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A method for the analysis of temperature and field dependent magnetization data near the 

Curie temperature TC is devised, which allows the reliable determination of critical 

exponents even in strongly inhomogeneous ferromagnets. It is shown, both 

experimentally and theoretically, that the field-induced broadening of the ferromagnetic 

phase transition follows a power law with a characteristic critical exponent β ⋅δ  where 

β  and δ  are the conventional temperature and field dependent critical exponents of the 

magnetization. Experimental results on inhomogeneous La2/3Ca1/3MnO3 films yield 

critical exponents 0033.03682.0 ±=β  and 32.076.4 ±=δ , even though the intrinsic TC 

distribution width is larger than the field-induced effect.  
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Understanding critical phenomena has long been a key issue in the study of magnetism 

[1]. In particular, the determination of critical exponents has been an important aspect of 

the theoretical description and experimental characterization of magnetic materials [2]. 

For the experimental study of critical phenomena, one is typically inclined to use almost 

perfect samples, because only that allows comparisons with the most advanced theories, 

which are based upon uniform material properties [3]. However, it is not always possible 

to achieve very uniform samples and in such cases one has to resort to approximate 

descriptions that can cope with sample inhomogeneities. The aspect of sample 

inhomogeneity is of particular significance in the field of manganite materials, because 

ferromagnetic samples are randomly doped mixed valence systems. Such ferromagnets 

are, therefore, intrinsically inhomogeneous on a short length scale and actual samples can 

exhibit inhomogeneities on length scales up to the sample size. Thus, it is desirable to 

devise a method that allows an accurate and straightforward determination of critical 

exponents in inhomogeneous ferromagnets. In this paper, we describe such a method and 

apply it to inhomogeneous La2/3Ca1/3MnO3 (LCMO) film samples. 

La2/3Ca1/3MnO3 films were grown by DC-sputtering from a 35-mm diameter 

ceramic target. Stoichiometrically sintered La2/3Ca1/3MnO3 targets were prepared by 

solid-state synthesis from starting materials La2O3, CaCO3, and MnO2 of nominal 

composition. The mixture was first fired in air at 950°C for 12 hours to achieve 

decarbonation. Subsequently, the product was grinded, pressed into the form of a disk, 

and sintered at 1200°C for 24 hours in air. The pellets were then re-grinded and fired at 

1200°C for another 24 hours, followed by a slow cool-down at a rate of 5°C/min. For the 

film deposition process, the disks were mounted onto one of the electrodes of the 

sputtering system. Pure oxygen at a pressure of 3.5 mbar was used as sputtering gas, and 

a potential difference of 300 V with a current of 100 mA was applied between the 

electrodes.  During deposition the substrate temperature was kept at 850°C. For the 

present study, films of 200-nm thickness each were grown onto SrTiO3(001) single 

crystal substrates. The deposition rate was kept constant at approximately 1.5 nm/min. 

for all films. No post-deposition annealing of the films was necessary. X-ray diffraction 

(XRD) measurements (θ-2θ) were performed using a Rigaku diffractometer  (Cu Kα1-
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line: λ = 1.5406 Å) and showed our films to have (002) orientation with bulk-like lattice 

parameters [4]. All magnetic measurements were made using a Quantum Design 

extraction magnetometer, equipped with a 7-T superconducting solenoid. 

In a previous study, we investigated the sample homogeneity of sputter deposited 

LCMO films with a particular emphasis on the TC distribution [4]. We found it possible 

to describe the average temperature-dependent magnetization M(T) by a superposition of 

individual power-law functions according to 

 

M T( ) = m0
TC − T

TC

 

 
  

 

 
  

β
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Here, m0 is a factor proportional to the saturation magnetization and β is the temperature 

critical exponent of the magnetization. θ(x) is the Heavyside function, which insures that 

the magnetization vanishes for T > TC and ρ TC( ) is a sample-specific TC distribution 

function. For our LCMO films, the distribution function is taken to be a Gaussian  
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1
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characterized by TC , the average Curie temperature and ∆TC , the Curie temperature 

distribution width. 

Figure 1 shows two sets of experimental data, measured on the same film for 

different values of the applied field H, in comparison to the fit-function according to Eq. 

(1) under the assumption of the Gaussian TC distribution Eq. (2). As one can see from the 

comparison in Fig. 1, the agreement is excellent. One also observes, that the transition 

width of the ferromagnetic phase transition increases with H. This is not surprising, 

because even in an ideal ferromagnet, one expects the phase transition to broaden in a 

field. The fit parameter ∆TC , displayed in the inset of Fig. 1, is therefore a superposition 
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of the intrinsic Curie temperature distribution ∆TC
0  and a field-induced broadening 

effect. We find experimentally that the latter follows a power law: 

 

∆TC H( ) = ∆TC
0 + c ⋅ H

1
η ,     (3) 

 

with a characteristic exponent η and a sample dependent constant c. A least-squares fit of 

the ∆TC (H)-data to Eq. (3) is shown as a solid line in the inset of Fig. 1. In addition, we 

observe that the values determined for η are in the range between 1.65 - 1.80 for all our 

samples. From these experimental observations arise two questions: Is it theoretically 

expected that ∆TC (H) follows a power-law and, if so, what is the relevance of η? The fact 

that η is associated with applying a field near TC, suggests that it is related to δ, the 

critical exponent that describes the field dependence of M(TC): 

 

M(H ,T = TC ) = ˜ m ⋅ H
1
δ      (4) 

 

with m  being a factor proportional to the saturation magnetization [2].  ˜ 

To investigate the relevance of η and its relation to the various critical exponents, 

we have performed a theoretical evaluation of the field broadening of M(T) for a number 

of model systems. From the equation of state, M = M(T,H), which is documented in the 

literature for the mean-field model, and the two (2D) and three dimensional (3D) Ising 

models [5], we calculated a set of M(T) curves for a number of fixed magnetic field 

values Hf. Subsequently, we analyzed each of these M(T, H = Hf) curves in the same 

way, in which we had analyzed our experimental data, i.e. fit them to Eq. (1) under the 

assumption of a Gaussian TC distribution. This procedure enables us to determine 

∆TC (H), i.e. the experimentally determined quantity, for the different theoretical models. 

The results of this analysis are shown in Fig. 2. As one can see from the data, all models 

exhibit a power law behavior for ∆TC vs. H, following Eq. (3) in the same way as our 

experimental results. Thus, the phenomenologically observed power law, Eq. (3), has a 

firm foundation, because its validity was confirmed for several theoretical models. The 
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significance of η becomes evident, if one compares the theoretically deduced values with 

other critical exponents, shown in Table 1. From this comparison it is evident that within 

the numerical accuracy achieved in this study  

 

η = β ⋅δ        (5) 

 

for all three models considered. Thus, we see compelling evidence that η is truly equal to 

β⋅δ, which in turn means that our ∆TC (H) measurements allow the experimental 

determination of β⋅δ. Figure 3a shows experimental data for an LCMO film in 

comparison with the power-law fit according to Eq. (3). To visualize the power-law 

behavior of the experimental data, we subtracted the intrinsic width of the Curie 

temperature distribution ∆ = 6.91 ± 0.16 K from the data. We see that the 

experimental data follow Eq. (3) over nearly two orders of magnitude and the power-law 

exponent is determined to β⋅δ = 1.75 ± 0.10. In addition, we extract β(H) from the 

individual data sets M(T, H = H

TC
0

f) for the various magnetic fields. These data, displayed 

in Fig. 3b, allow an extrapolation of β = 0.3682 ± 0.0033 for the field free case. From this 

knowledge of β and β⋅δ, we can then determine the critical exponent δ, despite the fact 

that the phase transition is smeared out due to the TC distribution width. This 

demonstrates that the method of M(T,H) measurements in conjecture with the ∆TC (H) 

analysis allows an accurate determination of critical exponents even in inhomogeneous 

materials. The method does not require complex data analysis or specialized software, 

because it is based on two sequential data analysis steps, i.e. the M(T,H) fits for a number 

of field values H and the ∆TC (H) data analysis, which each contain a simple one-

dimensional fitting problem that can be solved in standard fashion. 

Table 2 compares our values for the critical exponents β, δ and β⋅δ with literature 

values for bulk materials as well as the 3D Heisenberg and Ising models [6]. We find 

agreement between our data and the Heisenberg model, as is appropriate for cubic 

samples. The comparison also shows that our method can compete with more 

sophisticated analysis methods based on scaling analysis, even though the precision for δ 

reported here is somewhat inferior [9]. The results demonstrate the feasibility of our 
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method and illustrate its robustness towards intrinsic phase transition broadening, 

because the field induced phase transition broadening in our experiments is actually 

smaller than the intrinsic one, i.e. ∆TC
0 >

µB ⋅ H
kB

. This robustness is significant, because 

one has to keep in mind, that a scaling method would not allow a reliable data analysis 

for any of our samples, because such methods are based upon a single TC value. In 

particular, they cannot handle samples for which the zero field TC distributions play a 

significant role in the phase transition broadening, whereas our method works in the case 

of inhomogeneous samples exhibiting a substantial width of the TC distribution. 
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Figure captions 
 
Fig. 1  Experimental M(T) data of an LCMO film for different values of the applied field 

H: 1kOe (circles) and 4kOe (squares) in comparison to the least-squares fitting 

results (lines) according to Eq. (1) (for clarity only a fraction of the actual data set 

is displayed). Inset: Magnetic field dependence of ∆TC; the individual M(T) fit 

results are shown as squares and the solid line is a least-squares fit of Eq. (3) to 

the ∆TC(H) data set. 

 

Fig. 2  ∆TC vs. field determined for three models: the mean-field approximation (closed 

squares), the 3D Ising model (open squares), and the 2D Ising model (closed 

circles). 

 

Fig. 3  Plot of and β as a function of the applied field, derived from the 

individual M(T) data fits. The complete data sets are utilized to determine the 

critical exponents β, δ and β⋅δ, listed in Table 2. 

∆TC − ∆TC
0
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Tables 
 
 
Table 1: Comparison of the critical exponents for several theoretical models 
 

Model β δ β⋅δ η 

MFA 0.5 3 1.5 1.50 ± 0.02 
2D Ising 0.125 15 1.875 1.89 ± 0.02 
3D Ising [7] 0.325 ± 0.0015 4.82 ± 0.02 1.567 ± 0.013 1.58 ± 0.02 
 
 
 
Table 2: Comparison of experimentally and theoretically determined values for critical 
exponents β, δ, and β⋅δ. 
 

System β δ β⋅δ 

3D Ising [7] 0.325 ± 0.0015 4.82 ± 0.02 1.567 ± 0.013 
3D Heisenberg [8] 0.3645 ± 0.0025 4.802 ± 0.037 1.750 ± 0.026 
This work 0.3682 ± 0.0033 4.76 ± 0.32 1.75 ± 0.10 
LSMO-bulk [9] 0.37 ± 0.04 4.25 ± 0.2 1.57 ± 0.09 
Ni [3] 0.395 ± 0.010 4.35 ± 0.06 1.718 ± 0.068 
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