm(R>R’)

o 0

z-mh 0

/

rdr——
iq - 2q~Q2 (1 -t iq,T)2

&qw)T-2@2–(Q2+Q’2) /2(l+iq.r)

—m

[

J i cos(2mT)Q(47
m

11+ iq.r ‘

Upon discretization in Q space, the integral equation, Eq. (10), can be tasted
to a matrix form, [T~ (q) – I]E~ = O,where I is a unit matrix. Then all the
eigenvalues, q~m,can be determined by solving equation lTm(q) – 1] = O, and
the corresponding eigenmode, E~m,can be calculated subsequently given the
matrix Tm(qnm), where n is the radial mode index.

Consider LCLS nominal case as an example with the following parameters [10]:
~. = 1.5A, ~. = 28009, 1 = 3.4kA, ~oc = 1.5mm-mrad, o~ = 2 x 10-4, ~ =
18m, a planar wiggler with AW= 3cm and fiaW = 3.7. The scaled parameters
take the values: qd = 0.0367, q. = 0.739 and q~ = 0.248. The intensity profiles
of the three lowest order modes, Eoo, Elo and Eol are shown in Fig. (l-3).
Respectively, their eigenvalues and the corresponding optimal detunings are:
qoo= 0.4901 + iO.227 (qw = –1.161), qlo = 0.125 – iO.0245 (qU= –1,52) and
qol = 0.297+ iO.0662 (qti = –1.40).

5 Variational Approximation of Fundamental Mode

An approximate solution for the fundamental mode, Eoo, is presented in this
section. Similar solutions for the higher order modes, 1310and Eol, are given
in another paper [11] in connection with the study of transverse coherence of
SASE. The approximate solution derived here is, first of all, more efficient in
calculation than the exact one. Secondly, it provides more physical insights, in
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particular on the mode profile, in a simpler manner. The solution is based on
an approximation technique introduced by Xie et al. [3]. There, standard varia-
tional method [12] was first extended to treat the eigenvalue problem in which
the eigenmode equation has a nonlinear dependence on the eigenvalue and
the eigenvalue is complex. The generalized variational technique, acclaimed as
one of the most flexible and general approximation method [13], has later been
proven effective for a variety of 2D or 3D FEL eigenvalue problems [2,4,14].
According to the recipe [3], a variational functional maybe constructed from
Eq. (9) as follows:

w m

J

R’)E(R’). (11)

Substituting into Eq.(11) a trial function of the form, E(R) = exp(–aR2),
where a is a complex variational parameter to be determined, and applying
the variational condition, @/6a = O, to the resulting equation, we obtain the
following two equations from which the eigenvalue q and mode parameter a
can be determined,

8F1 “ 0
F2(q, a) = ~ =

f~ef’
–~ + J rdTh—

f: =0’—00

(12)

(13)

where

fl= (q– 2%)’ – ‘2~:T2,
f2 = (1 + i?k’)2 + 4a(l + ?&’) + 4a2sin2(2_~),

f3= 4(1+ @.T)-1-8asin2(2@’).

To take the lD limit appropriately, a singularity is removed by introducing
a = aS(q&%>~~>qu)/@Z, where % is a well-behaved> smooth function of
its arguments. Then by taking ~d = O, Eqs. (12,13) lead to Eq. (6) for the
eigenvalue and for the mode parameter

1J h f!m Tdref’

as = ~ rlehJzmT3dTefl/(1 + iq6T)2 – 1”
(14)
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Therefore in the ID limit, variational solutions are the same as the exact ones.
On the other hand, in the parallel beam limit with q. = O, and furthermore
with q~ = O, Eqs. (12,13) become

(15)

(16)

where ij = q – iqti. These are the same equations derived earlier by Xie et al.
[3]. Equation (15) is a 3D extension of the usual ID cubic equation.

Given parameter a, mode properties can be determined completely by com-
paring E(R - r/oZ) = exp(–aR2) with the usual Gaussian mode E(r) =

exp(–r2/w2 + ZkTr2/2RC). Thus w/2crz = J= and RC/Lld = –F’/4a~,
where w is the mode size and RC the radius of phasefront curvature. Due
to optical guiding, w remains constant along the wiggler and RC is always

positive for the growing mode [3]. If such a mode is allowed to propagate in
free space from a location such as the end of the wiggler, the mode will di-

verge with a Rayleigh length L,, and have an apparent waist W., located
within the wiggler at a distance Z. from the end of the wiggler, specifi-

cally: L,/Lld = ~d/4a,[l + (ai/a,)2], WO/2CTZ= 1/ 4ar[l + (ai/aT)2] and

ZO/Lld = ‘~d/4a~ [1 + (aT/ai)2]. In addition, the far field divergence angle

is 6’dE wo/Lr = ~~(A~/zu=z). For the LCLS example, the varia-
tional method yields q = 0.4902+ iO.2271 and a. = 0.099 – zO.11, optimized at
qW= –1. 161. The comparison of mode profiles is shown in Fig.(1). Detuning

curves are given in Fig.(4).

Another approximate solution for Gaussian beam distribution was derived
earlier by Chin et al. [5] using a truncated orthogonal expansion method.
There, the resulting zeroth order dispersion relation for the eigenvalue, when
expressed in terms the scaling introduced here, can be simply written as:

mm

// dxdy y3e-x2-Y2 m d.z ze-z’ fi
/

(17)
(~!l+ m - W%.z + q.y2)2 o (@ - 2qczz2)= %“—m O

The solution of Eq. (17) is known to be more accurate for larger value of qd.
However, for the LCLS example, q~ is quite small and Eq. (17) yields q =
0.313 + iO.138 optimized at qti = – 1.865, showing a significant difference from
the exact solution. In the ID, ideal beam limit, Eq. (17) gives q = (1/ W)q.z.d.
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6 Fitting Formula for Gain Length

One of the most important FEL performance parameter is the gain length of
the fundamental mode, Lg. To facilitate quick calculation of this quantity, a
fitting formula is generated in a scaled form

where at each point in the three dimensional parameter space {qd, qe,q7} the
scaled quantity LIJLg is maximized at the optimal detuning q;.

The function .F is determined by interpolating the variational solutions with
the following functional form

-Lid 1

Lg‘= I+A’

where

and the 19 fitting parameters are given in Table 1.

Table 1. Fitting parameters for gain length.

al = 0.45 az = 0.57 as = 0.55 a4 = 1.6

as=3 aG=2 aT = 0.35 as = 2.9

ag = 2.4 alo = 51 all = 0,95 alz = 3

als = 5.4 alA = 0.7 als = 1.9 alG = 1140

a~T= 2.2 alg = 2.9 alg = 3.2

(19)

This is the same fitting formula published before without giving the derivation
[6]. The accuracy of the fitting formula is shown in Fig.(5) for a typical case.
In the special case with ~d = O, the formula reproduces the exact solution
from Eq.(6) practically with no discrepancy, as seen in Fig.(6).
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7 Conclusions

A systematic approach is developed in three steps for the determination of
3D eigenmodes from Eq. (1). First and foremost, the exact solutions of both
fundamental and higher order modes are obtained for the first time. Based on
these solutions, complete information on the eigenmodes including eigenvalues
and mode profiles can be extracted, examined, and used as a benchmark as
well as an inspiration for approximate solutions. Secondly, a variational ap-
proximate solution of the fundamental mode is derived for the first time for
Gaussian model. The soIution is shown to be highly accurate in the parameter
regime of interest to short wavelength FELs. It is also very efficient and robust
in calculation, and as a result, the solution has been mapped out in the entire
scaled parameter space. Finally, based on the wealth of information obtained
with the variational solution, a transparent and elegant fitting formula for
the gain length is generated. Apart from being compared with the variational
solution, the formula has been found to be in good agreement with full-blown
simulations [15]. Because of its convenience and accuracy, the formula has
been widely used for design and optimization of high gain FEL systems [10].
A Chinese philosopher, Mao Tse-Tung, once said: let philosophy be liberated
from the classrooms and books of philosophers, and turned into weapons in
the hands of the masses. The three steps taken here is indeed a journey in that
direction. The Ll~ scaling introduced here has made that journey a pleasant
trip in style.
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Fig. 1. Intensity profile of Eoo mode from both the exact solution and variational
approximation, superimposed with the electron density profile.
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Fig. 2. Intensity profile of Elo mode fkom the exact solution, with the electron
density profile,



MODE INTENSITY PROFILE
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Fig. 3.
density

Intensity profile of 1301mode horn the exact solution, with the electron
profile.
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Fig. 4. Detuning curves from the variational solution.
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Fig. 5. Two surface plots showing q. = ~(qd, q,, q~ = O)are superimposed, one from
the variational solution and another from the fitting formula.

Fig. 6. Two surface plots showing q. = 7(qd = O,qc,q~) are superimposed, one from

the variational solution (same as the exact solution in this case) and another from
the fitting formula. The difference between the two can hardly be seen in this case.
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