Processing of Silicon Nitride Ceramics from Concentrated Aqueous Suspensions by Robocasting

Guoping He and Deidre A. Hirschfeld
Department of Materials and Metallurgical Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801
Joseph Cesarano III and John N. Stuecker
Sandia National Laboratories, Albuquerque, New Mexico 87185-1349

The optimization of concentrated AlliedSignal GS-44 silicon nitride aqueous slurries for robocasting was investigated. The dispersion mechanisms of GS-44 Si₃N₄ aqueous suspensions with and without polyacrylate were analyzed. The zero point of charge (ZPC) was at about pH 6. Well-dispersed GS-44 suspensions were obtained in the pH range from 7 to 11 by the addition of Darvan 821A. The influence of pH, amount of Darvan 821A and solids loading on the rheological behavior of GS-44 aqueous suspensions was determined. A coagulant, aluminum nitrate, was used to control the yield stress and shear thinning behavior of highly loaded Si₃N₄ slurries. Homogeneous and stable suspensions of 52 vol% GS-44 Si₃N₄ were robocast successfully at pH 7.8 to pH 8.5. The sintering process, mechanical properties and microstructural characteristics of robocast GS-44 bars were determined.

I. Introduction

Silicon nitride is considered to be a suitable ceramic for structural and advanced heat engine applications due to its excellent thermomechanical properties. However, the production cost of silicon nitride parts compared to similar metal parts or other advanced ceramics has remained prohibitive. Not only has the high purity ceramic powder used been expensive, but the shaping process to produce the desired parts has also been costly. For this reason, in order to make complex-shaped silicon nitride components, injection molding, slip and pressure casting, gel casting, and direct coagulation casting have been developed. While successful, these methods also have problems associated with production of molds, interactions with the mold material, cracking during their green-forming stages (i.e. casting, demolding and drying), binder removal, and long times from fabrication to final product.

Recently, robocasting was developed at Sandia National Laboratories as an alternative shaping process. Robocasting is a new technique for freeform fabrication of dense ceramics from slurry deposition. Ceramic components with simple or complex shapes are rapidly produced from a CAD drawing directly to a finished component, and little or no machining is necessary after fabrication. In addition, robocasting is moldless and binderless, and fabrication rates are on the order of 1 cm³ per minute. This process has been demonstrated to be effective with alumina and a variety of oxide ceramics.

The aim of this work was to develop aqueous silicon nitride suspensions that are suitable for robocasting. Robocasting requires the use of slurries with very high solids loading and carefully controlled rheology. Therefore, several fundamental aspects about the dispersion mechanisms and effects of dispersant, pH, additives and solids loading on
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
the rheological behavior of Si$_3$N$_4$ aqueous suspensions were studied. Robocasting of aqueous Si$_3$N$_4$ slurries was optimized. Finally, the sintering process and microstructure of robocast bars were characterized.

II. Experimental Procedure

(1) Materials and Chemicals
The powder used in this study was high-purity α-Si$_3$N$_4$ powders (GS-44, Allied Signal Inc. Torrance, CA). The average particle diameter measured by an x-ray absorption/sedimentation technique was 0.77 μm. The average surface area as measured by standard BET N$_2$ adsorption was 7.7 m2/g.
Darvan 821A (with 40% by weight of ammonium polyacrylate of molecular weight about 3500) obtained from R.T. Vanderbilt Company was used as a dispersant. The pH was adjusted with analytical grade nitric acid (1N) and ammonium hydroxide solutions (40%). Deionized water was used throughout this study.

(2) Sedimentation Tests
Sedimentation tests were conducted using 5 vol% Si$_3$N$_4$ aqueous suspensions. Various amounts of Darvan 821A were added to the suspensions which were then ball-milled for at least 12h. The pH values of the suspensions were adjusted and then the suspensions were poured into graduated cylinders, and after 5 days, the final sedimentation cake heights were recorded.

(3) Viscosity Measurements
Viscosity measurements were made with a rotary viscometer with a small sample chamber (Brookfield Model LVT, Stoughton, MA) or a concentric cylinder viscometer (Brookfield Model DV-III Rheometer, Stoughton, MA). The apparent viscosity was calculated as the ratio between the shear stress and the shear rate.

(4) Processing of Robocasting and Sintering
The robocast samples were prepared from 52 vol% suspensions containing additives at Sandia National Laboratories. The robocast bars were dried overnight at room temperature and were embedded in a powder bed, consisting of 50 wt% Si$_3$N$_4$ and 50 wt% BN, then sintered in a N$_2$ atmosphere at 1600~1800 °C by pressureless or pressure sintering. The samples were held at the maximum temperature for 1~2h. The sintered densities were measured by a standard water immersion method (ASTM C20). Fracture or etched surfaces of sintered robocast samples were observed using a scanning electron microscopy (SEM).

III. Results and Discussion

(1) Mechanism of Dispersion of Si$_3$N$_4$ with and without Polyelectrolyte
The zeta potential versus pH curve of the Si$_3$N$_4$ powder was determined by Liu10. The isoelectric point (IEP) is at about pH 6. At pH values higher than the IEP, the zeta potential becomes increasingly negative as pH increases from 6 to 10.5.10 Typically colloids will form the most loosely packed flocculated structures near the IEP and more densely packed structures as the pH is changed away from the IEP. The stability (the
degree of dispersion) of a suspension is controlled by the magnitude of the surface charge on the colloidal particles.

Fig. 1 shows the results of sedimentation tests for GS-44 silicon nitride suspensions as a function of both pH and percent dispersant, of Darvan 821A. Without any dispersant, the most flocculated sedimentation occurs between pH 5 and 6, in agreement with the IEP. As the pH is increased the sedimentation volume decreases to 4.5 ml. At pH values ≥ 9.6 there is no more appreciable decrease in the sedimentation volume. A sedimentation volume of 4.5 ml was arbitrarily chosen as a stability boundary. Suspensions prepared in the stable region are dispersed and result in dense settled structures while unstable suspensions result in flocculated structures. In the absence of dispersants, the GS-44 powder could be dispersed only at pH values ≥ 9.6 when the particles are appreciably negatively charged and induce electrostatic repulsion. However, for practical reasons silicon nitride should not be processed in alkaline conditions because hydrolysis reactions promote the formation and dissolution of silica.11

The effect of the dispersant Darvan 821A on the sedimentation behavior of the Si$_3$N$_4$ powder is also represented in Fig. 1. Figure 1 shows that the addition of 1 wt% Darvan 821A can significantly enlarge the pH range for forming stable suspensions down to pH 6.5. Further additions of polyacrylate up to 2 wt% do not significantly improve dispersion and do not further enlarge the pH range for stability. In summary, 1 wt% Darvan 821A is efficient for the dispersion of this Si$_3$N$_4$ powder in an aqueous medium under benign pH conditions. This is understood to be the result of ammonium polyacrylate adsorption onto the Si$_3$N$_4$ particles. The adsorbed polyelectrolyte can induce stabilization as long as it is appreciably dissociated (ionized) and therefore negatively charged.12 Below pH 6 even the addition of excess dispersant has no measurable contribution to dispersion because the adsorbed dispersant on powder surfaces is not appreciably ionized.

The Darvan 821A (ammonium polyacrylate) dissociates into a negatively charged...
polymer according to the reaction:

\[\text{RCOONH}_4 \rightleftharpoons \text{RCOO}^- + \text{NH}_4^+ \]

The fraction of RCOONH\(_4\) groups that dissociate into negative RCOO\(^-\) groups is dependent on the pH. The fraction dissociated (\(\alpha\)) is nearly zero at pH 3.5 and increases to \(\alpha = 1\) near pH 8.\(^3\)

The adsorption of ammonium polyacrylate on Si\(_3\)N\(_4\) is dependent on the fraction dissociated, the number of positive adsorption sites on the Si\(_3\)N\(_4\), and the equilibrium concentration of free non-adsorbed polyacrylate in solution. The most efficient dispersion of Si\(_3\)N\(_4\) with ammonium polyacrylate is defined as being the pH at which stable suspensions exist while the amount of free non-adsorbed polyacrylate is kept to a minimum. This condition can be intuitively estimated to occur at pH 7 – 8. At pH values \(\leq 6.5\) the adsorbed polyacrylate does not have enough dissociated functional groups to induce reliable stabilization (see Fig. 1). At pH values \(\geq 8.5\) stable suspensions exist however the polyacrylate is only weakly adsorbed onto the Si\(_3\)N\(_4\) and a large fraction of the polyacrylate remains non-adsorbed in solution. Efficient adsorption and good stabilization occurs in the pH range of 7-8. Si\(_3\)N\(_4\) still has an appreciable number of adsorption sites while the polyacrylate is also nearly fully negatively charged. It is in this range that enhanced interfacial charge and stabilization results due to adsorption of the charged polyacrylate. Therefore, in addition to electrostatic interactions, steric interactions arise from overlap of the adsorbed layers. The results of these interactions can be repulsive or attractive in nature depending on whether or not the outermost layers on the particles prefer to be in contact with the aqueous medium.\(^{14}\) Therefore, the positive contribution of the steric interaction of the adsorbed polyacrylate is attributed to the hydrophilic nature of the polyacrylate. Further, the dispersion functions of the adsorbed polyacrylate are believed to arise from the two oxygen atoms in the carboxylic group, \(-\text{COO}^-\), of the polyacrylate. The charged oxygen atom in the carboxylic group is responsible for the measured interfacial charge properties of the modified powder, while the uncharged oxygen atom has an additional contribution to the hydrophilic nature of the adsorbed layer.\(^{10}\)

(2) Rheology of Robocasting Slurries

Fig. 2 shows the effects of pH and Darvan 821A on viscosity and rheological behavior for 20 vol% GS-44 Si\(_3\)N\(_4\) suspensions. In Fig. 2 (a), a slurry formulated at pH 10 with no added dispersant (curve C) has a low viscosity and is nearly Newtonian, because there is a strong, electric double-layer repulsion between the silicon nitride particles, which inhibits agglomeration. A slurry formulated at pH 6 (the IEP) with no dispersant (curve A) exhibits a much higher viscosity at all shear rates, and its viscosity decreases (shear thins) with increasing shear rate. No repulsive force exists at pH 6, and large attractive van der Waals forces produce an attractive, touching particle network. At pH 8 (curve B), the slurry exhibits shear-thinning behavior and intermediate viscosities. Firth and Hunter\(^{15}\) describe a number of mechanisms to explain the viscosity of particulate slurries. When the network is sheared, it breaks into agglomerates that decrease in size with increasing shear rate. The liquid within each agglomerate is relatively immobile since it must flow with the agglomerate. Based on this model, it can be explained that the decrease in viscosity with increasing shear rate is result of the increasing liquid volume released by the agglomerates as they become smaller.
As shown in Fig. 2 (b), the addition of 1 wt% Darvan 821A to the slurry formulated at pH 5 (curve D) or pH 6 (curve E) reduces the viscosity of slurry at all shear rates, but the rheology remains shear-thinning. If the pH is increased further, such as pH 7 (curve F) or pH 8 (curve G), the viscosity decreases by an order of magnitude and the rheology becomes nearly Newtonian. Because the adsorbed dispersant decreases the attractive forces between the silicon nitride surfaces, the presence of dispersant should allow the network to be broken into smaller agglomerates at a given shear rate relative to the strong network formulated without the added dispersant. The viscosity decreases with an increases in pH and low viscosity occurs at pH > 7. The low viscosities are attributed primarily to enhanced electrostatic repulsion between the dispersant-adsorbed particles. The steric interaction of the adsorbed polyacrylate has a positive contribution to dispersion as well. This is attributed to the hydrophilic nature of the polyacrylate. For pH < 7, high viscosity is related to a decrease in the negative charge characteristics of the adsorbed polyelectrolyte and a decrease in the electrosteric repulsive barrier between particles. Hence, the GS-44 Si₃N₄ powder with Darvan 821A at pH 7~11 is well dispersed and has a low viscosity. This result is in agreement with Liu¹⁰ and Albano¹⁶.

As shown in Fig. 1 and Fig. 2, slurries with low viscosity and Newtonian rheology (C, F, and G in Fig. 2) are located at the stable region in Fig. 1, but slurries with higher viscosity and shear-thinning rheology (A, B, D, and E in Fig. 2) are located in the unstable region in Fig. 1. Although a well-dispersed slurry without Darvan at pH 10 can be made, the dissociation of surface groups of Si₃N₄ may be appreciable at this pH. Thus, addition of 1 wt% Darvan 821A at pH 7~8 is preferred for well-dispersed Si₃N₄ slurries to be used for part fabrication.

In production it is desirable to use slurries with a high solids loading however the magnitude of viscosity increases as the solids loading increases. It has been found that when the solids content of silicon nitride slurries exceed about 47 vol%, the slurry becomes extremely dilatant and ceases to flow. Hence, conventional silicon nitride slurries for slip-casting typically utilize a solids content of less 47 vol%. Here, Fig. 3 shows that suspensions as high as 55 vol% Si₃N₄ may be formulated. Figure 3 also shows...
that as the volume percent solids increases, a pH ≥8 must be maintained to still have workable suspensions. Fig. 4 illustrates the rheological behavior of dispersed GS-44 Si₃N₄ slurries with various solids contents at pH 8.5 and Fig. 5 shows the effect of solids loading on viscosity. At low solids loading, dispersed slurries exhibit very low viscosity and are rheologically Newtonian. Around 30 vol% solids, the slurries begin to show shear-thinning (pseudoplastic) behavior, even though the viscosity is still relatively low. As the solids content approaches 50 vol%, interparticle interactions and inter-particle collisions become dominant; viscosity begins to increase appreciably, and the rheological behavior becomes highly shear-thinning. At approximately 55 vol% percent solids, particle mobility becomes restricted, and the slurry locks up into a shear-thickening (dilatant) mass.

![Fig. 3. Viscosity at shear rate 24 s⁻¹ versus pH for GS-44 Si₃N₄ suspensions from 30 to 50 vol% solids concentrations. (1 wt% Darvan 821A)](image)

![Fig. 4. Shear stress versus shear rate for different solids loading slurries with 1 wt% Darvan 821A at pH 8.5.](image)
For optimal robocasting, it is desirable to robocast with slurries that have solids loadings close to the dilatant transition. A high solids content minimizes the amount of drying shrinkage and sintering shrinkage so that final bead dimensions and final near-net-shape tolerance can be more accurately controlled. How close a slurry is to its pseudoplastic/dilatant transition will affect the proper choice of extrusion rate. In addition to solids content a robocasting slurry must also have a rheology that is shear-thinning but with an appreciable yield stress.

![Viscosity versus solids loading behavior for dispersed GS-44 slurries at 1 wt% Darvan 821A and pH 8.5 shear rate 24 s⁻¹.](image1)

Fig. 5. Viscosity versus solids loading behavior for dispersed GS-44 slurries at 1 wt% Darvan 821A and pH 8.5 shear rate 24 s⁻¹.

![Viscosity as a function of amount of Al-nitrate at 52 vol% GS-44, 1 wt% Darvan 821A, pH 8 and shear rate 2.5 s⁻¹.](image2)

Fig. 6. Viscosity as a function of amount of Al-nitrate at 52 vol% GS-44, 1 wt% Darvan 821A, pH 8 and shear rate 2.5 s⁻¹.

In order to control the yield stress of concentrated GS-44 Si₃N₄ slurries for robocasting, additions of aluminum nitrate [Al(NO₃)₃·9H₂O] can be used. Silicon nitride slurries made of 52 vol% GS-44 powder and 1 wt% Darvan 821A with varying amounts of aluminum nitrate based on the mass of GS-44 powder were evaluated. The pH was controlled at constant value, pH=8. The viscosity of slurries increases with increasing
amounts of aluminum nitrate (Fig. 6). The viscosity is too high to measure when the addition of aluminum nitrate exceeded 0.4 wt%. Aluminum nitrate acts as a coagulant. The aluminum nitrate modifies the interparticle forces, agglomerate structure, and consistency of the slurry. Too much aluminum nitrate fully coagulated the slurries which accounts for the increase in overall viscosity. Fig. 7 shows the rheology changes between the pure and 0.4 wt% aluminum nitrate GS-44 slurries. The 52 vol% slurry with 0.4 wt% aluminum nitrate at pH 8 is an example of a slurry with a Bingham plastic rheology and suitable for robocasting.

![Graph showing rheology changes between pure and 0.4 wt% Al(NO3)3 slurry](image)

Fig. 7. Relationships between shear stress and shear rate with and without Al-nitrate at 52 vol%GS-44, 1 wt% Darvon 821A at pH 8.

![Robocast GS-44 Si3N4 bars](image)

Fig. 8. Robocast GS-44 Si3N4 bars, (a) green; (b) sintered.

(3) Robocasting and Sintering of GS-44 Si3N4

GS-44 Si3N4 bars, up to 20x30x65 mm in size, have been robocast successfully. The rheological studies previously discussed were used to determine the optimal conditions for robocasting. They were 52 vol% GS-44 Si3N4, 1 wt% Darvan 821A, 0.4wt% aluminum nitrate and pH 7.8–8. No cracking and minimal warping were observed during robocasting, drying, and sintering (Fig. 8). The green density was 1.80 g/cm³ (or 56% of theoretical).
Densification of GS-44 by pressureless sintering was maximum at 1700 °C as shown in Fig. 9 and resulted in linear shrinkage of approximately 17%. The relative density obtained at 1700 °C after 1 h was 98.5% of theoretical. This result is very encouraging because pressureless sintered Si₃N₄ usually exhibits limited densities due to residual porosity. A sintered density, higher than 99.6% of theoretical, was obtained for the same samples by pressure sintering in a 3.4E5 Pa (50 psi) N₂ atmosphere at 1800 °C for 1 h. There is no apparent cracking and the overall color is fairly uniform. Fig. 8 b shows the sintered robocast bars.

(4) Mechanical Properties and Microstructure

The average flexural strength and hardness of pressure sintered robocast GS-44 samples are shown in Table I and are comparable to the standard properties of slip cast GS-44. Sintered GS-44 samples primarily contain the β-Si₃N₄ phase as shown by x-ray diffraction in Fig. 10. Polished and etched GS-44 has large elongated β-Si₃N₄ grains as shown in Fig. 11. After flexural strength measurements were completed the fracture surfaces were examined using SEM. Fig. 12 a shows significant pullout of β-Si₃N₄ fibers from the fracture surfaces. Regular hexagonal cross-sections of β-Si₃N₄ crystals are clearly shown in Fig. 12 b. They are microstructural characteristics of typical dense Si₃N₄ ceramics and are believed to be responsible for the superior mechanical properties of Si₃N₄ ceramics.

![Graph showing densification of robocast GS-44 ceramics by pressureless sintering.](image)

Fig. 9. Densification of robocast GS-44 ceramics by pressureless sintering.

<p>| Table I. Comparison of mechanical properties between robocasting and conventional product |
|---------------------------------|---------------------------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Property</th>
<th>Robocast GS-44</th>
<th>AlliedSignal Slipcast GS-44 SL³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/cm³)</td>
<td>3.22</td>
<td>3.2</td>
</tr>
<tr>
<td>Flexural Strength (MPa, @ RT)</td>
<td>735±38</td>
<td>759</td>
</tr>
<tr>
<td>Hardness (Vickers, GPa)</td>
<td>14.74±0.51</td>
<td>14.31</td>
</tr>
</tbody>
</table>
Fig. 10. X-ray diffraction pattern of sintered robocast GS-44.

Fig. 11. Microstructure of sintered robocast GS-44.

Fig. 12. Pullout β-Si₃N₄ fibers in the fracture surfaces of sintered GS-44 bars (a) and cross-section of β-Si₃N₄ fibers (b).
IV. Conclusions

(1). The GS-44 silicon nitride powder exhibits a zero point of charge (ZPC) at pH 6. It can be dispersed only at a pH ≥ 9.6 without dispersants.

(2). Well-dispersed GS-44 suspensions can be obtained at pH 7-11 range by the addition of Darvan 821A. This is attributed primarily to the enhanced electrosteric repulsion between the dispersant-adsorbed particles. In addition to the electrostatic interaction, the steric interaction of the adsorbed polyacrylate has a positive contribution to dispersion. This is attributed to the hydrophilic nature of the polyacrylate.

(3). The viscosity of GS-44 slurry decreases with an increase in pH. At low pH, near the ZPC, the slurry exhibits a very high viscosity because no repulsive force exists between the particles. The viscosity also decreases with Darvan 821A additions, but an adequate amount of polyacrylate, 1 wt% Darvan 821A, was determined.

(4). The viscosity of GS-44 slurry increases with increasing solids loading. The rheological behavior of a dispersed GS-44 slurry in an alkaline pH range is Newtonian at solids loading less than 30 vol%, pseudoplastic in the range from 30 vol% to 55 vol%, and approaches dilatancy above 55 vol%. Working with slurries that are close to the pseudoplastic/dilatant transition is desirable for robocasting. It is also important to use slurries that have an appreciable yield stress. Aluminum nitrate can be used as a coagulant for GS-44 Si$_3$N$_4$ slurries and induce a yield stress and a Bingham plastic flow behavior at high solids loading.

(5). GS-44 Si$_3$N$_4$ aqueous slurry has been successfully robocast. The green density, 56% of theoretical, was achieved from robocasting of 52 vol% GS-44 aqueous slurry. The GS-44 robocast bars can be densified by pressureless or pressure sintering. Sintered density of 98.5% of theoretical was obtained by pressureless sintering and 99.6% of theoretical with pressure sintering.

(6). Mechanical properties of robocast GS-44 were compared favorably with products produced conventionally. Flexural strength of 737 MPa and Vickers hardness of 14.74 GPa were obtained at room temperature. The microstructure of sintered robocast bars shows interlocking elongated β-Si$_3$N$_4$ grains.

Acknowledgement

This work was supported by Sandia National Laboratories, Albuquerque, New Mexico. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under contract number DE-AC04-94AL85000. The authors would like to thank Dr. Ronald Loehman for his assistance and advice.

References

4J.P. Torre and Y. Bigay, “Fabrication on Silicon Nitride Parts by Slip Casting,”
6O.O. Omate, M.A. Janney and S.D. Nunn, “Gelcasting: from Laboratory
7M.K.M. Hruschka, W. Si, S. Tosatti, T.J. Graule and L.J. Gauckler, “Processing of β-
Silicon Nitride from Water-Based α-Silicon Nitride, Alumina, and Yttria Powder
8J. Cesarano III, R. Segalman and P. Calvert, “Robocasting Provides Moldless
9J. Cesarano III and P. Calvert, "Freeforming Objects with Low-Binder Slurry," US
10D. Liu and S.G. Malghan, “Role of Polyacrylate in Modifying Interfacial Properties
and Stability of Silicon Nitride Particles in Aqueous Suspensions,” Colloids and
suspensions: Part I. Effect of processing routes on the surface chemistry and particle
12J. Cesarano III and I.A. Aksay, “Stability of Aqueous α-Al₂O₃ Suspensions with
13V.A. Hackley, “Colloidal Processing of Silicon Nitride with Poly(acrylic acid): I,
14A.J. Pugh, “Dispersion and Stability of Ceramic Powders in Liquids” in Surface and
Colloid Chemistry in Advanced Ceramics Processing, ed. R.G. Pugh and L. Bcergstrom,
16M.P. Albano and L.B. Garrido, “Processing of Concentrated Aqueous Silicon Nitride
18L.Y. Chao and D.K. Shetty, “Development of Silicon Nitride for Rolling-Contact