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ABSTRACT

This report summarizes work on the project “Structural Simulation Using Multi-resolution Material

Models” which was a joint LDRD between Sandia and TICAM (Texas Institute for Computational

and Applied Mathematics). The project focused on the development of new methods and proce-

dures for developing high-fidelity models of material response and new ideas for assessing mod-

eling error, as well as automatic model adaptation. Major issues studied in this effort included (1)

the implementation of Fast-Multipole Methods and Fictitious Domain Methods in the analysis of

heterogeneous materials; (2) experimental characterization of epoxy filled with glass beads; (3) es-

timation of modeling error and adaptive modeling; (4) the treatment of uncertainties in determining

properties of models from imaging data; and (5) the use of CT images of heterogeneous materials

to automatically generate quadrilateral and hexahedral meshes.

The details of the LDRD supported work on Fast-Multipole Methods and Fictitious Domain Meth-

ods are not given in this report. However, much of this work is summarized in [1]. This report
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consists of four chapters corresponding to items (2)-(5) listed above.

Complementary portions of the work, also reported here so as to present a more complete picture of

the ideas and results, were done at TICAM under contracts from ONR and NSF. In particular, the

material collected in Chapter 2 was jointly supported by SNL and ONR and the work presented in

Chapter 3 was jointly supported by SNL and NSF.
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CHAPTER 1 

a Experimental  Characterization of Glass-Epoxy 
Specimens 

Greg Rodin 

1. Introduction 

Characterization of the  relationships  between the engineering (macroscopic) 
and  micro-structural  (microscopic)  properties is a central problem  in  materials  science 
and  engineering.  Solution  of this problem is difficult from both  experimental and 
modeling  perspectives,  because it may involve massive amounts of data  pertaining  to 
the  microstructure. Of course, some materials and phenomena may require rather 
simple  experimental  data  and  models. For example, elastic properties of particle- 
reinforced  composites  can be accurately  predicted using simple models  that require 
only  one  microstructural  parameter -- the volume fraction [l]. In  contrast, the 
prediction  of  plastic  and fracture properties of fiber-reinforced composites may 
require data pertaining to the  microstructural architecture and fiber waviness.  In 
general, the required microstructural data are impossible to define a priori, and 
therefore one may  have  to go through  a long trial-anderror process before obtaining 
satisfactory  results. 

With the emergence  of  three-dimensional imaging methods,  such as 
computerized  tomography (CT), and continued growth  of  available  computing power, 
it becomes  possible  to  characterize  the relationships between the microscopic  and 
macroscopic  properties  without  making crude assumptions about the microstructural 
geometry.  However, it would  be nave to believe that three-dimensional imaging 
methods  dramatically  simplify  the task of  material  characterization based on 
microstructural  properties. To the contrary, due to non-conventional  ways  of 
representing the microstructural  geometry,  the  use  of  three-dimensional imaging 
methods gives rise to new challenging  problems. Of course, one hopes  that  by 
resolving those problems  one  would be able to bring material  characterization to a 
significantly  better  level. 
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The principal  objective of this work is  to  learn how to  use CT data  for 
mechanical characterization of heterogeneous materials. Toward this objective we 
considered  several  glass-epoxy  specimens  whose  microstructural geometry was 
quantified using CT and optical microscopy (OM), and  weighing; OM and  weighing 
data  were used for benchmarking CT data. In addition,  the specimens were tested 
under low-stress compression in order to determine their elastic properties and high- 
stress compression in order to examine their fracture properties. 

Eventually,  results  of  this  work  will  be used for  benchmarking and 
improvement of computational modeling  and CT data acquisition methods. To this 
end, it  was critical to work with sufficiently simple  specimens that lend themselves to 
detailed and verifiable computational modeling. 

Presently, material characterization based  on CT data  is  at its infancy. One can 
use CT data for  observational  purposes  only, for identification of flaws and other 
imperfections. This approach has  been pursued by Yancey  and co-workers [2-61 and 
Bossi  and  coworkers [7], who used CT  for  detection of cracks and microscopic 
geometry  in fiber-reinforced  composites, and identified possible applications of CT 
imaging in manufacturing.  Kikuchi  and  co-workers [8-IO] utilized CT data  for 
predictions of mechanical behavior, by integrating CT data with finite element and 
homogenization  methods. The approach that appeals to us the most, is the one due to 
Huet [I 11 who integrated  CT data with finite element computations and mechanical 
testing of concrete. The principal difference between  our approach and that of Huet 
[ 1 I] is that in his analysis CT data is  used to define a  set of spheres that approximate 
the actual  microstructure,  and we rely on CT data alone,  without  making any 
assumptions  about the microstructural geometry. 

The remainder of this chapter is organized as follows. In Sections 2 and 3 we 
describe  prototype  specimens.  Section 2 is  dedicated  to the  description of the 
fabrication and testing  procedures,  and  Section 3 is  dedicated  to  the  analysis of 
experimental results and  identification of  improvements in the fabrication and testing 
procedures. In Section 4, we describe  the model  specimens that were fabricated and 
tested using lessons  learned  from  the  prototype  specimens. In Section 5 ,  we 
summarize significant results of this study  and  identify directions for future work. 

10 
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2. Prototype  specimens:  fabrication  and  testing  procedures 

In this section, we are concerned with prototype specimens. These specimens allowed us 
to identify proper procedures for manufacturing, imaging, and mechanical testing of the 
model specimen. 

2.1 Overview 
At the beginning of the study, it was decided to work with specimens whose 

microstructure can be characterized with both CT and OM imaging. The primary 
restriction  imposed by CT  imaging is that the microscopic  dimensions  must be 
sufficiently large. Those distances include the particle size, the inter-particle distances, 
and the particle-specimen-surface distances. Since the resolution of current CT devices is 
10 pm  at best, the particles must be several hundred micron in size, and they must be 
positioned not too  close to each other and not too close to the specimen surface. The 
secondary restriction imposed by CT imaging is that the macroscopic dimensions must be 
sufficiently small. This restriction is necessary in order to be able to store and process  the 
CT data. By assuming that each elementary cube of material requires 10 bytes and the 
resolution  is 10 pn, the data density  is estimated as 10l6 bytes/m3. Accordingly, a 
specimen whose volume is 1 cm3  would require lo9 bytes worth  of  memory.  For current 
workstations, this number is comparable to the hard drive memory rather than RAM 
memory.  OM imaging imposes two restrictions. First, the specimen must be optically 
transparent. Second, the microstructure must be essentially two-dimensional. 

In this study, we satisfied the restrictions imposed by CT and OM by  working 
with rectangular specimens made  of epoxy  matrix filled with glass beads. The glass beads 
were  close to 880 l m  in diameter and they were arranged as a monolayer.  For the 
prototype specimens, additional specifications  for the macroscopic and microscopic 
dimensions  were  obtained by trial-and-error. For the model specimen,  additional 
specifications for the macroscopic and microscopic dimensions were obtained based on 
the experience gained with  the prototype specimens. 

We worked with four types of prototype specimens, to which  we refer as Epoxy 
A, Epoxy B, Composite A, and Composite B. The principal difference between the 
Epoxy  A  and  Epoxy  B specimens was the exposure period to room temperature and 
humidity prior to mechanical testing. For the Epoxy  A specimens the exposure period 
was about one month  and for the Epoxy  B specimens the exposure period was about one 
week. The exposure period was reduced due to time constraints rather than scientific 
reasons. The matrix of the  specimens Composite A (Composite B) was produced 
following the fabrication procedures for the specimens Epoxy  A (Epoxy B). 



Prototype  Specimens 

Composite A 12.90  12.93  1.88 

Composite A 22.86  12.93  1.88 

Composite B 75.92  12.90 1.87 

2.2 Fabrication Procedures 
2.2.1 Epoxy Specimens 

The Epoxy A and Epoxy B specimens were made of a resin (Araldite GY502) 
mixed with an amido amine hardener (HY955) at a  weight ratio 5:2 as proposed  in  [12]. 
The resin  and the hardener  were  mixed  completely and then the mixture was  placed in a 
vacuum chamber at room temperature  for 30 minutes to eliminate the air bubbles inside 
the  mixture. The epoxy was  then  poured  into  a  mold and cured at 160 "F for 60 minutes. 
Finally,  both the top and  bottom  surfaces -of the  pure epoxy specimen  were  machined flat 
and then they were cut to the various-length portions. The specimen dimensions are 
summarized in Table 2.1. 

Note  that the Epoxy B specimens are much longer than the Epoxy A specimens. 
This is because the Epoxy  A  specimens  failed to provide an adequate constraint against 
the displacements along the length direction. 

Table 2.1 Geometry of the prototype specimens 



2.2.2 Glass Beads 
A batch of glass beads  was  supplied to us by a local manufacturer. In order to 

select glass beads suitable for  CT imaging, we  sieved the entire batch such using an 838 
pm  sieve (Buckbee-Meats St. Paul MN-62). As a result we obtained a batch of glass 
beads whose size distribution is characterized by the frequency diagram shown in Figure 
2.1. This diagram  was  obtained by picking one hundred  spheres  at random and measuring 
their diameter using  an optical microscope. The mean diameter of this sample was 880 
pm, which is sufficient for CT  imaging. 
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Figure 2.1 Histogram for one hundred glass beads after sieving 

According to the literature [13], Young's modulus of glass does not vary 
significantly from one type of glass to another. Therefore, for glass beads, we adopted 
E=73 GPa (E-glass). Otherwise,  we  would  have to determine the value of E using sub- 
millimeter glass beads,  which is a non-trivial  task. 

2.2.3 Composite Specimens 



Following the fabrication procedure for the Epoxy A and B specimens, the resin 
and the hardener were mixed completely and then the mixture was placed in a vacuum 
chamber at room temperature for 30 minutes to eliminate the air bubbles inside the 
mixture. The epoxy was then poured into a mold  to  make the first layer and  cured  at 160 
"F for 60 minutes. After machining the surface of the specimen flat, tens of glass beads 
for Composite A and hundreds of glass beads for Composite B were  placed at random on 
the fmt layer of epoxy. After that, more epoxy was  poured over the glass-bead  layer. The 
specimens were then cured for another 60 minutes at 160 "F. Finally, both the top and 
bottom surfaces of the specimens were machined to obtain  the  desired specimen 
thickness. 

The Composite A specimens had the same dimensions as the Epoxy A specimens. 
These sets of specimens were used for evaluating the stiffening effect of the glass beads. 
Accordingly, these specimens were subjected to mechanical testing. In contrast, the 
Composite B specimen  was  used for evaluating  the microstructural geometry. 
Accordingly, this specimen was subjected to CT, OM and weight measurements. The 
dimensions for the entire set of prototype specimens are summarized in Table 2.1. 

2.3 Mechanical Testing 
The microstructural geometry in the form  of a monolayer requires one to work 

with thin specimens.  Under simple tension or compression, such specimens are prone to 
instabilities even at low stress levels. Under simple tension, the instability is due to 
necking,  and, under simple compression, the instability is  due to buckling. To eliminate 
these instabilities, we  decided to rely on constrained  compression  tests  with  loading  in  the 
thickness direction. Although this test does not involve instabilities, it requires careful 
evaluation  of the in-plane constraints. To resolve this issue we conducted our tests  using 
a plane strain compression device whose metal walls provide the constraint in one in- 
plane direction. In the other in-plane direction, the constraint was  realized  by  choosing 
sufficiently  long  specimens. 

The plane strain test device used  in this study is shown  in  Figures 2.3. With this 
device, the specimens were loaded with a stiff metal compression bar at a rate of 
1 . 2 7 ~  lov2 m d s .  The  force was measured with an 8.90 kN load cell. To ensure 
uniformity of the applied pressure on the specimen, a viscous compression platten was 
used. Additionally, two spring-loaded  LVDTs  were  placed  at  both  ends of the 
compression bar to  measure  the  relative movement as shown in Figure 2.3. The 
alignment of the  compression  bar  was  easily  confirmed  from  the  two  LVDT 
measurements. The surface of the compression  bar  was  smooth enough, so that no 
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Figure 2.3 Schematic of the interior of the plane strain compression device 

lubricant was required. Compression tests were conducted on the Epoxy A and B and 



Composite A specimens. The objective of those tests  was to evaluate the stiffening  effect 
of the glass beads and the constraint  strength  along the length direction. 

2.4 OM Imaging 
Optical images were obtained with a Reichert-Jung MeF3 microscope and a camera 
KODAK  MEGAPLUS  Model 4.2. This set-up is shown  in Figure 2.4. The magnification 
level was chosen such that the resolution was 4.41 pm. With this resolution, twenty 
images  were required in order to obtain the image of the entire specimen. The images 
were  processed  with  Adobe Photo Shop  software. 

2.5 CT Imaging 
CT images were obtained using the device at the High Resolution X-ray CT 

Facility at The University of Texas at Austin (http://www.ctlab.geo.utexas.edu/). The 
data were  obtained as a set of 27 slices.  The distance between the slices was 112 prn and 
the in-plane resolution was 76.8 pm. Thus  both  dimensions  were about one tenth of the 
size of the glass beads. These data were  processed  with a software package developed  at 
Center for Computational  Visualization  at  The  University of Texas at  Austin 
(http://www.ticam.utexas.edu/CCV). In terms  of functionality, this package is similar to 
the public domain  package  VTK  (Visualization  Tool Kit), but it is faster and  better  suited 
for our purposes. The software creates both  two-  and three-dimensional images fully 
automatically, provided that the user prescribes the threshold value for the iso-contours 
that  represent  material interfaces. 

2.6 Weight Measurement 
Weight measurements provided us with a benchmark data point for the volume 

fraction of the  glass beads. Weight  measurements  were  done with a precision 
microbalance whose resolution was 0.1 mg.  Each epoxy was weighed five times. We 
relied  on a single weighing for glass in  part because the  density of glass is a fairly stable 
quantity, and  in  part because our measurement  agreed  very  well  with a handbook  value. 
To determine the volume fraction of the glass beads  we  measured the specific weight for 
the glass, epoxy, and composite. Then the volume fraction of the glass beads was 
calculated  using the rule of mixtures. 

http://www.ctlab.geo.utexas.edu
http://www.ticam.utexas.edu/CCV
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Figure 2.4 Schematic of the device for optical measuremenb 



3. Prototype  specimens:  measurement  results  and  analysis 

3.1 Mechanical Testing 
3.1.1 Epoxy A and Composite A Specimens 

Results of the experiments on the Epoxy A and Composite A specimens  are 
shown in Figure 3.1. There the apparent Young's modulus is plotted as a function of the 
specimen length; the apparent Young's modulus is defined as the stress-strain ratio along 
the thickness direction. The data were obtained using 4 Epoxy A and 4 Composite A 
specimens, and  each specimen was  tested 5 times. 
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Figure 3.1 Apparent Young's modulus 
of composite and pure  epoxy specimens 

For all specimens, the data exhibit scatter close to 5%, which cannot be correlated 
with any controlled experimental variables, and therefore the scatter should be attributed 
to experimental uncertainties.  The apparent Young's modulus of the composite specimens 
is roughly 15% higher than that  of the epoxy specimens, and it is independent of the 
specimen length. This behavior is expected, considering that the volume fraction of the 
glass beads is low, and therefore the glass  beads  cannot  contribute  significantly to 
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variations in the apparent Young's modulus from one  specimen to another.  The 
significant dependence of the apparent Young's  modulus on the specimen length can be 
attributed  to  friction.  For  short  specimens,  those  effects are insufficient to fully constrain 
the  specimen  along  the  length  direction;  in  the  other  direction  the  specimen is constrained 
by the metal  walls.  Evidently,  the data does  not  reach a plateau,  and therefore additional 
experiments are required in order  to  determine  the  minimum  specimen length that  yields 
a fully  constrained  compression  test. 

3.1.2 Epoxy B Specimens 
Based on the results for the Epoxy A and  Composite A specimens, we  concluded 

that the minimum specimen length can  be  determined using the  Epoxy  B specimens, 
rather  than  both  Epoxy B and Composite B specimens. The apparent  Young's  modulus of 
the  Epoxy A and  Epoxy B specimens  are  plotted in Figure 3.2. The plot clearly shows  the 
difference between  the  Epoxy A and Epoxy B specimens -- the former are significantly 
stiffer as a result of the  longer exposure period  under room temperature and humidity 
conditions. Also it is clear that  the data for the  Epoxy B specimens tends to reach a 
plateau. At least,  the  difference  between  the  measurements for Vw=3 and Vw=6 is within 
5%, which  we  adopted  as  the  experimental  uncertainty error. Further verification, using 
longer specimens, could not  be  carried  out  with our testing  device. 
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Figure 3.2 Apparent  Young's  modulus of puce epoxy specimens 
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3.2 OM Imaging 
The optical image of the  Composite B specimen is shown in Figure 3.3. This 

image is regarded  as  the  benchmark  for the CT image of the Composite B specimen. In 
addition we  used this image for quantitative characterization of the microstructural 
geometry of the  specimen. To this end,  we  assumed  that  the  beads  were  spheres, and  used 
the  optical image to determine the  center and radius of every  sphere. These data were 
collected  manually  and  recorded into a file. It was determined that the  total  number  of 
spheres  was  464, their mean  diameter  was 880 pm, and  the volume fraction of glass was 
7.6%. These data was also represented as a frequency plot for the  sphere  diameter  (Fig. 
3.4). 

, . 

Fig. 3.3. Optical image of Composite B 
To our surprise  we  discovered a relatively large percentage of small  spheres. OM 

did  not  allow us to determine  whether  those spheres were glass beads or air bubbles. This 
issue was eventually resolved  using  the  CT image, which  can differentiate between  the 
low-density air and  high-density  glass.  Based on the CT image,  we  were  able  to  conclude 
that  the small inclusions  were  glass  beads. Note that part  of  the  fabrication  process for 
the composite specimens included sieving of glass beads,  in order to achieve a quasi- 
uniform  population of the glass beads  with respect to their size. Obviously  the sieving 
procedure failed to exclude a relatively  large number of  small glass beads. We believe 
that  those  beads  were  not  excluded  because  they  were  attached to large beads  during  the 
sieving procedure; a possible mechanism  responsible  for the attachment is static 
electricity. 

We  observed  that  many  glass  beads  touched each other as well  as  the  edge of the 
specimen. The  random placing of hundreds  of glass beads during its manufacturing 
process allowed them to touch to each other easily. This situation is typical for the 
majority of composite materials,  since  in  most cases the volume fractions of particles or 
fibers significantly exceeds 7.6% considered in this study. The microstructures that 
involve  many  touching or almost-touching particles or fibers are particularly  dfificult for 
both  experimental  characterization  and  computational  modeling  because  they  require one 
to  resolve  the  small  gaps  between  the  particles. 
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Figure 3.4 Histogram of the glass beads in Composite B 

3.3 CT Imaging 
Figure 3.5 shows a CT image of the middle slice of  the specimen. Upon 

comparison of this image with the optical image in  Figure 3.3, one can easily see major 
differences between the two images. In particular, within 1 cm from the left edge, the 
optical  image  shows  about 20 spheres whereas the CT image does not  show any spheres. 
Most likely, this discrepancy is due to tilting of the specimen during CT scanning. 
Apparently,  the  specimen was inadequately supported against the rotations about the x or 
y axes,  which led to tilting and eventually to the poor image.  Also, on the CT image, 
some  particles do not at all look like spheres. This is expected for small particles whose 



image consists of a small number of pixels and nearly touching particles whose image 
resembles a dumbbell. 

t y  

Figure 3.5 CT image of Composite B 

Besides the errors associated with finite spatial resolution, the CT image is also 
prone to errors associated with data segmentation or the definition of a value for the data 
iso-contours  that represent the  glass-epoxy interfaces. It is clear  that the quality  of  three- 
dimensional  CT images cannot be better than  that of two-dimensional CT images. From 
this perspective, a three-dimensional CT image of the Composite B specimen is 
worthless. Nevertheless, producing a three-dimensional  was a useful exercise because it 
revealed to us two additional difficulties. First, the  CT device assigned density  values  that 
varied from one slice to another. Some CT devices post-process the data so that this 
problem  is eliminated, but  not the device used  in  this study. Second, the data was polluted 
by the so-called ghost effect [14]. This  effect  can  be eliminated if the data for each slice 
are collected after a certain, machine-dependent,  time  interval. The ghost effect cannot be 
eliminated  with "creative" data post-processing. 

3.4 Weight Measurement 
Weight  measurements for the largest Epoxy B specimen (1=75.9 mm) and 

Composite B specimens are summarized in Tables 3.1 and 3.2, respectively. In addition 
to the weight, these tables also contain the measurements of the specimen dimensions. 
Based  on these data and the value for the specific weight  of glass (see Table 3.3), we 
concluded that the volume fraction of glass beads was between 5.9% and 7.9%. This 
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range is consistent  with  the  value of the  volume  fraction  obtained  from the optical image, 
which was 7.6%. 

Measurement 1 W t W 

number mm mm mm g 

1 75.89  12.90  1.88  2.072 

2  75.90  12.92  1.88  2.072 
I I I I 

3  75.89  12.90  1.88  2.072 
I I I I 

I 4 I 75.90 I 12.90 I 1.88 I 2.072 I 
I 5 I 75.90 I 12.88 I 1.88 I 2.072 I 

Table  3.1  Density  measurements  for the Epoxy B specimen  (1=75.9 mm) 

Table 3.2  Density  measurements for the Composite B specimen 

I Radius W Density 

629 2.7 2.60 

Table  3.3  Density  measurement  for  a glass bead 
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3.5 Recommendations 
The study  of the prototype specimens fully confirmed the notion that detailed 

microstructural characterization is a challenging task, even for specimens with simple 
microstructure. Based on the study of the prototype specimens, we concluded that the 
fabrication  and  testing  procedures for the  model  specimens must be improved as follows: 

In order to constrain the specimen along the length dimension, and thus realize  a  bi- 
axially  constrained  compression  test, the specimen length I should exceed its width w 
by at least a factor of six. 
Fabrication procedures must be refined in order to eliminate small glass beads  and 
control the distances between the glass beads and between the glass beads and the 
specimen surface. At this stage, the second requirement is critical for developing 
reliable  material  characterization  procedures  based on CT data. 
OM provides adequate images of the specimen, but it can benefit from CT imaging 
which can differentiate between  small glass beads  and air bubbles. 
CT data acquisition  must  be  improved as follows: 

The model  specimen must be smaller than the Composite B specimen in order to 
be  scanned  with  better  resolution. 
The specimen  fixture inside the CT device must be improved in order to eliminate 
tilting. 
During  scanning, the model  specimen  must be surrounded by a significant volume 
of glass, so that one can  determine the peak  corresponding to the density of glass. 
The scanning  procedure  must  be  improved in order to eliminate the ghost effect. 
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4. Model specimen 

This section is concerned with the  model specimen. This specimen is an improvement 
over the prototype specimens, both  in terms of fabrication and testing. In order to 
eliminate repetition, our presentation emphasizes the differences between  the  model  and 
prototype specimens. 

4.1 Geometry 
The model specimen was significantly smaller in size than the Composite B 

specimen involved in OM and CT imaging. The model  specimen dimensions were I = 
11.08 mm, w = 1.93 mm,  and t = 1.42 mm. For the specimen microstructure, we selected 
eight glass beads and positioned  them in a row along the length  direction  (Fig. 4.1). The 
beads  had almost perfect  spherical shape and  their diameters were close to 900 pm. The 
beads  were  placed such that the gaps between  them and the gaps between the beads  and 
the  specimen surface were  on  average  250 pm; the smallest distance was  137  @m. 

Figure 4.1 Optical images of the model composite specimen: 
(a) top  view  and (b) side  view 
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4.2 Fabrication 
The fabrication procedures for the model specimen had to be modified in order to 

realize controlled positioning of the glass beads. The modifications were  as follOwS (see - - 
Fig. 4.2): 
1, The positions of the glass beads were controlled manually. The optical microscope 

was  used for monitoring the procedure. 
2. Before placing the spheres, the top surface of the first layer was covered with a thin 

layer of uncured epoxy, which allowed us to maintain the beads in proper positions. 
3. After placing the beads, the specimen was cured again at  160 "F for  60 minutes. This 

allowed the thin layer of epoxy to harden, and as a  result the beads could be 
maintained in proper positions during the  vacuuming stage. 

4. To reduce the residual stress after curing inside the mold, the  model specimen was 
annealed outside the  mold  at 160 OF for 60 minutes. 

In addition to the  model composite specimen, we fabricated an epoxy specimen with the 
same dimensions and curing history, except that the epoxy specimen was subjected to 
two rather than three curings. Both specimens were  tested  two  weeks after fabrication. 

Step I :  Pour md cure the first layer 
n 

Step 2: Apply thin layer of epoxy, position the glass beads, vacuum and cllre 

n 

Step 3: Pour the 2nd layer of epoxy. vacuum and cure 

n 

IOnnnnonnl 
Step 4: Remove model specimen from the mold and anneal 

Figure 4.2 Fabrication of the  model composite Specimen 
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4.3 Imaging Procedures 
For the  model specimen, we obtained optical images of the top and side views, 

using the resolution of 2.21 pm. 
The  CT data for the  model composite specimen consisted of 36 slices along the 

thickness direction. The slices were spaced uniformly, and  the inter-slice thickness was 
46.7 pm. Within  each slice, the  pixel resolution was 25.5 pm, so that the CT image was 
obtained from the data whose  resolution was about  3%  of the mean diameter of the glass 
beads. These pixel  resolution  and inter-slice thickness  were about one half  of those of the 
Composite B specimen, so that the CT image was derived from the data whose resolution 
was about one twentieth of the mean diameter of the  glass bead. These choices were 
made on the basis of experience with the Composite B specimen. In addition, care was 
taken to eliminate the ghost effect. 

To obtain the histogram peak for the glass phase, the specimen was scanned 
together with a piece of industrial pure quartz, such that the total volume of glass was 
roughly equal to that of epoxy. 

Also, as part of CT data processing, we included the median filter technique [I51 
to assess the CT data quality. 

4.4 Mechanical Testing Procedures 
Unfortunately, the dimensions of the  model  specimen  were too small for constraining the 
deformation in the width direction;  for the prototype specimen, the deformation was 
constrained by the  loading  device. This significantly complicates interpretation of  the  test 
results since we no longer can assess the  macroscopic stress in the  model specimen. Also, 
the  model  specimen  was  tested  using a smaller load cell. 
After the specimen had  been tested in the elastic regime, it was tested in the inelastic 
regime until failure. The displacement was controlled such that the specimen was 
subjected to a series of loading-unloading tests. The peak load for each test was 450 N 
more than the peak load of the previous test. After  each test, the specimen was examined 
using  an  optical comparator. The specimen  images  were  recorded  with a video camera, SO 
that the specimen could be viewed at l o x  magnification in an optical comparator 
connected to the DVD recorder (Panasonic WJDR 200). The schematic of this apparatus 
is  shown  in  Figure 4.3. 
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Figure 4.3 Schematic of the  set-up for observation 
of  the  compression  failure 

4.5 Results 
4.5.1 OM Imaging 

Figure 4.1 shows the  top  and  the  side  view  optical  images of the  model specimen. 
It is clear that we were successful  in  positioning the glass  beads  such  that  they were not 
too  close to each  other and  not too close to the specimen surface. OM revealed the 
presence of a  tiny glass bead next to the second  main  bead, if the  main  beads  are counted 
from left to right. The tiny  bead cannot be  seen in Figure 4.1 because it is not perfectly 
focused, but i t  is clearly seen in Figure 4.7. We have no good  explanation  how the tiny 



bead ended up inside the specimen, but  the fact that the bead  was there indicates that the 
fabrication procedures need further refinement. 

By assuming that the beads are spherical, we estimated their mean diameter as 
897 pm  and the volume fraction of glass as 9.67%. In this measurement, the tiny glass 
bead  was neglected. 

4.5.2 CT Imaging 
Figure 4.4 contains three histograms corresponding to  the CT data for the  middle 

slice. The black line represents the raw data and  the  red line represents the filtered data. 
The blue line was obtained by removing the data representing quartz followed by filtering 
the data representing the specimen. It is clear that  all three peak, representing air, epoxy, 
and glass,  could be easily identified with  all three data processing procedures. On the 
other hand, both quartz and filtering enhance the glass peak. 
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Figure 4.4 Histograms  based on: 
(a) raw  data 

(c) filtered  data  without quartz 
@)filtered  data 

Figure 4.5 shows two images of the middle slice of the specimen; one image was 
obtained  from  the  raw data and the  other from the filtered data without quartz. The 
threshold values for both  images were the same, and they  were chosen as the midpoints 

2.9 



between  the  peaks.  Both  images  are  in good agreement  with  the  optical  image  shown in 
Figure la. Filtering makes  the second image less noisy  than  the first  one, but  the 
difference  is  very minor, at least  visually. 
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Figure 4.5 CT Images: 
(a) raw data  and (b) filtered data without  quartz 

Figure 4.6 contains thirteen  histograms corresponding to various slices using 
filtered  data  without  quartz.  These  histograms  show  that  the  density shifts from  one slice 
to  another  were  rather  minor,  and  therefore  the  peaks  did not have to be  adjusted  before 
making the three-dimensional image. 
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Figure 4.6 Histograms for various slices 
for  filtered  data without quartz 

Figure 4.7 contains a three-dimensional  CT image of  the specimen derived from 
the raw data. The threshold values  were  chosen equal to those for the middle slice. The 
image is consistent with the images shown  in Figures 4.1 and 4.5. The image clearly 
shows the tiny  glass bead. Also  it is clear that  this  is a glass bead  but  not  an air bubble. 
The tiny glass bead  was also observed in the optical images but only after i t  had  been 
detected  by the CT device. 

I .  . .  

.. . .  

Figure 4.7 CT image of the model composite specimen for raw data 



4.5.3 Weight Measurernenr 
Based on weight  measurements,  it  was  estimated  that the volume  fraction of glass 

had to be between  9.4%  and  9.6%. The OM estimate of 9.67% is outside  this  tight  range, 
but this discrepancy can be easily attributed to deviations of the  glass  beads  from  the 
spherical  shape. 

4.5.4 Elastic Behavior 
Figure 4.8 presents  the stress-strain curves  obtained by repeating  the same test 

five times.  According to Figure 4.8, the  results  are  reproducible;  in  addition,  the  quality 
of these data was  confirmed  by  monitoring  alignment of LVDTs. From  these  data  we 
calculated  the  apparent Young's modulus of the  model  specimen as 2.05k0.03 GPa. 
Similarly, we determined the  apparent  Young's  modulus of the corresponding epoxy 
specimen  as 1.76 k 0.06GPa. 
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Figure 4.8 Stress-strain  curves in the elastic regime 
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4.5.5 Fracture Behavior 
Figure 4.9 contains a set of optical images that describe the  evolution of fracture 

in the specimen.  For the peak loads in Figures  4.9a-e,  there  are two images -- one 
presents the top  view and the  other the side view. For peak loads in Figures 4.9f-i, there is 
only image, for  the top view. Apparently, fracture was initiated when the force P was 
between 1.74 and 1.93 kN. It appears that the cracks were initiated between  the  beads  and 
the upper surface of the  specimen. At P=1.93 kN, the  cracks are particularly well 
developed near the middle beads. Those  cracks  overlap  at the upper surface of the 
specimen but not at  the mid-surface. As the load  increases, the cracks in the middle 
continue to spread and  at E2.48 kN two of them overlap at the mid-surface. Also at this 
load, the side view of the specimen appears symmetric, which indicates that  there  was 
significant cracking between the beads and  the lower surface. The cracks appear to  stay 
in the mid-plane perpendicular to the y-axis for P I 3.08 kN. For P 2 3.57 kN, the cracks 
start propagating out of this  plane until a major  crack develops at P=4.73 m. Also, for P 
2 3.57 kN, the cracks interfered with optical imaging to the extend that the side view 
images were impossible to resolve. 

i *j 

X 

L 

33 



Z 

I W  
Figure 4.9A Fracture patterns: (a) P=1.56 k N ,  (b) P=1.74 kl., ,-, - -.93 kN 

It is impossible to provide a detailed explanation of fracture evolution without 
detailed numerical analysis. Nevertheless, we believe that  the tendency for the cracks to 
initiate at the upper rather than lower surface of the  specimen may  be related to the curing 
procedure -- the upper surface was cured once whereas  the  lower surface was cured three 
times. Also the tendency for the cracks to initiate near the beads in the middle may  be 
related to friction effects, since we expect no slip conditions in the middle and easy slip at 
the  ends of the specimen. 
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Figure 4.9B Fracture patterns: (d) P=2.48 kN, (e) P=3.08 kN 
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5. Conclusion 

In this study, we considered several glass-epoxy specimens with  two objectives in 
mind. First, we  wanted  to develop an understanding of  how CT imaging could be utilized 
in microstructural  characterization of mechanical  behavior of composite  materials. 
Second, we wanted to obtain experimental results that would allow us to benchmark 
computational modeling of composite materials. 

We regard results of this study as mixed. On the one hand, we were able to 
develop a good practical understanding of what it takes to obtain a (visually) good CT 
image. On the  other  hand, such images can be obtained only for  carefully  crafted 
specimens, so that the practical use of CT imaging appears to be limited. This is certainly 
true for most fiber-reinforced materials with fibers close to 10 pm  in diameter. Also, 
results of mechanical testing on the model specimen are of limited value because we 
failed to constrain the specimen so that we could unambiguously determine the induced 
macroscopic stress. 

The improvements in the imaging procedures for the model specimen mostly due 
to a better understanding of CT imaging techniques that are well  known to experienced 
CT technicians. Nevertheless each specimen has its own specifics and an understanding 
of those specifics is critical for producing good images, especially for  features  close in 
size to the resolution threshold. 

Surprisingly, even for quasi-two-dimensional microstructures, CT imaging was 
able to  identify  certain  features  better than OM. CT was particularly  useful in 
distinguishing between air  bubbles  and small glass  beads.  However, it would be 
counterproductive to consider OM and C T  imaging methods as competing techniques. TO 
the contrary, one should search for ways of integrating these methods to the maximum 
extent possible, so that it would be possible to exploit their advantages. 

Based on results of this study, the following recommendations are made for future 
investigations: 

(1) Consider  modifications in the model specimen geometry and/or  mechanical 
testing procedures that  would  lead to experimental data suitable for benchmarking 
of computational modeling methods. 

(2) Compare experimental and computational data for a new model specimen, and 
establish possible ways  of combining those data for integrated microstructural 
characterization of mechanical behavior of composite materials. 

(3) Explore the  applicability of CT imaging. 
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CHAPTER 2

Adaptive Modeling in Computational Solid Mechanics

J. Tinsley Oden, Kumar Vemaganti, Serge Prudhomme,

Daniel C. Hammerand, and Samuel W. Key

1. Introduction

Over the last few decades, the great advances in computational mechanics have been heralded as

major milestones in science and engineering, providing the knowledge, tools, and techniques that,

with the use of modern computers, may permanently change the way science and engineering is

done. Furthermore, these advances may have a profound impact on virtually every aspect of human

existence and well-being. At the heart of this promise is the predictive power of computer simu-

lation, enabling the modeling of complex physical events and extending our ability to understand,

control, and predict the behavior of physical and engineering systems.

There is, however, a growing concern as to the real extent to which this great promise will

ultimately be fulfilled. Will the new developments lead to predictive tools of a fidelity, accuracy,

and reliability sufficient to be used with confidence in applications of increasing complexity and

importance? The predictive power of computer models depends upon two fundamental factors:

1) The accuracy with which the mathematical systems governing the model (the partial-differential

equations, integral equations, constraints, etc.) are solved and 2) the suitability of the mathematical

model selected to abstract a particular set of physical events of interest. The first factor leads to

questions ofverification; as Roache [26] put it “verification asks the question, have the equations

been solved right?” The second factor leads to questions ofvalidation; or, from [26], “have the

right equations been solved?” Issues of verification call upon methods ofa priori anda posteriori

error estimation, benchmarking, software engineering. Issues of validation traditionally call upon

physical experiments and testing. Our interest here is in the latter category, model selection. In

particular, can computational and mathematical procedures be developed that aid or complement
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the validation process? We provide what may be an affirmative answer to this question embodied in

the notion of hierarchical modeling and model adaptivity.

The selection of the mathematical model, the fundamental step in performing a computer simu-

lation of a physical event, is a step left largely to heuristic arguments, judgment and experience of

the analyst, or is based on incomplete empirical data. Indeed, different analysts frequently choose

different models to study the same physical phenomenon. Nevertheless, the selection of the model

and the parameters that characterize it is arguably the most important step in computer-based sci-

ence and engineering and is often the dominant source of error in computer simulations. Since all

models of physical events are approximations to nature, all models are in a sense wrong. Accord-

ing to Box [5], “All models are wrong, but some are useful;” Easterling [9] observes that “Useful

models are those for which the prediction error, the difference between nature and computation, is

tolerable in the context in which the model is to be used. The problem is to establish ‘usefulness.’”

The notion of hierarchical modeling, while itself based on a selection process and also based on

mathematical (and, therefore, “wrong”) models, provides a potentially more systematic approach

for selecting models from a well-defined class of models. In this approach, we seek to define a class

M of mathematical models of a certain class of physical phenomena, which includes models that

are presumably candidates for modeling all events of interest. Within this classM is a so-called fine

model, which is also a mathematical model, but one of such detail, sophistication, and complexity

that all phenomena of interest in a set of simulations are predictable by it with sufficient accuracy.

Many of the properties of the fine model may presumably be determined through experiments, test-

ing, imaging, and other means. All other models withinM are coarser or simplified models. While

general and inclusive, the fine model is often too complex to be used to obtain quantitative results;

thus solutions of the fine model are never actually computed, except possibly for very special cases.

The fine model is used only as a datum against which modeling error in coarser models is measured.

The fine model, for example, may characterize phenomena occurring at many spatial and temporal

scales and may embody many interacting physical effects, while various coarser models may be

characterized by averaged mechanical properties and simplified laws. Ultimately, the suitability of

the fine model itself must be estimated by determining its predictive limits within the context of

a still larger class of models or, unavoidably, through more traditional validation procedures such

as physical experiments. Once a set of hierarchical models is defined, the suitability of a given

(tractable) coarse model is determined bya posteriorimodeling error estimates, bounds in various

norms of the error in a solution of a coarse model compared to the unknown fine model solution.
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Once thea posterioriestimates of modeling errors are in hand, adaptive procedures can be designed

to make possible the automatic selection of appropriate models within the classM.

2. Adaptive Modeling for Heterogeneous Materials

The study of heterogeneous materials offers an example of a class of modelsM, wherein the finest

model leads to a problem that is virtually impossible to solve, while a coarse model invariably leads

to an erroneous solution. Direct numerical simulation of the deformation of highly heterogeneous

materials – even under the assumption that the constituents are linearly elastic – is well beyond

the capacity of modern computers, due mainly to the vast number of degrees of freedom required

to capture and resolve the heterogeneities. Traditionally, the body is treated as a homogeneous

medium characterized by averaged properties. While this approach leads to manageable problem

sizes, it also results in the loss of crucial fine-scale information.

The methodology of hierarchical modeling, applied to the analysis of linearly elastic heteroge-

neous materials, was first described in [30, 20]. In these papers, a posteriori bounds on the error

in solutions to elastostatics problems induced by replacing fine-scale micromechanical properties

by coarser scale or effective properties were derived in global energy norms. These error estimates

were then used as a basis for an adaptive modeling process in which only enough fine-scale in-

formation sufficient to deliver results of a preset accuracy, measured in energy norms, is used to

characterize the model. The resulting adaptive process can lead to significant computational sav-

ings, making possible the analysis of micromechanical effects in some cases that are intractable by

traditional approaches. Preliminary results on extensions of these adaptive approaches to a class of

models depicting material damage were discussed in [21].

More recently, the theory of a posteriori modeling error estimation for heterogeneous materials

was extended to “quantities of interest” that represent local features of the response [18]. These

quantities of interest could represent, for example, average stresses on material interfaces, boundary

displacements, or mollified pointwise displacements, strains, or stresses. Mathematically, a quantity

of interest is any feature of the fine-scale solution that can be characterized as a continuous linear

functional on the space of functions to which the fine-scale solution belongs. Computable upper and

lower bounds and sharp estimates of the errors in such quantities are established in [18]. Based on

these estimates, an adaptive modeling algorithm, referred to as the GOALS (Goal-Oriented Adaptive

Local Solution) algorithm, is developed.
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The theory assumes that the microstructure, and hence the elasticity tensor, is known almost

everywhere in the body. However, in most engineering materials, the number of microstructural

components in enormous, often exceeding millions of constituents, and the geometry, orientation,

and mechanical properties are unknown or not known with significant precision. Thus, it is usually

necessary to use specialized technologies to determine the microstructure. In [29], Computerized

Tomography (CT) images generated by X-ray devices are used to determine the microstructure

locally. A detailed description of a computational environment that integrates CT imaging and h-p

adaptive finite element methods with the GOALS adaptive modeling algorithm is available in [29].

In the remainder of this section, we describe various aspects of this integrated adaptive modeling

methodology. First, the overall adaptive modeling strategy is described. Next, each module of this

strategy is individually discussed.

2.1 Overview of the adaptive modeling strategy

The general ideas of the adaptive-modeling algorithm depicted in Fig. 2.1, are

1. A structural component is given or fabricated and a list of analysis goals, so-calledquantities

of interest, is identified; the accurate calculation of these quantities is the goal of the analysis;

2. X-ray tomography is used to scan the specimen or various portions of it to approximately

define the internal microstructure;

3. A homogenization module accepts imaging data taken from sampled sections of the body and

computes effective mechanical properties using an adaptive finite element method;

4. The effective properties are used as input data in the adaptive hp finite element program

which computes a highly accurate “homogenized” solution to the equations of elastostatics

for given loading and applied force data (a step in which the response of the body is modeled

mathematically as a homogeneous, linearly elastic body);

5. The homogenized solution is input to a module which implements the GOALS algorithm

which estimates the errors in the quantities of interest (errors due to modeling the heteroge-

neous material as a homogenized medium) and adaptively adjusts the calculated quantities

(by using additional microscale data supplied by the imaging process) until preset levels of

accuracy are attained;
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Figure 2.1: Schematic of the adaptive modeling strategy.

6. The output is the set of quantities of interest; when possible, these results are verified by

independent physical experiments.

In general, there is feedback between steps 1 and 2, and step 5 and 2: from 2 to 1, as imaging

data may be needed to identify quantities of interest, and from 5 to 2, as additional imaging data on

microstructure may be needed to adaptively improve the accuracy of the model.

2.2 Computerized tomography and mesh generation

Tomography refers to the cross-sectional imaging of an object from data collected by subjecting the

object to electro-magnetic radiation from different directions. X-ray CT refers to the use of X-rays

to analyze a given cross-section. Since a 3-D description of an object can, in principle, be assembled

from a series of 2-D (planar) descriptions, we focus our attention here on the analysis of 2-D CT
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images.

The output from the CT analysis of a material is a planar map of the attenuation coefficient1

of the material, given as a discrete function over a cartesian grid in the form of a gray-scale. Each

element of this grid is termed apixel.

For a detailed discussion of CT imaging, see [16]. In the current study, we use a X-ray CT

device with a resolution of about 10µm.

The Segmentation Problem

Segmentation refers to the process of identifying individual constituents and the interfaces between

constituents in a material from its gray-scale image. For a two-phase material, this amounts to

classifying a pixel as belonging to one of two materials and grouping like pixels. The range of the

gray-scale depends on the number of “bits” of information stored per pixel; an 8-bit gray-scale, for

instance, ranges from 0 to 255 in value. Thus, to segment an image of a two-phase material, it is

necessary to select a threshold value, above which a pixel is considered to be of one material, and

below which the pixel belongs to the other material. For multi-phase materials, several threshold

values must be identified to delineate various micromechanical constituents. The choice of this

threshold value, evidently, has a significant impact on the outcome of the segmentation process.

Once the threshold parameter, also known as an isovalue, is selected, the isocontour – the surface

on which the value of the gray-scale function equals the selected isovalue – has to be determined.

Here, we comment only about the selection of the isovalue; a discussion of isocontouring is beyond

the scope of this paper.

Our approach to the segmentation problem consists of augmenting the Contour Spectrum ap-

proach proposed by Bajaj et al [2] with known information about the specimen. In particular, we

use information about the volume fraction of the specimen to arrive at a segmented image. In the

current approach, the threshold value is varied from one end of the gray-scale to the other, and

for each value of the threshold parameter, the volume fraction of the resulting segmented image is

computed. Then, the threshold value that predicts the known volume fraction of the specimen is

selected as the true threshold value. For more details on the Contour Spectrum approach and the

isocontouring algorithms used in this work, see [2, 3].

1The attenuation coefficient of a material, as the name suggests, measures the attenuation or the loss of intensity of

an X-ray while passing through the material as a result of the photoelectric absorption effect and the Compton effect. In

general, the attenuation coefficient of a material can be related accurately to material densities.
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Figure 2.2: CT image of sample of rock.

As an example, we consider a rock sample whose CT image is shown in Fig. 2.2. Figure 2.3

(a) shows the Contour Spectrum for this sample, with the blue line representing the variation of

the volume fraction with the threshold parameter. Finally, in Figs. 2.3 (b) and (c), we show the

resulting segmented images for two different choices of the threshold parameter. As is seen from

these figures, an arbitrary selection of the threshold parameter can result in a highly inaccurate

picture of the microstructure.

Mesh Generation

The final step in using the original CT image is to generate a mesh on which computations can

be performed. We now discuss the generation of 2-D meshes of quadrilateral elements for the

case of two-phase composites with cylindrical (circular) inclusions embedded in a matrix material.

Mesh generation using triangles for more general inclusions has been performed but will not be

considered here. For the purpose of the present discussion, we assume that the centers and the radii

of the inclusions have been extracted from the segmented image of the specimen.

The main steps in the mesh generation algorithm are as follows:

1. Construct the weighted Voronoi diagram of centers of the circles, with the weight proportional

to radius.

2. Merge short edges of the Voronoi diagram based on user-specified threshold. If this leads to

an intersection between an edge and a circle, the operation is not performed.

3. Divide faces of Voronoi cells inton pieces (n is user-specified) by introducing vertices (nodes)

on the faces. If a face is shared, this division must be unique.
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(a)

(b) (c)

Figure 2.3: (a) Contour Spectrum for the rock sample of Fig. 2.2. (b) and (c) Segmented images for

two different choices of the threshold parameter.

4. Connect centers of circles to the vertices on the faces, leading to a collection of super-

triangles. Each such super-triangle is divided into a quadrilateral and a triangle by the pres-

ence of the circle. Optionally, additional division can be performed in the radial direction.

5. Subdivide each triangle into three quadrilaterals.

6. Smooth the mesh using, say, centroid smoothing, wherein an internal node is relocated to

the geometric center, or centroid, of the polygon comprised of the elements containing the

internal node.

In Fig. 2.4, some of the steps in the algorithm are illustrated for a simple case. More involved

example problems employing the above algorithm will be presented later. It should be noted that the

approach described here is not related to the VCFEM of Ghosh and Moorthy (e.g. [11]). Here, the

Voronoi cells are not finite elements; they are partitions that encapsulate inclusions and provide a
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(a) (b)

(c) (d)

(e)

Figure 2.4: Meshing Algorithm: (a) Original configuration of the inclusions, (b) Weighted Voronoi

diagram for this configuration, (c) Voronoi diagram after removal of short edges, (d) Initial mesh,

and (e) Mesh after 5 iterations of centroid smoothing.

geometric description of needed for automatic meshing. These meshes are adapted using a parallel

hp adaptive finite element system discussed later.

2.3 The mathematical model

The actual response of the material body under study can be thought of as being depicted by an ab-

stract mathematical model, provided by the equations of linear elasticity for heterogeneous bodies:

−div
(
E(x)∇u(x)

)
= f(x), x ∈ Ω

n(x) ·E(x)∇u(x) = t(x), x ∈ Γt

u(x) = U(x), x ∈ Γu

(2.1)
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Here,Ω ⊂ RN (N = 1, 2, 3) is the open interior of the material body under consideration,Γt and

Γu are portions of the boundary∂Ω of Ω on which tractionst and displacementsU , respectively,

are prescribed,f is the body force per unit volume, andn is the unit exterior normal to∂Ω. In (2.1):

E(x) = the value of the elasticity tensorE at a pointx ∈ Ω

u(x) = the value of the fine-scale displacement fieldu at a pointx ∈ Ω

It will always be assumed thatE has the standard symmetries and ellipticity properties of elas-

ticity tensors:Eijkl(x) = Ejikl(x) = Eijlk(x) = Eklij(x), for almost everyx ∈ Ω, 1 ≤ i, j, k, l ≤

N ; there exist constantsα0, α1 > 0 such that for almost allx ∈ Ω,

α0εijεij ≤ Eijkl(x)εijεkl ≤ α1εijεij (2.2)

for any εij ∈ R
N × RN , εij = εji, and repeated indices are summed throughout their range,

1 ≤ i, j, k, l ≤ N . Owing to the possibly very irregular distribution of multiphase microstructural

features within the body,E will, in general, be a highly oscillatory, rapidly varying function ofx.

It is well known that for general domainsΩ and general loading and boundary conditions, a

classical solution to problem (2.1) does not exist. One is then led to consider a weak or variational

form. In the case of (2.1), we have the corresponding weak problem:

Findu ∈ {û}+ V(Ω) such that

BΩ(u,v) = FΩ(v) ∀ v ∈ V(Ω).
(2.3)

Here,V(Ω) is the space of admissible displacements,

V(Ω) def=
{

v ∈
(
H1(Ω)

)N : v = 0 on Γu
}
. (2.4)

Also, û is an(H1(Ω))N function whose trace onΓu is the Dirichlet dataU , and

BΩ(u,v) def=
∫

Ω
∇v : E∇u dx, (2.5)

FΩ(v) def=
∫

Ω
f · v dx +

∫
Γt

t · v ds. (2.6)

In (2.5), the integrand is anL1(Ω) function,∇v : E∇u = ∂vi
∂xj

(x)Eijkl(x)∂uk∂xl
(x) (repeated

indices summed;1 ≤ i, j, k, l ≤ N,N = 1, 2, 3). In (2.6), it is implicitly assumed thatf ∈

(L2(Ω))N andt · v is integrable onΓt for v ∈ V(Ω).

The functionE = E(x) will rarely ever be completely known, and therefore, the fine-scale

displacement fieldu = u(x) will also never (or rarely ever) be known. The best that one can

usually hope for is that a CT imaging device can be used tosamplethe specimen and determine an

approximate restriction ofE to the sampled subdomains.
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2.4 Effective properties: the homogenized problem

Since our knowledge ofE is incomplete and since the fine-scale displacement field is unknown

and generally impossible to determine, we resort to a classical approach to analyze heterogeneous

media: the elasticity tensorE is replaced by a smeared, or homogenized tensorE0 of effective

properties. A large body of work exists on this subject and the underlying mathematical theory, and

we refer to standard references for full details: see, for example, Bensoussan, Lions, and Papanico-

laou [4], Sanchez-Palencia [23] and Jikov, Kozlov, and Oleinik [15], or, for an engineering-oriented

treatment, Christensen [8].

In our adaptive modeling process, imaging data from the samples is used to compute effective

properties. This is accomplished by generating a finite element mesh of the microstructure and

calling an hp finite element module (discussed below) to calculate effective moduli. Note that the

determination of effective properties is not the goal of this analysis; homogenization is only an

artifact in a broader computational strategy. Thus, in the present approach,

• E0 is computed from data supplied by the CT image of samples of the body;

• E0 may be a constant tensor, or it can vary over a large group of samples, being constant,

however, over each sample.

With E0 known, we replace (2.1) by thehomogenized problem:

−divE0∇u0(x) = f(x), x ∈ Ω

n(x) ·E0(x)∇u0(x) = t(x), x ∈ Γt

u0(x) = U(x), x ∈ Γu.

(2.7)

The weak form of the homogenized problem (2.7) is:

Findu0 ∈ {û}+ V(Ω) such that

B0
Ω(u0,v) = FΩ(v) ∀ v ∈ V(Ω),

(2.8)

where

B0
Ω(u0,v) def=

∫
Ω
∇v : E0∇u0 dx, (2.9)

andE0 denotes the elasticity tensor for the homogenized problem. The displacement fieldu0 =

u0(x) is called thehomogenized displacement field. While we do not know the fine-scale fieldu,
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we can nevertheless estimate quite accurately, thehomogenization error

e0 = u− u0 (2.10)

using methods described in [18, 30], and summarized below.

2.5 Error estimation and adaptive modeling: the GOALS algorithm

We now review the major results regarding modeling error estimation and adaptive modeling pre-

sented in [18]. First, we review global energy bounds on the modeling errore0. Next, bounds on

the modeling error in local quantities of interest are briefly discussed. This is followed by a review

of the Goal Oriented Adaptive Local Solution (GOALS) algorithm [18], a procedure for delivering

accurate values of quantities of interest.

Energy Error Estimates

Let

I0 = (I−E−1 E0), (2.11)

whereI is the identity tensor. Next, forg ∈ V(Ω), define the associated linearresidual functional

Rg : V(Ω)→ R,

Rg(v) = −
∫

Ω
∇v : E I0∇g dx, v ∈ V(Ω). (2.12)

Finally, define the energy norm of an admissible functionv ∈ V(Ω),

‖v‖E(Ω)
def=
√
BΩ(v,v), (2.13)

whereBΩ(·, ·) is the bilinear form defined in (2.5).

Theorem 2.1 Let u and u0 be the solutions to problems (2.3) and (2.8) respectively. Then the

following holds:

ζlow ≤ ‖e0‖E(Ω) = ‖u− u0‖E(Ω) ≤ ζupp, (2.14)

where

ζlow
def=
|Ru0(u0)|
‖u0‖E(Ω)

, ζupp
def=
{∫

Ω

(
I0∇u0

)
: E I0∇u0 dx

} 1
2

. (2.15)

2

For proofs, see [30] and [22].
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Local Error Estimates

Let L be a quantity of interest that is characterized by a continuous linear functionalV(Ω), L ∈

V
′
(Ω). The problem

Findw ∈ V(Ω) such that

BΩ(v,w) = L(v) ∀v ∈ V(Ω)
(2.16)

is referred to as theadjoint fine-scale problem. The solutionw to the adjoint fine-scale problem is

termed thefine-scale influence function. The homogenized version of this problem is referred to as

theadjoint homogenized problemand reads

Findw0 ∈ V(Ω) such that

B0
Ω(v,w0) = L(v) ∀v ∈ V(Ω).

(2.17)

The solution to this problem is thehomogenized influence function. In what follows, we some-

times refer to the problems (2.3) and (2.8) as theprimal fine-scale problemandprimal homogenized

problem, respectively. Functionsw andw0 exist and are uniquely defined. The modeling error in

the influence function is given by

ē0 def= w−w0. (2.18)

Also, ē0 satisfies the following relationship:

ζ̄low ≤ ‖ē0‖E(Ω) = ‖w−w0‖E(Ω) ≤ ζ̄upp (2.19)

where

ζ̄low
def=
|Rw0(w0)|
‖w0‖E(Ω)

; ζ̄upp
def=
{∫

Ω

(
I0∇w0

)
: E I0∇w0 dx

}1/2

. (2.20)

We now state the main result on the estimation of modeling error in quantities of interest.

Theorem 2.2 Letu0 andw0 be the solutions to problems (2.8) and (2.17), respectively. Then,

ηlow ≤ L(e0) ≤ ηupp (2.21)

where

ηlow
def=

1
4

(η+
low)2 − 1

4
(η−upp)2 +Ru0(w0), (2.22)
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ηupp
def=

1
4

(η+
upp)2 − 1

4
(η−low)2 +Ru0(w0), (2.23)

with arbitrary s ∈ R+ ,

η±upp
def=

√
s2ζ2

upp ± 2
∫

Ω
I0∇u0 : E I0∇w0 dx + s−2ζ̄2

upp, (2.24)

and

η±low
def=
|Rsu0±s−1w0(u0 + θ±w0)|
‖u0 + θ±w0‖E(Ω)

, (2.25)

whereζupp and ζ̄upp are defined by (2.15) and (2.20), respectively, andθ± is given by

θ± =
BΩ(u0,w0)Ru0(su0 ± s−1w0)− BΩ(u0,u0)Rw0(su0 ± s−1w0)
BΩ(u0,w0)Rw0(su0 ± s−1w0)− BΩ(w0,w0)Ru0(su0 ± s−1w0)

. (2.26)

2

See [22] for the proof. The scalar parameters is a scaling factor and its optimal value is

s∗ =
√
ζ̄upp/ζupp. Also, in our numerical experiments, we employ the followingestimateof

the modeling error in the quantity of interest:

L(e0) ≈ ηest
def=

1
4

(η+
upp)2 − 1

4
(η−upp)2 +Ru0(w0). (2.27)

Definition of the Local Fine-scale Problem

For the purpose of simplicity, we assume that the quantity of interestL is a functional of the form

L(v) =
∫
ω
l(v) dx, (2.28)

wherel is a linear mapl : V(Ω) → L1
loc(Ω). Here,ω is some subset of the domainΩ. Functionals

of other types can be accommodated very easily in our approach. LetΩL be a subset of the domain

Ω that containsω: ω ⊂ ΩL. We shall refer toΩL as the functional’s “domain of influence”, and it’s

determination will be discussed shortly.

In order to define the local fine-scale problem onΩL, we introduce some notation. Let

ΓLt
def= ∂ΩL ∩ Γt, ΓLu

def= ∂ΩL \ ΓLt . (2.29)

Define the local function space onΩL as

V(ΩL) =
{
v ∈ V(Ω),v = 0 onΩ \ ΩL,v|ΓLu = 0

}
. (2.30)
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Next, an extension operatorEL : V(ΩL)→ V(Ω) is introduced, defined by:

vL ∈ V(ΩL), EL(vL) = v such thatv|ΩL = vL,v|Ω\ΩL = 0. (2.31)

The restriction of the homogenized solutionu0 to the domain of influenceΩL is defined as

u0
L: u0

L
def= u0|ΩL . Then, the following weak boundary value problem is referred to as thelocal

fine-scale problem:

Find ũL ∈ {u0
L}+ V(ΩL) such that

BL(ũL,vL) = FL(vL) ∀vL ∈ V(ΩL),
(2.32)

where the bilinear and linear forms are defined as

BL(ũL,vL) def=
∫

ΩL

∇vL : E∇ũL dx, (2.33)

and

FL(vL) def=
∫

ΩL

f · vL dx +
∫

ΓLt

t · vL ds, (2.34)

respectively. Thus,̃uL is a perturbation to the homogenized solutionu0 on ΩL that takes into

account the fine-scale microstructure. It equals the primal homogenized solutionu0 on theΓLu

portion of its boundary. Using the extension operatorEk, we define thelocally enhancedfunction

ũ ∈ V(Ω) as:

ũ def= u0 + EL(ũL − u0
L). (2.35)

Finally, it is noted that the modeling erroru − ũ can also be estimated – both globally in

the energy norm, and locally in the quantity of interest – using the results presented in [18]. For

extensions of the above results to perforated domains, see [28].

The GOALS Algorithm

The GOALS algorithm provides an adaptive procedure for accurately computing a quantity of in-

terestL(u) by determining the size of its domain of influence. For this purpose, we introduce a

partitionP of the domainΩ into cellsΘk, 1 ≤ k ≤ N(P), whereN(P) is the total number of cells

in the partition. The following modelingerror indicatorsare used in the GOALS algorithm:

ζk,upp
def=

{∫
Θk

I0∇u0 : E I0∇u0 dx
} 1

2

ζ̄k,upp
def=

{∫
Θk

I0∇w0 : E I0∇w0 dx
} 1

2

,

(2.36)
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and

βk
def= ζk,uppζ̄k,upp + ζk,upp‖w0‖E(Θk). (2.37)

The indicatorsζk,upp andζ̄k,upp are contributions of a cell to the modeling errors estimatesζupp and

ζ̄upp (recall (2.15) and (2.20)), respectively. The measureβk is an indicator of the local contribution

of a cell to the modeling error in the quantity of interest.

The outline of the GOALS algorithm is as follows:

Step 1. Initialization.Given the initial dataΩ, Γu, Γt, E, f andt, construct a non-overlapping

partition of the domainP = {Θk}, k = 1, 2 . . . N(P). Specify error tolerance parametersαTOL

andδTOL, 0 < δTOL < 1.

Step 2. Homogenization.Compute the homogenized elasticity tensorE0. Solve the primal

homogenized problem (2.8) foru0 and the adjoint homogenized problem (2.17) forw0.

Step 3. Modeling Error Estimation.Compute error indicatorsζk, ζ̄k andβk for 1 ≤ k ≤ N(P),

using (2.36) and (2.37). Estimate the modeling error in the quantity of interest using Theorem 3.1.

Denote this estimate byηest.

Step 4. Tolerance Test.If ηest ≤ αTOL × L(u0), STOP.

Step 5. Domain of Influence.Determine initial guess for “domain of influence”ΩL as all the

cells that intersectω, the region over which the quantity of interest is defined:

ΩL = ∪j∈JΘj J def= {j : Θj ∩ ω 6= ∅} . (2.38)

Compute the quantitiesζL, ζ̄L, andβL:

ζL
def=

{∑
k∈J

ζ2
k,upp

} 1
2

, ζ̄L
def=

{∑
k∈J

ζ̄2
k,upp

} 1
2

, βL
def= ζLζ̄L + ζL‖w0‖E(ΩL) (2.39)

Step 6. Update Domain of Influence.Determine the “bad neighbors” ofΩL, i.e., if βi >

δTOL × |Θi||ΩL| × βL, markΘi as bad and updateΩL:

ΩL ← ΩL ∪ { bad neighbors} . (2.40)

Update the quantitiesζL, ζ̄L, andβL.

Step 7. Solution of Local Problem.Solve local problem (2.32) onΩL for ũL. Construct the

locally enhanced solutioñu ∈ V(Ω) using (2.35).

Step 8. Estimate Modeling Error.Estimate the modeling errorL(u− ũ) and denote the estimate

by ηest. If ηest ≤ αTOL × L(ũ), STOP. ELSE, GOTO Step 6.
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2.6 Parallel hp adaptive FEM for material modeling

The adaptive modeling process described above requires the solution of three different boundary

value problems (BVPs): (1) the BVP on the unit cellY for the computation of the homogenized

elasticity tensorE0, (2) the homogenized primal and adjoint problems foru0 andw0, and (3) the

local fine-scale problems on domains of influenceΩL for ũL. Additionally, the primal and adjoint

fine-scale problems are sometimes solved foru andw, respectively, to obtain reference solutions

so that the accuracy of the modeling error estimates can be verified and the adaptive modeling

procedure validated.

In order to isolate the modeling error, it is necessary to solve these boundary value problems

with very high accuracy. This in turn requires the solution of very large sparse systems of equations.

Also, the modeling algorithm imposes certain requirements on the implementation. To list a few,

• Both the global and local error estimates involve the computation of integrals over the domain

ω. These integrals have to be computed with high accuracy.

• Boundary conditions for the local fine-scale problems need to be extracted from the homoge-

nized solution.

• In order to handle the output from the meshing code, the representation of element geometry

has to be well-separated from the approximation shape functions.

With these requirements in mind, a two-dimensionalparallel andadaptivefinite element solver

was developed for the implementation of the adaptive modeling procedure. The main features of

the code are:

1. Language: The code is written in C++ and uses the MPICH version of the Message Passing

Interface (MPI) [12, 17].

2. Adaptivity: Mesh refinement is done using 1-irregular divisions of elements. Hierarchical

shape functions are used for p adaptivity. For a discussion of hp adaptive finite elements, see

[25].

3. Parallelism: The code is designed to run on distributed memory machines. The notion of

Space Filling Curves (SFCs) is used to perform partitioning of the domain and achieve load-

balancing [24, 10].
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4. Solution strategy: In the current version, the degrees of freedom corresponding to the bubble

functions are first eliminated, and the resulting system of equations is solved using either

(a) a preconditioned Conjugate Gradient algorithm or (b) the SParse Object-Oriented Linear

Equations Solver (SPOOLES) package, a public domain software [27].

5. Datastructure: A Hashtable based datastructure is used for storing element, node and DOF

classes. Very general classes have been implemented for storing material and boundary con-

dition data.

6. Organization, structure and others: The code is organized as a library-style collection of

routines, with the user supplying a few routines that specify the problem parameters. Post-

processing is user defined. User-specified integration rules can be used instead of the default

integration routines. Additionally, the code is capable of running in batch and interactive

modes.

The code has been tested on (a) cluster of PCs running Linux, (b) cluster of SGI workstations

running IRIX 6.5 and (c) an IBM SP running AIX 4.1.4.

2.7 Numerical experiments and examples

We now reproduce some representative numerical results from [29]. The first example demon-

strates the integration of two important technologies discussed in this paper: imaging and mesh-

ing techniques, and adaptive material modeling. We study the deformation of a fabricated com-

posite material that has a single layer of glass beads (E=69GPa,ν=0.22) distributed in an epoxy

matrix(E=4.6GPa,ν=0.36). The dimensions of the specimen are shown in Fig. 2.5. The average

diameter of the glass beads is 800µm. Images of the specimen were obtained both with a CT device

(resolution=10µ) and an optical microscope (resolution=1µ).

0.5in

3in

0.05in

Figure 2.5: Dimensions of the epoxy-glass specimen.

We consider the two-dimensional problem of finding the response of the above specimen to
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compressive loads, as shown in Fig. 2.6. We pick, as a quantity of interest, theσxx component of

the stress tensor averaged over the inclusion denoted byω in Fig. 2.6.

ω

Figure 2.6: Schematic for the 2-D problem of manufactured specimen under compressive loads.

To compute a reference solutionu, the meshing algorithm presented in Section 2.2is used to

generate a mesh. The resulting initial mesh is shown in Fig. 2.7 (a). The mesh after three iterations

of centroid smoothing is shown in Fig. 2.7 (b).

(a)

(b)

Figure 2.7: (a) Initial mesh, and (b) Mesh after smoothing.

Next, the homogenized primal and adjoint solutionsu0 andw0 are obtained using the hp finite

element code. The modeling error indicators are then computed and the adaptive procedure is

carried out. The sequence of domains of influence and the resulting modeling errors are shown

in Fig. 2.8. As can be seen, the quantity of interest can be predicted accurately using only local

microstructural information.

The next numerical experiment deals with the analysis of a wrench made of a particulate hetero-

geneous material, modeled as a two-dimensional object. In this example, the internal microstructure

of the body is not known completely. However, as pointed out in [29], it is possible to predict local

quantities of interest without knowing the microstructure throughout the domain.
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(a) % Error = 17.0 (b) % Error = 9.05 (c) % Error = 2.1

Figure 2.8: Results of the adaptive modeling procedure: domains of influence and resulting model-

ing errors.

The objective is to study the microscale solution at one corner of the hexagonal part of the

boundary of the wrench shown in Fig. 2.9. The hexagonal part of the boundary is constrained,

whereas the circular part of the interior boundary is loaded as shown. The internal microstructure of

the wrench is assumed to be known only in the vicinity of the corner of interest, in a circular area of

radius 0.04 in. The microstructure in this region consists of randomly distributed circular inclusions,

with a local volume fraction of 0.4. Based on the number of inclusions in this region and based on

the area of the wrench, it is estimated that the body has about 128,000 inclusions. Judging from

results obtained in previous calculations, an adapted hp-FEM mesh of the entire structure sufficient

to produce global solutions within 1% error in an energy norm would require a computational model

with on-the-order-of one billion degrees of freedom.

The quantity of interest is taken to be the averageσyy stress on the inclusionω, shown in

red. The material properties are taken to beE = 100GPa,ν = 0.2 for the matrix material, and

E = 1000GPa,ν = 0.2 for the inclusions. The body is homogenized using the Hashin-Shtrikman

lower bound. Also, for the homogenized problem, the domain is slightly modified by ignoring the

fillets. This simplification is shown in Fig. 2.10 (a), marked by arrows. This, of course, results in

artificial corners in the domain, and hence leads to singularities in the homogenized solution. This

is reflected in the plot ofσyy component of the stress tensor, shown in Fig. 2.10 (b).

Next, the homogenized influence functionw0 is computed for the specified quantity of in-

terest, and the modeling error in the quantity of error is estimated. The relative modeling error

L(e0)/L(u0) is found to be 0.49. The error indicators are then computed and two steps of the

adaptive modeling algorithm are carried out. The domains of influence and the resulting estimated

modeling errors are shown in Fig. 2.11. Note that for the local fine-scale problem, the fillet at the

vertex of the hexagon is not ignored (Fig. 2.11 (b)). Here, the GOALS adaptive modeling algorithm
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1

6.5
0.75

0.02

0.04

ω

4.75

12 .75 1.5

Figure 2.9: Schematic of the wrench. All dimensions are in inches.

(a)

SigYY-RHS1: -24.7230 -21.1911 -17.6593 -14.1274 -10.5956 -7.0637 -3.5319 0.0000 3.5319 7.0637 10.5956 14.1274 17.6593 21.1911 24.7230

(b)

Figure 2.10: (a) Simplified domain for the primal homogenized problem; Ignoring fillets (shown by

arrows) results in artificial corners, (b)σyy component of the homogenized stress field (GPa).
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(a) Estimated final error = 12.2%. (b) Estimated final error = 4.2%

Figure 2.11: Domains of influence and the resulting (estimated) modeling errors in the local solu-

tions.

allows for the prediction of the quantity of interest to within an estimated4%.

3. Global Estimates of Modeling Error in Nonlinear

Continuum Mechanics

As a general example of a basis for hierarchical modeling, we consider a large class of physical

phenomena that we assume can be captured by the general equations of nonlinear continuum me-

chanics. If this assumption proves to be invalid in actual predictions, then a larger class of models

must be defined which includes models of non-continuum effects, such as, for example, those of

molecular dynamics or kinetic theory. As an example of the nonlinear continuum class of models,

consider those characterized by the (class of) weak initial-value problems given in Fig. 3.1.

HereΩ0 is the reference configuration of a material body (an open, bounded region inR
n , n =

1, 2, or 3) with boundary∂Ω0 consisting of portionsΓ0
D,Γ

0
N

(
∂Ω0 = ΓD ∪ ΓN

)
, ρ0 is the mass

density in the reference configuration,b the body force per unit mass,g the traction onΓN ,U is

a function inV that produces the prescribed displacement onΓ0
D, andU0,V 0 are initial displace-

ments and velocities, respectively. The displacement gradient history∇ut(s) = {∇u(X, t− s) ,

X ∈ Ω0, t ≥ s ≥ 0} depends upon the material pointX ∈ Ω0 (a.e.), and times in the interval

[0, t]; dX = dX1dX2dX3 (for n = 3); S is the second Piola-Kirchhoff stress, determined by a

constitutive functionalS(·) on the histories of∇u and of a set of additional variablesA, which

may include the temperature and various state/internal variables. In (3.1c), the dependence of var-
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ModelM

Given the set of data,

D =
{

Ω0,Γ0
D,Γ

0
N , ρ0, b,g,U0,V 0

}
, (3.1a)

and the experimentally determined parameters and functions determining the

constitutive equation

S = S
(
∇ut(s), At(s); X, t

)
, (3.1b)

find, for eacht ≥ 0, the displacement fieldu(·, t) ∈ V + {U} such that∫
Ω0

ρ0ü(t) · v dX +
∫

Ω0

F (u; t) S
(
∇ut(s),At(s); t

)
: ∇v dX

= F (u(t); v, t) ∀v ∈ V
(3.1c)

Figure 3.1: ModelM

ious quantities onX is suppressed for simplicity,̈u = ∂2u/∂t2, andF (u; t) is the deforma-

tion gradient,F = I +∇u. The symbolV denotes the space of admissible displacements (e.g.

V = {v ∈ (W 1,p(Ω0))n : v|ΓD = 0}), andF(·) is the loading functional, which depends upon

b,g, and possiblyu; e.g.

F (u(t);v, t) =
∫

Ω0

ρ0b(t) · v dX +
∫

Γ0
N

g(u, t) · v ds0.

Remarks:

1. The setD, as well as the coefficients, kernels, and various parameters appearing in the

constitutive functional (3.1b), as well as the boundary and initial data(U ,U0,V 0), can only be

determined approximately, through, for instance, imaging data, testing, and through experimentally

characterizing functionals the forms of which are themselves postulated. Thus, they can only be

represented in some statistical sense, so that the solutions to the general fine-scale model are, in this

sense, random variables. We ignore this fact here and consider only deterministic models.

2. Even when the data is known precisely, the fine model may be, in general, intractable; the

governing system may be too complex to be solved by the largest and most sophisticated computers

available. We do not, in general, expect to solve the fine-scale model. As noted earlier, it only serves

as a datum with respect to which coarse, simplified models are measured.
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ModelM0 ∈M

Given the data setD and the constitutive equation

S0 = S0

(
∇ut0(s),At

0(s); X, t
)

(3.2a)

find, for eacht ≥ 0, u0(t) ∈ V0 + {U} such that∫
Ω0

ρ00ü0(t) · v dX +
∫

Ω0

F (u0; t) S0

(
∇ut0(s),At

0(s); t
)

: ∇v dX

= F (u0(t);v, t) ∀v ∈ V0

(3.2b)

Figure 3.2: ModelM0

3. We are not concerned here with verification of approximations of the models in classM.

Thus, we assume that the simplified or coarse model can be solved exactly. In practical applications

of our modeling strategies, we use highly accurate finite element approximations of solutions of

the simplified model. For instance, the accuracy can be determined and controlled bya posteriori

estimates ofapproximationerror and associated adaptive methods (see [1]).

In actual applications, we use a coarser or simplified modelM0 within the classM. Let us

suppose that the simplified model is characterized as shown in Fig. 3.2. Here it is understood that

the coarse (simplified) solutionu0(·, t) ∈ V0 + {U}, V0 ⊂ V , and, importantly,u0 satisfies the

same boundary and initial conditions as the fine solutionu. The dependence onX of the integrands

is suppressed. In the simplified problem, the mass densityρ00 and the constitutive equation for

stress may be different than that of the fine model problem. As remarked earlier, the coarse model

is assumed to be solvable, and we assume that we can calculate an exact or extremely accurate

approximation solutionu0 at each(X, t) ∈ Ω0× [0, T ]. In general, no additional data or testing are

needed to define the modelM0 as it is a special subclass ofM. However, some processing, such

as averaging or homogenization, may be used to reduceM0 from the fine scale model. In fact, for

many cases, more than one coarse model approximation to the fine scale model can be defined.
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Modeling Error Bounds

Let us assume that the motion (particularly the displacement field)u0 ∈ V of the coarse model is

known for allt ∈ [0, T ]. Then the modeling error in various terms at timet are defined by

eu(t) = u(t)− u0(t) (3.3)

ES(t) = S
(
∇ut(s),At(s); t

)
− S

(
∇ut0(s),At(s); t

)
(3.4)

eF(v, t) = F(u(t);v, t)−F(u0(t);v, t) (3.5)

eρ = ρ0 − ρ00 (3.6)

The variablesAt(s) in (3.4) are computed using the fine model evolution equations with the dis-

placement gradient history indicated in the same argument ofS. For eacht ≥ 0, the modeling error

is defined by the linear functional,

E(t) ∈ V ′ :

〈E(t),v〉 : =
∫

Ω0

{
(ρ0ëu(t)− eρü0(t)) · v +∇eu(t)S

(
∇ut0(s),At(s); t

)
: ∇v

+F (u0 + eu; t)ES(t) : ∇v
}
dX − eF(v, t) (3.7)

where〈·, ·〉 denotes duality pairing onV ′ × V , V ′ being the dual ofV .

Theglobal a posteriori modeling error indicatoris defined by the one-parameter scalar-valued

function,

ζ(t) : =
{∫

Ω0

∣∣∣F (u0(t); t)
(
S0

(
∇ut0(s),At

0(s); t
)
− S

(
∇ut0(s),At(s); t

))∣∣∣2 dX}1/2

.

(3.8)

It is straightforward to show that the following global bound on modeling error holds (see [13, 19]):

‖E(t)‖V ′ ≤ ζ(t) (3.9)

where‖·‖V ′ is the norm in the dualV ′ of V . An interpretation of the error measure on the left-hand

side of (3.8) as a global smoothing of total error is given in [13].

3.1 Generalization of error indicator

The global error indicatorζ can be used to define adaptive strategies which can be used to select

various models over given spatial and temporal regions. Some of the many strategies that can be
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defined will be detailed in the following subsection. Before preceding to detail any such strategies,

the global error indicatorζ will be generalized to account for the time history of what particular

models are used for a given subdomain. That is the governing equations are discretized in the time

domain and the models used over each time step are selected adaptively.

We have two types of models which are of interest. One is the equilibrium model which is used

to integrate the constitutive equations over the current time step in enforcing quasi-static or dynamic

equilibrium at the end of the current time step. The other is a comparison model used in determining

alternate stresses at the end of the current time step. Consider the case where the equilibrium model

is a coarse model. Then, the fine model may be used as the comparison model in order to judge

the accuracy of the equilibrium model. Another possibility is that the comparison model is an even

coarser model which is a candidate to be the next equilibrium model. In fact, multiple comparisons

between various models may be made at the end of a time step. The error indicator associated with

comparing the equilibrium (E) and comparison (C) models is then written as follows:

ζE/C(t) =
{∫

Ω0

∣∣F (uE(t); t)
[
SE

(
∇utH(s),At

H,E(s); t
)

−SC
(
∇utH(s),At

H,C(s); t
)]∣∣2 dX}1/2

(3.10)

where∇utH(s) is the displacement gradient history from the various equilibrium models actually

used and the state variables are computed using the equilibrium model displacements as follows:

At
H,E(s) =

 AH(t− s) t ≥ s ≥ ∆t (0 ≤ t− s ≤ t−∆t)

AE(t− s) ∆t ≥ s ≥ 0 (t−∆t ≤ t− s ≤ t)
(3.11)

At
H,C(s) =

 AH(t− s) t ≥ s ≥ ∆t (0 ≤ t− s ≤ t−∆t)

AC(t− s) ∆t ≥ s ≥ 0 (t−∆t ≤ t− s ≤ t)
(3.12)

HereAH(t− s) denotes the state variable history from the actual equilibrium models used.

Note that the error indicator defined by (3.10), (3.11), and (3.12) is local in time, i.e., it charac-

terizes only the differences between the equilibrium and comparison models over the current time

step. That is, in integrating the constitutive equations, the state variables and stresses at the start of

the time step are taken to be the same in both models. The accumulation of errors from previous

time steps is not considered.

In order to make adaptivity decisions,ζE/C will be normalized bŷζE which is given as follows:

ζ̂E(t) =
{∫

Ω0

∣∣F (uE(t); t)
[
SE

(
∇utH(s),At

H,E(s); t
)]∣∣2 dX}1/2

(3.13)
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Let us suppose that the domainΩ0 is partitioned into a collection of non-overlapping subdo-

mainsΩ0K :

P : Ω0 =
N(P)⋃
K=1

Ω0K ; Ω0K ∩ Ω0J = ?, K 6= J. (3.14)

The global model error indicatorζE/C(t) of (3.10) can be written as the sum,

ζE/C(t) =


N(P)∑
K=1

(
ζKE/C(t)

)2


1/2

(3.15)

where (
ζKE/C(t)

)2
=

∫
Ω0K

∣∣F (uE(t); t)
[
SE
(
∇utH(s),At

H,E(s); t
)

−SC
(
∇utH(s),At

H,C(s); t
)]∣∣2 dX (3.16)

Similar equations hold for̂ζE(t) andζ̂KE (t). For finite element analysis, a natural choice is to have

each element correspond to a subdomain.

TheζKE/C(t) are the contributions of the error overΩ0K to the global modeling error indicator

ζE/C(t). They do not represent local modeling errors, as the actual local error is generally polluted

by errors in remote subdomains. Nevertheless, theζKE/C(t) are used as an indication of the relative

error in various subdomains/elements and to identify subdomains/elements where model refinement

is required or where model coarsening is allowed.

3.2 Adaptivity schemes

In order to perform model adaptivity, three questions must be answered which are when?, where?,

and how? A variety of methods that answer these questions can be developed to adaptively select

from among the members of a defined model family. These schemes come from selecting among

explicit and implicit implementations, global and local use of the developed error indicators, smart

and dumb model selection, and equilibrium and fine model state variable updates. The schemes have

been implemented in the Sandia code JAS3D[6] which can solve for quasi-static equilibrium states

of solid structures using either conjugate gradient or dynamic relaxation iterative solvers. In all of

the implemented schemes, adaptivity calculations are only performed when equilibrium has been

achieved within a specified tolerance using the chosen equilibrium models. Also, each element has

been chosen to be a separate subdomain for the adaptivity calculations in each adaptive algorithm.
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Explicit/Implicit Implementations

When computing an adaptive solution, a choice must be made between bounding the values of the

error indicator for a minimum computational cost and achieving minimum error indicator values for

a given computational cost. While not doing so exactly, the chosen implicit and explicit algorithms

attempt to offer solutions for each choice.

An implicit scheme allowing multiple passes through a given solution period is suited to bound-

ing the error indicator values. However, such a method may require more than two passes and, thus,

may expend sizable computational effort to do so. If the chosen solution period is composed of

multiple time steps, model switching could be delayed until a critical number of elements required

refinement or allow for coarsening. When such a point is reached, switching would be performed

and the calculations would restart from the start of the solution period. However, implementing an

implicit scheme in this manner would require either additional input/output or memory to be used to

store all of the information associated with the solution period start point. For implementation pur-

poses, only the case where each time step is considered as a separate solution period is chosen. In

fact, three types of implicit methods have been implemented. In each case the implicit calculations

over a single time step proceed until the error indicator(s) fall below a predefined limit.

The first method is a pure implicit implementation where refinement and coarsening are allowed

for any element during any pass through the current time step. The difficulty with this approach is

that model selection may cycle through set of choices over and over again without ever achieving

the required limits on the error indicator(s). Another approach referred to as restricted implicit

allows refinement whenever required, but coarsening only in elements which have not required

refinement previously during one of the previous passes through the current time step. The final

approach allows both coarsening and refinement at the end of the first pass through the current time

step. Then for additional passes through the current time step only refinement is allowed. This

final approach is termed “one time” implicit as coarsening of any element is allowed only one time

during each time step.

Explicit schemes where a single pass is performed through a solution period will not limit the

error indicator values, but, of course, will not compute multiple solutions for any solution period.

The drawback, of course, is that it is not possible to try correct any large errors identified by large

error indicator values. Rather, the error indicators are just used to select the model that will be

used in each element for the next time step. In order to limit error growth, these explicit techniques
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can be mated to selection processes where the fine model is chosen immediately when refinement

is indicated as opposed to just refining to a slightly better coarse model. Such model selection

schemes will be discussed later. Similar to the implicit implementations, the explicit codes have

solution periods that each correspond to a separate time step.

Local/Global Use of Error Indicator

Although the error indicatorζE/C(t) that has been derived is global in nature, the element contri-

butionsζKE/C(t) can be used in determining where refinement is required or coarsening is allowed.

The difference between the methods which are here characterized as either local or global in nature

come about from exactly how the adaptivity questions of when? and where? are answered. From

this point onward these types of methods will be termed as either local or global schemes.

In the local type of schemes, all choices about adaptivity are answered using only information

from the subdomain/element under consideration. The local error indicatorζ̄KE/C is defined as

ζ̄KE/C : =

√(
ζKE/C

)2/(
ζ̂KE/C

)2
(3.17)

For each equilibrium configuration, refinement and coarsening are indicated as follows:

• Refinement required:

ζ̄KE/F ≥ TOL (3.18)

• Coarsening allowed:

ζ̄KE/F < TOL & ζ̄KE/C < TOL (3.19)

whereF denotes the fine model,TOL is a predefined tolerance and the comparison modelC in

(3.19) is, of course, coarser than the equilibrium model.

Because a structure may consist of many different components and materials, JAS3D performs

many calculations on a material block by block basis where a material/element block is simply a

group of elements. In keeping with this architecture of JAS3D, the global schemes as implemented

consider adaptivity for each material block separately (sums and maximum are taken over all the

elements in a given material block). For a problem involving only a single material block, the global

schemes are indeed truly global. For the global methods, the following model selection criteria are

used:
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• Adaptivity (refinement or coarsening) allowed:

ζE/F (t)

ζ̂E(t)
≥ γ (3.20)

• Refinement required:

ζKE/F (t)

max
K

ζKE/F (t)
≥ α (3.21)

• Coarsening allowed:

ζKE/F (t)

max
K

ζKE/F (t)
< β1 (3.22)

and

ζKE/C(t)

max
K

ζKE/C(t)
< β2 (3.23)

Hereγ, α, β1, andβ2 are predefined tolerances. In (3.21) and (3.22), all elements in a block are con-

sidered in determining the maximumζKE/F (t). Elements that require refinement are not considered

in determining the maximumζKE/C(t) in (3.23). Note that in determining the maximumζKE/F (t)

and ζKE/C(t), the equilibrium and coarse comparison models are likely to differ from element to

element. The decision of whether to allow adaptivity or not as given by (3.20) means that adaptivity

is likely to be performed only for select time steps.

Smart/Dumb Model Selection

After the needed error indicators have been computed and signify either refinement or coarsening

based on the predefined tolerances, the question of which model will be selected to become the

new equilibrium model must be answered. In the present research, two alternatives have been

investigated to select from among the members in a nested family of models.

The smart model selection procedure allows models to be selected non-sequentially. When

refinement is required, the fine model is chosen to be the next equilibrium model. On the other

hand, when coarsening is allowed, the coarsest model with an acceptable error indicator is selected

when error measure is being used locally. For the codes using the error measure globally, the

coarse model selected for computation of (3.23) is the one giving the lowestζKE/C(t). Obviously,

the refinement procedure requires that the fine model be computationally tractable. This model
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selection scheme has been designed especially for explicit implementations to minimize the error

growth when refinement is indicated and to select the cheapest model possible when coarsening is

allowed.

The dumb model selection approach selects models sequentially. That is, the new equilibrium

model chosen when adaptivity is indicated is either a single level above or below the current equi-

librium model. This approach is particularly well-suited to implicit schemes which allow multiple

passes through a time step to select the cheapest models possible for a given maximum error indi-

cator.

Equilibrium/Fine Model State Variable Updates

In all of the adaptivity algorithms implemented, the first step after an equilibrium state has been

converged is to assess whether the equilibrium models used in each element have generated accept-

able results. This, of course, involves comparing the actual equilibrium and approximate fine model

stresses. The question is whether any of the computed fine model information can be used to en-

hance the equilibrium model results. Note that the stresses from the comparison fine model are only

approximate and do not correspond to an equilibrium state, unless of course, the equilibrium model

is in fact the fine model. Furthermore, the stresses from the equilibrium model for a particular ele-

ment depend on what models are used in other elements. Nevertheless, it may be acceptable to save

the approximate fine model state variable updates along with the equilibrium model displacements.

Whether this is satisfactory or not depends on the details of the defined model family. For models

in a family which differ only in how the state variable updates are calculated, saving the fine model

state variable updates is akin to using the fine model with a coarser tolerance for halting the force

equilibrium calculations. This may not be too dangerous, as equilibrium will be forced again in the

next set of equilibrium calculations.

Implemented Algorithms

Fourteen schemes corresponding to various combinations of the different options detailed above

have been implemented for the nonlinear viscoelastic model family to be described later. Acronyms

for each algorithm have been generated as follows. The first letter is either E, I, R, or O correspond-

ing to explicit, pure implicit, restricted implicit, or one time implicit, respectively. The second letter

which is either L or G, respectively, denotes whether the error indicator is used locally or globally.

The third letter can be either S or D for the cases of smart or dumb model selection, respectively.
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Finally, E or F, respectively, is used in the final slot to refer to whether the equilibrium or fine

model state variable updates are saved. For example, the explicit code using the error measure lo-

cally with dumb model selection and equilibrium model state variable updates is denoted as ELDE.

The schemes that have been implemented in JAS3D are ELSE, ELSF, ELDE, ELDF, EGSE, EGSF,

EGDE, EGDF, ILSE, RLSE, OLSE, OLDE, OGSE, and OGDE.

3.3 Application to nonlinear viscoelastic polymers

An application of the present theory to a family of material laws for polymers is now considered.

First, a brief overview of the nonlinear viscoelastic (NLVE) family will be given and followed by

details of each model in the NLVE family. Adaptive results will be given for an example involving

tension of a plate with a hole.

Nonlinear Viscoelasticity (NLVE) Overview

The constitutive law developed by Chambers, Adolf and Caruthers [7] describes the nonlinear vis-

coelastic response of glassy polymers. This material model was developed using a thermodynam-

ically consistent rational mechanics approach. The material constants in the model were fit to an

epoxy so that a wide range of physical phenomena can be modeled both comprehensively and quan-

titatively. A key feature of the detailed nonlinear viscoelastic model used in this example is that

the physical phenomena of interest, such as yielding, volume recovery, or enthalpy relaxation, are

captured through the use of a material clock assuming rheological simplicity. The material/reduced

time scale on which viscoelastic relaxations proceed is controlled by the horizontal shift factora as

given by Eq. (3.29) which is to follow.

The various models in the NLVE family are delineated based on what physics are incorporated

into log10[a]. This leads to models which differ only in terms of how the state variables are updated

over each time step. The fine scale model includes the effects of thermal, volumetric strain and stress

histories in the horizontal shift factor which is given in terms of the configurational energy. The first

level of approximation has a shift factor which depends upon configurational entropy and includes

the effects of the temperature and volume histories onlog10[a]. A still coarser model is where

log10[a] depends only on the current temperature through the well-known Williams-Landel-Ferry

(WLF) equation. This model assumes thermodynamic equilibrium and has been found to be valid

for polymers under moderate stresses at temperatures ranging from the glass transition temperature

θg to θg+100 K. For polymers under moderate stresses at temperatures belowθg, the configurational
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Table 3.1: Models in the NLVE family ordered in terms of computational expense.

Model Material Relaxations

(1B) Rubbery elastic all relaxations completed by end of time step

(1D) Pseudo elastic no relaxations over time step

(2B) WLF a = a(θ)

(3B) Configurational entropy a = a(θ, volumetric strain)

(4B) Configurational energy a = a(θ, volumetric strain, stress)

entropy model must be used. Finally, two elastic levels are defined which correspond to no material

relaxations occurring over the current time step (pseudo elastic model) or all of the relaxations

reaching completion by end of the current time step (rubbery elastic model). A summary of the

NLVE models is presented in Table 3.1 where they have been numbered and ordered according to

increasing computational cost.

Nonlinear Viscoelastic (NLVE) Family of Material Models

In rational mechanics, expressions for the stress, entropy and internal energy are determined from

the expression for the specific Helmholtz free energyψ (J/g) which is given in a generalized Lam´e

constant form for the nonlinear viscoelastic family presently being examined as follows:

ψ(t) = ψ∞(t) + ∆G1
0

N∑
i=1

g1
i (I

i
C(t) : I)2 + ∆G2

0

N∑
i=1

g2
i (I

i
C(t) : IiC(t))

+∆A0

N∑
i=1

ai(I iC(t) : I)Iiθ(t) + ∆C
N∑
i=1

ci(Iiθ(t))
2 (3.24)

whereIiC andIiθ are state variables that represent integral histories of strain and temperature, respec-

tively. Furthermore in Eq. (3.24),∆(·) denotes(·)g − (·)∞ (i.e., the difference between the glassy

and rubbery value of a relaxation modulus) and these coefficients have been taken to be constant.

Also, all four relaxation spectra have been expressed as Prony series with identical distributions of

relaxation times. The quantityI iC(t) is given by

IiC(t) =
∫ t

−∞
exp

[
−(t∗ − ξ∗)

τi

]
dC
dξ

dξ (3.25)
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wheret∗ − ξ∗ represents a difference in the reduced or material time scale,τi is theith relaxation

time andC is the Hencky strain measure given by

C = I + lnC (3.26)

andC is the right Cauchy-Green deformation tensor given by

C = F TF (3.27)

Similarly, Iiθ(t) is given by

Iiθ(t) =
∫ t

−∞
exp

[
−(t∗ − ξ∗)

τi

]
dθ

dξ
dξ (3.28)

The reduced and physical time scales are related as follows:

t∗ − ξ∗ =
∫ t

ξ

1
a(t′)

dt′ (3.29)

wherea is the shift factor which differs in each member of the NLVE family.

The stress, entropy and the rate of entropy production are determined from

dψ

dt
=

1
ρ
SH :

dC
dt
− ηdθ

dt
+ σ̇ (3.30)

whereη is the specific entropy,SH is the stress that is work conjugate with the Hencky strain

measure anḋσ is the rate of entropy generation. The Hencky stress is found to be

1
2ρg

SH =
1

2ρg
S∞H + 2∆G1

0

N∑
i=1

g1
i (I

i
C : I)I + 2∆G2

0

N∑
i=1

g2
i I

i
C + ∆A0

N∑
i=1

aiI
i
θ I (3.31)

whereρg is the reference density in a stress free state at the glass transition temperatureθg. The

equilibrium contribution to the Hencky stress is as follows:

S∞H =
[
4ρg

(
G1

0

)∞ (C : I − 3) + 2ρgA∞0 (θ − θg)
]
I + 4ρg

(
G2

0

)∞ (C − I) (3.32)

The second Piola Kirchhoff stress tensor is given in terms of the Hencky stress tensor by the follow-

ing relationship:

S = SH :
dC
dC

(3.33)

ThedC/dC tensor is computed numerically.

72



Configurational Energy Model

The most sophisticated and, hence, accurate member of the NLVE family of material models uses

a shift factor based on a quantity termed the configurational internal energy. Briefly, the configura-

tional internal energyEc is the internal energy of the actual viscoelastic material minus that coming

from its glassy response to the same volumetric and thermal history. Recall that the specific internal

energyE is as follows:

E = ψ + θη (3.34)

The current value of the configurational energyEc depends on the current values ofIiC and Iiθ.

Then, the shift factor in terms of the configurational energy is

log10[a] = B

(
1
Ec
− 1

∆ref

)
(3.35)

whereB is a constant in the present work. Using a shift factor which depends upon the configura-

tional internal energy gives a material clock which depends upon the thermal, volumetric strain and

stress histories throughI iC andIiθ.

The quasi-static equilibrium states are determined at discrete times in the finite element solution

with numerical integration used for the constitutive equation. The history integrals in this model

and all other models except for the two elastic models to be defined later are marched in time using

a modified central difference scheme [31, 7] as follows:

IiC(t
n) =

(
2aavgτi −∆tmin
2aavgτi + ∆tmin

)
IiC(t

n−1) +
(

2aavgτi∆tmin
2aavgτi + ∆tmin

)(
C(tn)− C(tn−1)

∆tn

)
(3.36)

and

Iiθ(t
n) =

(
2aavgτi −∆tmin
2aavgτi + ∆tmin

)
Iiθ(t

n−1) +
(

2aavgτi∆tmin
2aavgτi + ∆tmin

)(
θ(tn)− θ(tn−1)

∆tn

)
(3.37)

where

∆tmin = min {∆tn, 2aavgτi} (3.38)

For the configurational energy model (4B),aavg is given by

log10[aavg] = B

(
2

Ec(tn) +Ec(tn−1)
− 1

∆ref

)
(3.39)

A simple fixed point iteration scheme is used to converge the nonlinear constitutive calculations

givenC(tn−1), C(tn), J(tn), θ(tn−1), θ(tn), IiC(t
n−1), Iiθ(t

n−1) andEc(tn−1) whereJ = detF .
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Configurational Entropy Model

Similar to the configurational internal energy, the configurational internal entropy is defined as that

coming from the actual specimen minus the internal entropy from the specimen’s glassy response

under the same volumetric strain and thermal histories. Noting Eq. (3.34), it should be apparent that

the configurational internal energy contains terms corresponding to the configurational entropy. In

order to be consistent with the configurational energy model, the shift factor in the configurational

entropy model (3B) is actually based onθgηc whereηc is the actual configurational entropy. For this

coarse model,log10[a] is written as

log10[a] = B

(
1
θgηc

− 1
∆ref

)
(3.40)

For the numerical integration,aavg is determined from

log10[aavg] = B

(
2

θgηc(tn) + θgηc(tn−1)
− 1

∆ref

)
(3.41)

Similar to the configurational energy model (4B), a fixed point integration scheme is used to con-

verge the nonlinear constitutive calculations that result fromηc being a function ofI iC andIiθ. The

configurational entropy model (3B) includes the effects of the volumetric strain and thermal histo-

ries onlog10[a] and is a good approximation to the configurational energy model (4B) for the case

where the stresses are at or below moderate levels.

WLF Model

For the case of a polymer subjected to low to moderate stresses when the polymer is at temperatures

ranging fromθg to approximatelyθg + 100 K, wide experimental evidence indicates thatlog10[a]

can be expressed strictly in terms of the current temperature by the well-known Williams-Landel-

Ferry [32] relationship which is given as follows:

log10[a] =
−C1(θ − θg)
C2 + (θ − θg)

(3.42)

whereC1 andC2 are material constants. Because the horizontal shift factor in this case depends

only on the temperature and not on the stress or strain, it is properly termed a thermorheologically

simple linear viscoelastic model. Of course, the material response is nonlinear in terms of the

thermal history. It should also be noted that the proper kinematics for large deformations/strains are

still used in this and all other models. For the numerical integration of the constitutive law,aavg is

determined using Eq. (3.42) withθ replaced byθavg = [θ(tn) + θ(tn−1)]/2. Because temperature

is assumed to be specified, no iterations are required for the material law calculations in this model.
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Elastic Models

The material response of a cross-linked polymer at very short or very long elapsed times since a

load was applied can be characterized elastically using the appropriate constants that describe the

polymer’s glassy and rubbery moduli. That is, it is not necessary to consider any material relaxations

in order to find the initial and final viscoelastic response of the material. For such a glassy response,

essentially no material relaxations have had a chance to occur since the load was applied, whereas

for the corresponding rubbery response, all material relaxations have been completed since the load

was applied. Furthermore, these glassy or rubbery moduli could be used to determine the initial or

final viscoelastic structural responses for all path-independent problems, respectively. The idea of

not computing any material relaxations will be generalized into two elastic models which can be

used in combination with the previously presented viscoelastic models in computing the nonlinear,

possibly path-dependent, structural responses for structures composed of materials falling into the

NLVE family. The pseudo elastic model (1D) that will be defined corresponds to the case where

all material relaxations are proceeding extremely slowly over each time step in which the model is

used, whereas the rubbery elastic model (1B) will give the result for the case where all relaxations

have reached completion by the end of the time step in which it is used. Because neither model

includes the explicit use of a shift factora, no iterations are required to converge the numerical

computation of either constitutive model.

Pseudo Elastic Model

For the pseudo elastic response over the current time step, consider the following exact equation for

Iiθ(t
n):

Iiθ(t
n) = exp

[
−(∆t∗)n

τi

]
Iiθ(t

n−1) +
∫ tn

tn−1

exp
[
−(t∗)n − ξ∗

τi

]
dθ

dξ
dξ (3.43)

For this model, the assumption is thatt∗ changes very little over the current time step so that the

following approximation forIiθ(t
n) is acceptable:

Iiθ(t
n) ≈ Iiθ(tn−1) + θ(tn)− θ(tn−1) (3.44)

Likewise,IiC(t
n) is updated using

I iC(t
n) = IiC(t

n−1) + C(tn)− C(tn−1) (3.45)
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It should be apparent from Eq. (3.29) that small∆t∗ over a time step results from∆t being very

small and/orlog10[a] tending to be positive and relatively large over the time step. Note that if

other models in the NLVE family have been used before the pseudo elastic approximation (1D),

the pseudo elastic (1D) results will not correspond simply to usingSH = S∞H with the rubbery

moduli replaced by the corresponding glassy values in Eq. (3.32). However, if only this model

has been used for all times over a given region, then the Hencky stress for that region would be

SH = S∞H with the rubbery moduli replaced by the corresponding glassy values. That is, using the

pseudo elastic model for all time steps gives purely a glassy elastic response. Regardless of what

other models may have been used in previous time steps, the response of this model to any load

increments applied in the current time step is the traditional glassy elastic response of the polymer.

Hence, this model can be thought of as an enhanced glassy elastic model that can also be used in

time steps where∆t∗ is small.

Rubbery Elastic Model

For the rubbery elastic model (1B), all material relaxations which started before and during the

current time step are assumed to reach completion by the end of the current time step. For this to be

true, the elapsed reduced time since any loading was applied needs to be relatively large. Exactly

how large this is can be determined from the largest relaxation time appearing in the Prony series

that are used to characterize the viscoelastic material. A large amount of elapsed reduced time

since a load was applied may or may not correspond to a large amount of elapsed physical time.

Recall that the reduced and physical time scales are related as given by Eq. (3.29). For instance,

if log10[a] is constant at−2, the rate at which the reduced time proceeds would be two orders of

magnitude larger than the rate at which physical time elapses. Because all relaxations are assumed

to be completed by the end of the time step, all integral historiesIiC andIiθ are set to zero, while the

Hencky stress at the end of the time step is simplyS∞H as given by Eq. (3.32).

Hierarchy of NLVE Material Models

In terms of least to largest amount of computational cost, the models are ordered as rubbery elas-

tic (1B), pseudo elastic (1D), WLF (2B), configurational entropy (3B), and configurational energy

(4B). In terms of the physics captured inlog10[a], the non-elastic models are ordered as WLF (2B),

configurational entropy (3B), and configurational energy (4B). Discounting any possible pathologi-

cal examples, if the WLF model (2B) is accurate, then so is the configurational entropy model (3B).
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Although they do not compute what the actual viscoelastic relaxations are over a given time step,

either of the two elastic models may be accurate over certain time steps for a given loading scenario.

As the most detailed model in the NLVE family, the configurational energy model (4B) is assumed

to capture all of the relevant physics. Hence, the assessment of accuracy of any of the coarse NLVE

models must be made with respect to the configurational energy model (4B).

3.4 NLVE numerical results

The present example considers a square plate with a centrally-located hole under tension. Symmetry

boundary conditions are used on two edges of the domain so that only one-fourth of the plate has

to be modeled. The plate has a length of 50.8 mm, a thickness of 0.635 mm and hole with a

radius of 6.35 mm. The plate geometry is shown in Fig. 3.3. The plate is assumed to be stress

free and in thermodynamic equilibrium in the initial state. The temperature field is uniform and

held constant atθg throughout the entire analysis. The tension boundary conditions are applied

as a prescribed displacement on the exterior edge that is perpendicular to the globalX axis. The

prescribed displacement in theX direction increases linearly with time at a rate of 0.254 mm/sec.

A large set of numerical results have been generated corresponding to all of the implemented

schemes. For each method except ILSE, at least two levels of model adaptivity tolerances are used.

For the codes involving local use of the error measure,TOL is set to either 0.05 or 0.01. For all of

the codes which use the error measure globally, the adaptivity parameters are either the combination

(γ = 0.1, α = 0.8, β1 = 0.3, β2 = 0.2) or (γ = 0.01, α = 0.7, β1 = 0.2, β2 = 0.1). Additional

results corresponding to other combinations of(γ, α, β1, β2) have been generated for some codes.

Also, a baseline solution corresponding to using the configurational energy model (4B) for all el-

ements over all time steps has been computed. Unless otherwise noted, all results correspond to

using a relatively fine mesh of 7803 elements. This mesh and element groupings for post processing

are shown in Fig. 3.3. A single element block is used for the schemes using the error measure in

a global fashion. For some methods, additional results have been generated using a coarser mesh

of 867 elements. In all cases, 100 equal time steps have been used to integrate the results over

the first 10.0 sec. The fine mesh and time domain discretizations have been determined using a

convergence study for the baseline solution. The assumption is made that the approximation errors

resulting from these discretizations can be ignored at present. The interaction between modeling

and approximation errors can be formally explored in a later work.

For brevity, only a few representative numerical results from the baseline and ELDE (explicit,
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Figure 3.3: Quarter plate geometry and mesh of 7803 elements. In addition, the elements have been

grouped into twenty numbered regions for reporting average quantities over a region. Also shown

is path A which connects the centroids of the elements on the vertical symmetry edge, beginning at

the top of the hole and proceeding toward the plate edge.

local use of error measure, dumb model switching, equilibrium model state variable updates) solu-

tions will be given. Some results from using ELSE with the coarse mesh of 867 elements are given

in Ref. [13]. However, some tabular data and general observations considering all of the generated

results will be presented later on.

Reference Solution

Contours of the Cauchy stress componentσxx for the reference solution are shown in Fig. 3.4. For

these and all other contour plots presented for this example, the results are presented on deflected

meshes. Contours ofσyy are not shown for brevity. For relatively small times, the nonlinear vis-

coelastic results give stress concentrations that resemble what would occur for a similar elastic case.

That is, the location of the highest tensileσxx occurs at the intersection of the hole and symmetry

plane perpendicular to theX-axis, whereas the highest compressive stressσyy occurs at the inter-

section of the hole and the symmetry plane perpendicular to theY -axis. However, as the time and
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loading increase, theσxx stress concentration moves slightly along the X-symmetry plane away

from the hole. These changes in the distribution ofσxx result from the fact that the stresses affect

the rate at which viscoelastic relaxations occur in the configurational energy model (4B). The com-

pressiveσyy stresses are not large enough to cause yielding at the intersection of theY -symmetry

plane and the hole. Hence, the location of the highest compressiveσyy remains stationary.

ELDE Solutions with TOL = 0.05 and 0.01

Results generated using the ELDE implementation withTOL = 0.05 and 0.01 will now be pre-

sented. In these and all other adaptive cases considered, all elements begin their constitutive calcu-

lations using the WLF model (2B). Shown in Fig. 3.5 are contour plots ofσxx for the case where

TOL = 0.05. It is clear that the stressσxx in this adaptive solution follows the same trends as in the

reference baseline solution. However, it is also apparent that the deformations near the top of the

hole are somewhat different. The time history of the element-wise distribution of models used are

presented in Fig. 3.6 for theTOL = 0.05 case. The band where the configurational energy model

(4B) is used corresponds to that whereσxx is relatively high. Outside of this band, the WLF model

(2B) and the pseudo elastic model (1D) are predominantly used.

For t = 5.0 and 10.0 sec, contours ofσxx and element-wise distribution of model usage are

shown in Fig. 3.7 for the ELDE scheme withTOL = 0.01. Examining Fig. 3.7, it is clear that

using a finer tolerance leads to better stress results, but at the expense of greater usage of the con-

figurational energy model (4B).

Figure 3.8 shows a plot the averageσxx over region 1 as function of time, whereas Fig. 3.9

gives the spatial variation ofσxx along path A at discrete results. Once again, the tighter tolerance

is observed to give much better results, especially in terms of the smoothness of the stress variation

along path A.
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Figure 3.4: Reference solution: Cauchy stressσxx at t = 2.5, 5.0, 7.5 and10 seconds (left to right,

top to bottom) for the case where the configurational energy model (4B) is used for all calculations.
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Figure 3.5: Cauchy stressσxx at t = 2.5, 5.0, 7.5 and10 seconds (left to right, top to bottom) for

the ELDE scheme withTOL = 0.05.
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Figure 3.6: Models used for the time steps ending att = 2.5, 5.0, 7.5 and10 seconds (left to right,

top to bottom) for ELDE withTOL = 0.05. (configurational energy (4B) = red, configurational

entropy (3B) = yellow, WLF (2B) = green, pseudo elastic (1D) = blue, rubbery elastic (1B) =

purple).
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Figure 3.7: Cauchy stressσxx (left) and the models used over the time step (right) att = 5.0

and 10.0 sec (configurational energy (4B) = red, configurational entropy (3B) = yellow, WLF (2B)

= green, pseudo elastic (1D) = blue, rubbery elastic (1B) = purple) for the ELDE scheme with

TOL = 0.01.
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Figure 3.8: Average Cauchy stressσxx over region 1. Adaptive results corresponding to the ELDE

algorithm along with the reference solution are shown.
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Figure 3.9: Cauchy stressσxx along path A at discrete times. The ELDE adaptive solutions using

two tolerance levels along with the reference solution computed using the configurational energy

model (4B) for all times are shown.
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General Results and Observations

Although a number of results have been postprocessed for all of the adaptive analyses performed,

only a small fraction of the generated information is given in this report. However, general obser-

vations based on these results will be presented subsequently. Tables 3.2 and 3.3 present data for

each of the 35 adaptive runs performed using the fine mesh of 7803 elements. This information

consists of the required effort (equilibrium iterations and CPU time) and a measure of the accuracy

of the calculations (error in the maximumσxx over the domain at the end of the analysis). Hence,

this information can be used as a general indication of the effectiveness of each adaptive simulation.

Note that some runs failed to converge past a certain time step for the tolerances specified for the

equilibrium calculations, whereas other analyses were stopped after it became clear that the results

were highly erroneous and/or a large computational effort had already been spent. These tables do

not present any results from the runs corresponding to using the coarse mesh of 867 elements.

All analyses indicate that tightening the tolerances used to answer the adaptivity questions of

when?, where?, and how? resulted in higher accuracy in the results, as expected. Also in a number

of cases, tightening these tolerances also lead to smaller computational effort being required. This

likely results from the fact that using different spatial and temporal distribution of models leads

to different equilibrium states being found. Of course, these differing equilibrium states require

different amounts of computational effort to find. In fact, for a lot of the adaptive schemes using

loose tolerances may lead to failure of the numerical solution procedure as the computed equilibrium

states are vastly different from those in the reference solution. Although not presented in this report,

the number of implicit iterations used by the RLSE, OLSE, OLDE, OGSE, and OGDE methods

generally was smaller for the tighter tolerances for this same reason. For instance, using OGSE or

OGDE withγ = 0.1 leads to no model adaptivity being performed untilt = 5.4 sec, whereas using

γ = 0.01 with these methods leads to adaptivity starting att = 1.0 sec. Waiting so long before

making any model changes, of course, leads to equilibrium states somewhat different than those

in the reference solution. It may be prudent in future work to try other tolerance levels for each

adaptive scheme for this problem.

Another closely related point is that any comparison model results are estimated using the dis-

placement solution generated using the given equilibrium models over the domain. That is, no

attempt is made to determine how the displacements would change if the comparison model is ac-

tually used. Of course, in the implicit calculations, equilibrium is converged again after any model
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Table 3.2: Computational effort and(σxx)max results for adaptive simulations with local use of

error measure. All results correspond to using the fine mesh of 7803 elements.

Code TOL Equilibrium CPU (hr) % Error in
Iterations Final (σxx)max

Ref - 56,164 15.36 -

ELSE 0.05 82,995 16.28 5.47

ELSE 0.01 52,007 9.64 0.57

ELSF 0.05 71,892 10.04 0.96

ELSF 0.01 49,753 8.88 0.06

ELDE 0.05 77,573 11.32 3.86

ELDE 0.01 50,127 9.25 0.64

ELDF 0.05 62,718 7.59 1.49

ELDF 0.01 48,506 8.61 0.05

RLSE 0.05 > 106 281.02 4.84

RLSE 0.01 134,287 30.22 -1.84

OLSE 0.05 804,706◦ unknown 8.43◦◦

OLSE 0.01 84,811 17.80 -1.75

OLDE 0.05 725,279+ 119.33+ 6.20++

OLDE 0.01 80,011 16.74 -1.73

◦ Total iterations when job was killed duringt = 9.1 sec calculations
◦◦ Calculated att = 9.0 sec
+ Iterations/CPU time to reach numerical failure fort = 9.7 sec calculations
++ Calculated att = 9.6 sec
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Table 3.3: Computational effort and(σxx)max results for adaptive simulations with global use of

error measure. All results correspond to using the fine mesh of 7803 elements.

Code γ α β1 β2 Equilibrium CPU (hr) % Error in
Iterations Final (σxx)max

Ref - - - - 56,164 15.36 -

EGSE 0.1 0.8 0.8 0.2 115,601◦ unknown 861.93◦◦

EGSE 0.1 0.8 0.3 0.2 98,888+ 10.86+ 942.03++

EGSE 0.01 0.7 0.7 0.1 197,8714 26.34 59.9644

EGSE 0.01 0.7 0.7 0.0 51,792 8.81 1.10

EGSE 0.01 0.7 0.2 0.1 71,426 13.27 6.23

EGSF 0.1 0.8 0.8 0.2 42,995 4.83 8.19

EGSF 0.01 0.7 0.7 0.1 49,570 7.81 0.09

EGSF 0.01 0.7 0.2 0.1 49,522 7.81 0.09

EGDE 0.1 0.8 0.8 0.2 171,507 19.00 702.79

EGDE 0.1 0.8 0.3 0.2 157,787 17.48 1147.71

EGDE 0.01 0.7 0.7 0.1 175,182∇ 20.5∇ 562.83∇∇

EGDE 0.01 0.7 0.7 0.0 51,361 8.93 0.98

EGDE 0.01 0.7 0.2 0.1 70,826 13.12 6.92

EGDF 0.1 0.8 0.8 0.2 42,995 4.79 8.19

EGDF 0.01 0.7 0.7 0.1 58,271 7.07 47.70

EGDF 0.01 0.7 0.7 0.0 49,805 8.10 0.01

EGDF 0.01 0.7 0.2 0.1 51,715 8.525 0.06

OGSE 0.1 0.8 0.3 0.2 306,410� 50.78� 47.06��

OGSE 0.01 0.7 0.2 0.1 94,215 19.31 -2.30

OGDE 0.1 0.8 0.3 0.2 > 106∗ 234.5∗ 38.46∗∗

OGDE 0.01 0.7 0.2 0.1 82,700 16.04 -0.63

◦ Total iterations to reach numerical failure fort = 7.7 sec calculations
◦◦Calculated att = 7.6 sec
+ Total iterations/CPU time to reach numerical failure fort = 7.9 sec
++ Calculated att = 7.8 sec
4 Total iterations/CPU time when job was killed duringt = 8.3 sec calculations
44 Calculated att = 8.2 sec
∇Total iterations/CPU time when job was killed duringt = 6.6 sec calculations
∇∇Calculated att = 6.5 sec
� Total iterations/CPU time to reach numerical failure fort = 7.0 sec
�� Calculated att = 6.9 sec
∗ Total iterations/CPU time when job was killed duringt = 8.3 sec calculations
∗∗ Calculated att = 8.2 sec
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changes, whereas no such effort is made using the explicit methods. However, this approximation

of the comparison model can still be a problem for the implicit methods when decisions are being

made about whether to consider adaptivity or not using (3.20).

A potential pitfall for the algorithms that use the error measure globally is the normalizations

used in (3.21), (3.22), and (3.23) to determine where refinement and coarsening are performed. The

fact that the maximumζKE/F over the entire domain (or material block) and the maximumζKE/C from

the elements not requiring refinement over this same region are used can lead to difficulties when

these values are much larger than their respective means. That is, large error indicator values in just

a few elements can make the error indicators in almost all other elements appear to be relatively

small. For instance, consider the elements near the stress concentration in the present example.

These elements usually use the fine model (configurational energy model (4B)), and, hence, do not

need refinement. The coarse comparison model results from these elements are likely to be highly

erroneous compared to the local fine model results, but could potentially be used for the maximum

ζKE/C in (3.23). This particular problem was observed for some of the numerical results from the

various global schemes.

Although not evident from any of the presented results, a lot of chattering from time to time

step occurred in the model selection process of each method. Differing amounts of chattering are

expected from the different adaptive algorithms. For instance, the explicit methods are expected to

result in more chattering in the final model selection from time step to time step than the implicit

methods. Of course, the implicit methods also have chattering during the implicit calculations

over a single time step. The smart model selection schemes are also expected to lead to more

chattering than the dumb model selection schemes. However, no formal measure of chattering has

been developed or implemented.

Chattering from time step to time step is not expected based on any of the physics being simu-

lated in this numerical example. Rather, the chattering is a phenomenon of the implemented adap-

tivity schemes. Physically what is expected is distinct spatial and temporal regions where particular

models are used. For example, one would expect that anywhere the stress is relatively high, the

configurational energy model (4B) would be used. Hence, examining the stress contours from the

reference solution, it is almost possible to guess where the configurational energy model (4B) should

be used.

Of course, the chattering over the implicit calculations over a single time step differs in each

type of implicit scheme. In fact, the differing rules for when coarsening is allowed were developed
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partly to limit this chattering. Using the coarse mesh of 867 elements, it became clear for the pure

implicit ILSE scheme that the model selection process can get stuck in a repeating loop. The only

way to break such a loop is to reach the maximum number of implicit iterations allowed for a given

time step.

Examining Tables 3.2 and 3.3, it is clear that much greater computational effort is expended

using the implicit schemes rather than the explicit schemes. This results from the fact that each

time new equilibrium models are selected using the implicit methods, the equilibrium state at the

end of the current time step is reconverged to the same tolerance used in determining equilibrium in

the explicit methods. One would naturally expect the number of iterations required for equilibrium

to decrease as more and more implicit iterations are taken. This behavior was in fact observed.

However, the number of equilibrium iterations after the first couple of implicit iterations usually

was as large or larger as that in the initial equilibrium state determination for the time step. Also,

the reduction in effort for equilibrium convergence in later implicit iterations was not as great as

expected. Using some results generated using the coarse mesh of 867 elements, it was clear that

even changing the models in only a few elements could raise the relative force imbalance by two

orders of magnitude. Perhaps the best way to address this issue is to allow a coarser tolerance on

the equilibrium calculations corresponding to the first couple of implicit iterations during a given

time step.

The model selection process in the implicit methods encompasses not only chattering, but prop-

agation as well. That is, in solving the boundary value problem, the model selection process in

any given element is affected but what is occurring in other elements, especially those in the near

vicinity. Hence, the use of a certain model may spatially propagate during the implicit iterations of

a given time step. The number of implicit iterations is thus expected to rise as the mesh is refined,

due to both more opportunities for chattering and more elements required to propagate the selection

of a particular model a given spatial distance. For the implicit methods where calculations were also

performed using the coarse mesh of 867 elements, fewer implicit iterations did result than when the

fine mesh of 7803 elements was used.

The choice between using either an implicit or explicit scheme is likely to be problem depen-

dent. That is, explicit methods are efficient and can be used in the case where the modeling error

growth occurring in any given time step is relatively small and does not need to be corrected before

proceeding to the next time step. For situations where this is not the case, an implicit method may

in fact be a better alternative rather than just using smaller time steps with an explicit method.
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Although no effort was made to examine approximation errors, these errors are, of course,

present and do, in fact, affect the model selection process. That is, there are interactions between

the modeling and approximation errors. This is evident when coarse mesh and fine mesh results

for model selection using a particular method are examined. For this problem, the model selection

process resulted in similar spatial and temporal distributions of constitutive models used in all of

the cases examined. However, regions did exist where the models selected differed somewhat,

especially during the later stages in the simulations.

Using the fine model state variable updates in the explicit methods appears to lead to good

accuracy at a minimum cost. As noted earlier, for NLVE this corresponds to using the fine model

stresses which are approximated using the displacements computed using the various equilibrium

models. Although for explicit methods, these stresses do not correspond to equilibrium for the

current time step, equilibrium is immediately enforced again in the next time step. Saving the fine

model state variables may not work as well for other material model classes.

It should be noted that the data input into each model is assumed to be known precisely. That is,

no attempt has been made to assess how any uncertainty in the data would affect model selection in

the NLVE family. Any such data uncertainty may play a role in model selection as each model uses

the material properties differently in determining elapsed time on the material time scale.

The first set of numerical results appear to be very encouraging. Indeed, adaptive solutions using

different models in various regions of the computational domain have been produced that are almost

as accurate as the solution obtained with the finest model. Nevertheless more numerical experiments

are needed in order to better assess the performance of the various implemented algorithms for

modeling adaptivity. Furthermore, thermodynamic and possibly other considerations must be taken

into account so that a more robust adaptivity scheme can be developed for the nonlinear viscoelastic

model studied here and other material models.

4. Concluding Comments

The concepts of modeling error, error estimation, and adaptive modeling provide a framework for

systematically selecting appropriate models of physical phenomena. Several additional advances are

needed if these methods are to have a useful role in model validation. First, the predictive qualities

of computational models will always depend upon the goals of the simulation. In other words, the

particular physical event(s) of interest must be clearly specified before it is meaningful to compare
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the effectiveness of various models of it. Second, the modeling error is, as noted earlier, a random

variable. Thus, the adaptive modeling process should be embedded in an appropriate stochastic

framework or in something equivalent. Thirdly, modeling error and approximation error must be

simultaneously estimated and controlled for a completed, verified and validated predictive tool to

be created. Finally, adaptive modeling should be integrated into a larger framework that provides

an interaction and feedback with physical experiments and tests to allow dynamic updating of the

parameters that define models within a hierarchy of possible models.
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CHAPTER 3

The Treatment of Uncertainties in

Computational Mechanics

Ivo Babuška

1. Introduction

Mathematical models in computational mechanics are usually defined by a boundary value problem

involving linear or nonlinear partial differential equations and a specific goal for the analysis. The

boundary value problem consists of some input data such as the partial differential equations and

their coefficients, the domain of definition of the solution, the boundary conditions, etc.

For a given physical phenomenon, we may introduce a hierarchical sequence of models with

increasing complexity. The lower models are usually derived from the “highest” model by simpli-

fication of the equations or by choosing specific coefficients. Assuming that the “highest” model

yields an accurate representation of reality, the solution of the lower models can be viewed as ap-

proximations of the solution of the highest model.

The computational analysis creates a mapping from the space of input data into the space of

the desired data specified by the goal of the analysis. The goal typically aims at defining the data

of interest within a given tolerance range. Note that the input data are never known perfectly.

Moreover, using more sophisticated models requires additional data which in turn present more

uncertainties. The treatment of uncertainties therefore consists of finding the relationship between

the uncertainties in the output (defined by the goal of the analysis) and the uncertainties in the input

data.

Characterization of uncertainties in the input data can be two-fold:

1. The range of uncertainties is known; for example the range of the coefficients.

2. The statistics of uncertainties is known; however the statistics, namely the probabilistic char-

acterization, may involve additional information which is not perfectly known.
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In the first case, we are interested in the range of the output, while in the second, we wish to

obtain the probabilistic characterization of the output or some information derived from it, like, for

instance, the mean value or the standard deviation.

The mathematical problems should possess reasonable properties, namely, existence and unique-

ness of solutions and continuous dependence of these solutions on the data, in a sense appropriate

with the type of uncertainties. In the case where the continuous dependence property is not satisfied,

the mathematical model should be carefully investigated as to whether it accomplishes the objective

of the analysis. Because of increasing uncertainties in the description of more complex models (the

“higher” models in the hierarchy), these models, beyond a certain level, are not necessarily more

reliable. In other words, they do not necessarily provide more accurate results with respect to reality.

Needless to say that the determination of such a threshold level is not an easy task.

We present in the following some aspects of the research directions which address the issues

described above. In particular, we will discuss the problem of uncertainty in the domain of definition

of the solution and the problem of stochastic input data.

2. Uncertainty in the Domain

LetΩ denote the domain on which the differential equation is defined. Uncertainties in the definition

of Ω necessarily appear when it is generated using some scanning devices. The domain is then

recovered from digital images and therefore strongly depends on the resolution level. In three

dimensions for instance, the domain is reconstructed from two-dimensional slices which are usually

spaced at a distance larger than the resolution level of the two-dimensional image.

The digital images obtained by scanning are postprocessed based on a threshold value of the

“shadow” intensity. In the ideal two-dimensional setting, the value of the threshold parameter char-

acterizes the volume fraction of the domain contained in the pixels. Therefore, we can recover a

“pixel” domain which approximates the real domainΩ by selecting a particular value of the pa-

rameter. The pixel domain is defined as the union of all pixels whose volume fraction is at least

larger than the prescribed value. We then can generate a monotonic (in the ideal case) sequences

of pixel domains by selecting sequences of threshold values. In doing so, we conceptually obtain

a pixel domain, denoted byΩLOW, which is a subset ofΩ. The domainΩLOW is associated for

instance with the highest value of the parameter. Likewise we can obtain a pixel domain, denoted

by ΩUP, which containsΩ. This time,ΩUP is associated with the lowest parameter in the sequence.
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(a) (b)

(c) (d)

(e)

Figure 2.1: Original domain (a), pixel domains (b,c,d), and smoothed domain (e).

Unfortunately, this “ideal” situation is not always available because of various sources of “noise”

in the digital images. There exist to date several, more or less heuristic, approaches in selecting

an “optimal” value of the parameter; the corresponding pixel domain may be further postprocessed

by smoothing the boundary while preserving known features of the domain. Various methods have

been developed by and are currently being used in the computer graphics community.

To illustrate the problem, we show in Fig. 2.1 the digital photograph of a domain (a), three pixel

domains for different values of the grading parameters (b,c,d) and the corresponding smoothed

domain (e). In Fig. 2.2, we show the pixel approximation of fibers in a fiber composite for a given

value of the parameter (diameter of the fiber is about7µm). In this case, the input data are strongly

dependent on the length separating fibers (especially when it is relatively small).
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Figure 2.2: Fiber composite.

We proceed with our discussion by considering the following model problem:

−∆u+ u = f, in Ω ⊂ R
2 , (2.1a)

α
∂u

∂n
+ βu = g, on∂Ω. (2.1b)

We now distinguish three types of boundary conditions.

2.1 Dirichlet boundary condition

Settingα = 0 andβ = 1 in (2.1b), we obtain the Dirichlet boundary condition:

u = g, on∂Ω.

BecauseΩ is determined with some uncertainty, it is necessary to defineg as the trace of a function

ψ ∈ H1(R2), that is,g = ψ|∂Ω. Likewise,f needs to be defined inL2(R2).

Assume now thatΩ ⊂ R
2 is a bounded domain andΩ = R2 − Ω (i.e. there is no crack inΩ.)

Further, letΩ∆ denote a sequence of pixel domains with pixel size∆ → 0. Let us suppose that

Ω∆ → Ω, the convergence being understood in the following sense:

for everyx ∈ Ω, there exists∆0(x) such thatx ∈ Ω∆, for all ∆ ≤ ∆0(x), and, for

everyx /∈ Ω, there exists∆1(x) such thatx /∈ Ω∆, for all ∆ ≤ ∆1(x).
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This assumption is satisfied when the pixel domains are constructed from digital images with a

particular selection of the threshold parameter and increasing resolution(∆→ 0). Then we have

Theorem 1 (Stable and unstable domains)Under the foregoing assumptions and definitions:

1. For everyΩ∆, there exists a unique (mesh) solutionu∆ ∈ H1(Ω∆).

2. There exists a family of unstable domains (with respect to the Dirichlet boundary condition)

for which there is a sequence ofΩ∆, such thatu∆ do not converge (inH1) as∆→ 0.

3. There exists a family of domainsΩ∆, called stable domains, for whichu∆ → u in H1 for

any value of the parameter. By convergence, we mean convergence ofu∆ which is extended

byψ ∈ H1(R2) outsideΩ∆.

For more details, see [1].

Remark: Most domains in practice are stable with respect to the Dirichlet boundary condition.

Let us now assume that, for a particular∆, the pixel domainsΩLOW andΩUP are known. Then

it is possible to estimatea priori or a posteriorithe norms‖u
e∆
− uLOW‖H1 and‖u

e∆
− uUP‖H1 for

any∆̃ < ∆. This also provides bounds on‖u − uLOW‖H1 and‖u − uUP‖H1 for stable domains.

We refer the reader to [2] for more details.

2.2 Neumann boundary condition

Takingα = 1 andβ = 0 in (2.1b), we now consider the Neumann boundary condition:

∂u

∂n
= g.

We consider the particular case whereg = 1, f = 0 (as before,g is the trace of a functionψ on

∂Ω), andΩ is a unit circle centered at the origin. Then we have (cf. [3]):

Theorem 2 Letu∆ denote the solutions on the pixel domainsΩ∆. ∆→ 0 andu the solution onΩ.

Then

u∆(0) 6→ u(0) as ∆→ 0,

and for any∆,

|u∆(0) − u(0)|
|u(0)| ≥ 0.2.
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Theorem 2 shows that Problem 2.1a with boundary condition
∂u

∂n
= 1 is not a well-posed

problem in the case where we use pixel approximations of a circle. Hence the present mathematical

formulation has to be used with utmost caution. The essence of the paradox mentioned in Theorem 2

is that the length of the boundary∂Ω∆ does not converge to the length of∂Ω.

Remark: We observe in the literature that pixel meshes are sometimes used as finite element

meshes after proper coarsening. This may yield erroneous results. Note that it is possible to re-

formulate the boundary condition so that convergence is established (see [3]). This model can then

be used in the computations. Also estimates of the error in the approximations on pixel domains

can be obtained.

Remark: If g = 0, then the problem mentioned in Theorem 2 does not occur.

Remark: For Neumann problems, there exists a family of unstable and stable domains with respect

to the Neumann boundary condition. Note that the families for the Dirichlet and Neumann boundary

conditions are different.

2.3 Newton boundary condition

The Newton boundary condition reads:

α
∂u

∂n
+ βu = g, α > 0, β > 0.

This type of boundary condition takes into account convection (radiation) phenomena on∂Ω. Sim-

ilarly to the Neumann boundary condition case, convergence cannot be established.

Domain uncertainty enters the category of examples where only the range of input data is avail-

able.

3. The Problem of Stochastic Input Data

LetD denote a domain with boundary∂D. We now consider the model problem

−∇ · a(x, ω)∇u = f(x, ω), in D, (3.1a)

u = 0, on∂D. (3.1b)

wherea(x, ω) aref(x, ω) are stochastic functions.

For simplicity in the exposition, we will distinguish in the following two cases:

1. a(x, ω) is a stochastic function whilef(x) is a deterministic function.
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2. a(x) is a deterministic function whilef(x, ω) is a stochastic function.

3.1 Stochastica and deterministic f

In order to study the model problem 2, it is necessary to introduce a mathematical formulation in

a probability space(Ω,F ,P). Here,Ω, F , P denote the set of random events, theσ-algebra of

subsets ofΩ and the applicable probability measure respectively. IfX is a real random variable in

(Ω,F ,P) with X ∈ L1(Ω), we denote its expected value by

E[X] =
∫

Ω
X(ω) dP (ω) =

∫
R

X dµ(X).

Hereµ is the distribution probability measure forX, defined on the Borel setB andR, and given

by

µ(B) = P
(
X−1(P )

)
.

We will assume thatµ(B) is absolutely continuous with respect to the Lebesgue measure; then there

exists a density function forX, ρ : R → R
+ , such that

E[X] =
∫
R

Xρ(x) dx.

We now consider the random functionsv : D × Ω ≡ D̃ → R, whereD ⊂ R
2 . We suppose that

v ∈ L2(D̃), that is, the functionsv satisfy‖v‖ <∞ with

‖v‖2 = E

[∫
D
v2(x)dx

]
.

Remark: Because we wanted to keep the standard notationΩ for the set of random events, we

introduce the notationD for the domain inR2 . This should not be confused with the notation used

in the previous section whereΩ ⊂ R
2 denoted the domain.

We assume thata(x, ω) = ã(x) satisfies the uniform ellipticity condition, that is, there exists

positive constantsα1 andα2 such that

0 < α1 ≤ a(x) ≤ α2 <∞ a.e. inD̃. (3.2)

It is obvious that

0 < α1 ≤ E[a](x) ≤ α2 <∞. (3.3)
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Let V be the Hilbert space

V =
{
v ∈ D̃ → R; ‖v‖2V = E

[∫
D
a|∇v|2dx

]
<∞; v(x, ω) = 0 on∂D

}
and letB(·, ·) be the bilinear form onV × V

B(v,w) = E

[∫
eD
a(x, ·)∇v(x, ·)∇w(x, ·) dx

]
. (3.4)

Obviously,V is a Hilbert space of random functions and in view of the Lax-Milgram theorem,

there exists a unique solutionu ∈ V of (2) such that

B(u, v) = E

[∫
D
fv dx

]
, ∀v ∈ V. (3.5)

Note thatf is assumed to be a deterministic function. We shall also assume thatf ∈ L2(D).

The stochastic functiona(x, ω) can be written in the form

a(x, ω) = E[a](x) +
∞∑
n=1

an(x)Xn(ω) (3.6)

whereXn(ω) are mutually independent random variables withE [Xn] = 0 andE
[
X2
n

]
= 1, n ≥

1. We will assume thatXn have bounded imagesΓn = Xn(Ω) with Γn = (−γn, γn) ⊂ R, γn > 0

and consider the probability density functionρn : Γn → R such that0 < β1 ≤ ρn ≤ β2 <∞.

The expression (3.6) is the Karhunen-Loeve expansion (see e.g. [4], p. 478). We will assume

that in (3.6),n = 1, · · · ,N0 instead of1, · · ·∞. Then we can directly use the Doob-Dynken lemma

(see e.g. [5], p. 9) and write

a(x, ω) = a(x, y) = E[a](x) +
N0∑
n=1

an(x)yn (3.7)

whereyn = Xn(ω) ∈ Γn andy = (y1, · · · , yN0) ∈ Γ = Γ1 × · · · × ΓN0 .

As an illustration, we show in Fig. 3.1 eight samples using (3.7) withN0 = 10 and x ∈

(−0.5, 0.5) where the value ofa(x, ω) is ranging in the interval(7, 9) andE[a](x) = 8.

We introduce the inner product

(v,w)ρ =
∫

Γ
ρ(y)

∫
D
v(x, y)w(x, y) dxdy

with ρ(y) = ρ1(y) · · · ρN0(y1D) and denote by‖ · ‖ the induced norm. We then define

Lρ(D̃) = Lρ(D,Γ) = {v : D × Γ→ R; ‖v‖ <∞}

W (D,Γ) = {v ∈ Lρ; ‖w‖W <∞; v|∂D×Γ = 0}
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Figure 3.1: Samples ofa(x, ω) with N0 = 10 andx ∈ (−0.5, 0.5) where the value ofa(x, ω) is

ranging in the interval(7, 9) andE[a](x) = 8.
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where

‖w‖2W =
∫

Γ
ρ(y)

∫
D
a(x, y)|∇xv(x, y)|2 dxdy.

The spaceW (D,Γ) is equivalent to the spaceV .

An equivalent formulation to (3.5) reads

B(u, v) = (f, v)ρ, ∀ v ∈W, (3.8)

where

B(v,w) =
∫

Γ
ρ(y)

∫
D
a(x, y)∇x(x, y)∇xw(x, y) dxdy. (3.9)

The formulation (3.8) and (3.9) transforms the stochastic problem into a deterministic one. How-

ever, one major problem is the large dimension ofΓ. For more details on the subject, we refer the

reader to [6, 7].

The form (3.8) is very similar to the finite element method formulation. This was exploited

in [6] in which finite elements are used. Results on the rate of convergence with respect to the norm

‖ · ‖W were obtained as well. Similarly, as in the usual finite element method, it was found that the

rate of convergence for the functional is higher than that of the convergence in the norm‖ · ‖W .

Because of computational complexity, it is often necessary to approximate (3.7) using a value

of N0 as small as possible and then estimate the error due to that approximation. This was done

among others in [7].

There basically exist four approaches to solve Problem (3.8), namely, using

1. The Monte Carlo or Quasi-Monte Carlo Method;

2. Theh, p or h-p versions of the Finite Element Method;

3. The method of successive approximations;

4. A combination of all of the above methods.

We considered in [6] the Finite Element Method while we developed in [7] the theory of suc-

cessive approximations with estimation of the error when approximating (3.7) using a smaller value

of N0. Issues associated with large values ofN0 will be addressed in the future.
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3.2 Deterministica and stochasticf

We have addressed so far the case ofa(x, ω) being stochastic andf(x) being deterministic. Let us

now discuss the case whena(x) is deterministic whilef(x, ω) is stochastic. This case can be cast

into a deterministic form in a similar manner as before.

Suppose that one is only interested in the mean value and the covariance of the solution. It can

be shown that the mean value is the solution of a deterministic problem onD with the mean value of

f on the right-hand side. Moreover, the covariance of the solution can be determined directly from

the covariance of the right-hand side. It is actually the solution of a fourth-order partial differential

equation onD × D with mixed order for the leading coefficients. This was shown in [6, 8]. The

authors in [9] used this approach and proposed a sophisticated numerical solution which is not

influenced by the high dimension of the problem. Note that the problem for the Laplace equation in

three dimensions leads to a problem in six dimensions.

Although we discussed only the cases for stochastic coefficients and right-hand side and linear

equations, the approach transforming the stochastic problem in a deterministic one for example for

nonlinear equations, stochastic boundary, etc.

The major issue is the high dimensionality of the problem. Very likely, the construction of the

probability field from the experimental data, respectively its characterization by (3.7), should be

accomplished after a careful analysis of the data so that minimal dimensionality is achieved. If

the stochastic functions are almost without correlation (i.e. nearly white noise), then the approach

described here cannot be applied due to the necessity of using largeN0. We refer to [10] for more

details. How to treat this case is an open problem which needs to be addressed.

Remark: The Karhunen-Loeve expansion is also used by Ghanem (cf. [11, 12]).

4. Conclusions

The existence of uncertainties in the input data to solve problems of computational mechanics is

almost inevitable: moreover, these uncertainties are sometimes important and can have a dramatic

effect on the computational predictions.

The present report addresses some aspects of the treatment of uncertainties. The influence of

the uncertainty of the domain on the solution of elliptic PDE’s was examined using a worst scenario

approach. This worst scenario approach characterizes the solution set which includes the image

of the input data set. It was found that stable and unstable domains exist for both Dirichlet and
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Neumann boundary conditions where the domains are described by scanning. Here stability of the

domain refers to the convergence of the numerical solution for the displacements. For the Dirichlet

boundary condition, most domains in practice are, in fact, stable.

The other portion of the work described in this chapter dealt with the stochastic solution of ellip-

tic PDE’s which have stochastic coefficients with variance.A priori error analysis of the projection

and perturbation solution method was performed.

The issues associated with uncertainties and their treatment are a subject of great concern in

the research community, and are directly related to validation. Very few rigorous results seem to

be available in the literature to date, although many engineering papers have been published on the

subject. We believe that a systematic research for the treatment of uncertainties is now needed.
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CHAPTER 4

Geometry and Visualization Support

Chandrajit Bajaj

1. Introduction

Our goals were to provide geometry and visualization support for both boundary element and three-

dimensional finite element formulations of linear to nonlinear viscoelasticity computations on hi-

erarchical models of heterogeneous materials. The domains were all assumed to be volumetrically

scanned by a CT (computer tomography) device which yields close to micron feature size separa-

tion.

As a first attempt to generate boundary and 3D finite element meshes from volumetric tomo-

graphic imaging data, we utilized the results of our earlier work on the contour spectrum [1]. The

contour spectrum allows the development of an adaptive ability using multiple global signature

functions to separate interesting isovalues of the imaging function to yield good initial segmenta-

tion. Effective global signatures include surface area and volume fractions as functions of image

intensity. This coupled with our fast isocontouring methods yielded fairly accurate boundary and

3D finite element, triangular meshes. The spectrum signature graphs as well as the interactive dis-

play of extracted boundary meshes provide good exploratory visualization of volumetric imaging

data.

Our subsequent attempts on geometry and visualization tools led to the research and develop-

ment of better and more automatic segmentation techniques for two material domains, with given

volume fraction of the two materials. A progressive contouring algorithm coupled to a multires-

olution representation of such segmented boundaries, are the contents of paper [2]. An evolution

(anisotropic diffusion) time based method [7], starting from initial segmentation, generated using

spectrum signatures [1], is currently being experimented with to provide multi-scale and smooth

(higher order spline) representations of segmented boundaries in CT images.

109



Figure 2.1: Using the contour spectrum and volume fraction graphs to segment and visualize the

speckled inner surface from the embedding matrix material.

A new hexahedral mesh generator, based on a trivariate subdivision scheme, and complete with

an interactive mesh visualization tool was developed. Several CT scans of an epoxy material with

spherical glass inclusions were generated. The above segmentation and visualization tools were

applied to generate the precise location of the spherical inclusions. The results of the hexahedral

mesh are summarized in report [5]. The results of the anisotropic diffusion method [6] are also being

currently experimented with to yield a more sophisticated hexahedral element quality improvement

scheme [7].

2. Segmentation and Visualization

2.1 Approach based on the Contour Spectrum

In addition to computational and space complexity issues, user interfaces have a tremendous impact

on the interactivity of a visualization environment. Acontour spectrumconsists of computed met-

rics over the volumetric imaging dataset (in general, a scalar field). On the basis of such metrics

we can define a set of functions which provide a useful tool to enhance the interactive query of the

dataset. One primary advantage of the contour spectrum interface is that it allows one to display in

a 2D image a “global” view of the examined scalar field, independent of its dimension.

Consider a 2D scalar field composed of trianglesti and verticesvi. We build and display the

spline functionL(w) whose valueL(w0) is the length of the isocontour of heightw0. L(w) can

be computed as the sum of all the contributionsLi(w) given by each cellci to the length of the
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contours:

L(w) =
∑
i

Li(w)

Thus, we can concentrate on the computation of the generic termLi(w) associated with the triangle

ti. Triangleti has verticesv1, v2 andv3 with height valuesF(v1) ≤ F(v2) ≤ F(v3). Given the

equationf(x, y,w) = 0 of the plane containingti, the valueLi(w0) is the length of the intersection

betweent′i (projection ofti onto the mesh space) and the 2D line of equationf(x, y,w0) = 0. As

we change the value ofw0 we obtain the measure of all the slices parallel to the linef(x, y, 0) = 0.

In general it is know from spline theory that given ad-simplex inRd the function that gives the

measure of all the parallel slices of such simplex (that is the measure of the intersection with a set

of parallel hyperplanes) is a degreed− 1, Cd−2 continuous, B-spline function.

In the 2D case the B-spline is simply a piecewise linearC0 function. Hence we need only

compute the length of the segment forw = F(v2) and connect it with the other two extremes for

which the length is 0. Note that the B-spline formulation of the length is also useful to automatically

handle the eventual degenerate cases. For example a portion of the terrain at heightw can be a flat

parallel to thex, y plane (a lake). In this case there occurs a definition problem, in determining

the length of an isocontour which is partially a 1-dimensional curve and partially a 2D surface.

The natural solution is to remove the flat region to regularize the dimension of the contour. The

consequence is that the function that computes the contour length is onlyC−1 at the heightw.

Using the B-spline approach no special care must be taken for this case since the knot vectors of the

flat triangles areF(v1) = F(v2) = F(v3) resulting in “valid” splines which shrink to a point as

expected.

As already pointed out, the above spline function can be computed for simplices of any di-

mension. For the 3D case of a tetrahedron(v1, v2, v3, v4) with scalar function values(F(v1) ≤

F(v2) ≤ F(v3) ≤ F(v4)) we have a degree twoC1 B-spline. In this case the determination of

the control polygon is as follows: Again for each cell we obtain a spline function. The sum of the

splines associated to each cell is a single spline that gives the contour area for any isovalue.

While length and area are important metrics to report, in many cases they are not sufficient to

guide the user in choosing appropriate isovalues. In many situations the user is interested in finding

and displaying prominent surfaces in the data. Toward this end we have designed a metric which is

based on theslopeor gradientof the function. The difficulty with the gradient measure is to define it

properly, since along a particular contour the gradient of the scalar filed is not (usually) constant. To
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compute a consistent (single valued) gradient function we resort to the spline decomposition of the

contour length/area function. For each triangle/tetrahedron of the mesh we have a spline function

which gives the length of any contour within that triangle/tetrahedron. Moreover, by piecewise

linear approximation, within each triangle/tetrahedron the gradient of the scalar field is constant.

Hence to determine the contribution to the gradient function of the contours within a single triangle

we just need to multiply the length function by the absolute value of the (constant) gradient. Again

the sum of the splines defined in each triangle/tetrahedron gives a single global spline function

which defines the gradient integral of any isocontour in the scalar field. The maximum of the

gradient (yellow function plot) corresponds to the isocontour (red contour on top figure) bounding

the relevant portion of the data. Note how the maximum of the contour surface (red function plot)

is attained for a lower height value of the field. It captures the noisy part of the data that has a large

contour length due to the numerous components.

While the display of contour metrics is both helpful and informative, there is clearly a lack

of global structural information in the metrics described. For example, there is no indication of

features such as local maxima and minima of the field. For this purpose we introduce the use of

thecontour treeas a tool for assisting the user in interaction with complex scalar fields. A contour

tree captures the global changes in contour topology of the scalar field defined on the input the

mesh. For example, in the display of an isosurface (threshold surface) of a CT image, one contour

component maybe be hidden inside another. If we associate the isocontour display with the contour

tree it becomes immediately clear that the current isosurface is composed of two components and

hence we might need a clipping plane to look inside the current surface. It has been used before in

image processing and GIS research. Another name in use is thetopographic change tree, and it is

related to theReeb graphused in Morse Theory.

The user interface for presenting the contour spectrum takes on two forms. For static imaging

data, a window presents a selected subset of the computed data characteristics in 1D plots. The

horizontal axis represents the isovalue dimension. The vertical axis represents the range of each

function, all of which are normalized for overlapping display. See Fig. 2.1 for an example. The user

may select a subrange of the isovalues for display in order to enhance the local detail in the computed

metrics. Vertical bars represent the current isovalues, which the user may change with a familiar

click-and-drag operation. With time-varying data, it is desirable that the user have the ability to

quickly browse all parameters of the visualization. In this case we use the vertical dimension of the

interface as an index into the time step of the data. Of course, while we usetime here as an example,
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Figure 2.2: Adaptive and Multiresolution approximation of the boundary of inclusions of a different

material, from the base embedding material. This multiresolution segmentation approach is based

on progressive isocontouring refined by edge bi-section.

other parameters may be varied similarly, such as input parameters to a numerical simulation. Using

this interface, each point in the 2D display maps to a number of functions. We selectively display

one function at a time by pseudocoloring of the function values over the 2D grid.

2.2 Hierarchical approach

Multi-resolution representations are a key tool used in image processing and visualization to achieve

real-time interaction with large data sets. A great deal of research has been focused on the off-line

construction of such representations mostly using decimation schemes. Drawbacks of this class of

approaches include: (i) the inability to maintain interactivity when the displayed surface changes

frequently, (ii) inability to control the correct embedding (no self-intersections) of any approxi-

mated level of detail of the output surface. In our paper [2], we introduce a technique for on-line

construction and smoothing of progressive isocontours. Our hybrid approach combines the flexibil-

ity of a progressive multi-resolution representation with the advantages of a recursive subdivision

scheme. Our main contributions are: (i) a progressive algorithm that builds a multiresolution sur-

face by successive refinements so that a coarse representation of the input is provided, (ii) appli-

cation of the same scheme to smooth the surface by mean of a 3D recursive subdivision rule, (iii)

a multi-resolution representation where any adaptively selected level of detail is guaranteed to be

consistently embedded in 3D space (no self-intersections).

3. Mesh Generation and Visualization

In a landmark paper, Catmull and Clark [3] described a simple generalization of the subdivision rules

for bi-cubic B-splines to arbitrary quadrilateral surface meshes. This smooth subdivision scheme

has become a mainstay of surface modeling systems. MacCracken and Joy [4] described a general-
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Figure 3.1: A ring modeled using MLCA subdivision with creases.

ization of this surface scheme to volume meshes. Unfortunately, little is known about the smooth-

ness and regularity of this scheme due to the complexity of the subdivision rules. Our paper [5]

presents an alternative subdivision scheme for hexahedral volume meshes that consists of a simple

split and average algorithm (MLCA = multi-linear cell averaging). Along extraordinary edges of the

volume mesh, the scheme provably converges to a smooth limit volume. At extraordinary vertices,

we supply strong experimental evidence that the scheme also converges to a smooth limit volume.

The scheme automatically produces reasonable rules for non-manifold topology and can easily be

extended to incorporate boundaries and embedded creases expressed as Catmull-Clark surfaces and

B-spline curves.

Our given scanned and segmented CT specimen (epoxy matrix with embedded glass spherical

inclusions) can be considered a cuboid inR3 with several spheres in the cuboid as inner boundaries.

We assume that these spheres do not intersect each other (see Fig. 3.2). The aim is to construct

Figure 3.2: The initial scanned and segmented specimen volume with sphere inclusions as inner

boundaries

hexahedral meshes that conform with these spheres and have certain specified adaptive features. For

instance, the part of the constructed hexahedral mesh that is close to the spheres may be required
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denser than the part that is away from the spheres.

Our algorithm utilizes the following theorem on hexahedral mesh construction.

Theorem 1 – Any simply connected 3D domain with an even number of quadrilateral boundary

faces can be partitioned into a hexahedral mesh respecting the boundary.

3.1 Mesh construction steps

In this section, we describe steps of the mesh construction with the help of 2D figures.

Step 1. Construct the 3D weighted Voronoi diagram from the center points of the spheres (see

Fig. 3.3). The weight of a sphere center is chosen to be proportional to the radius of the sphere.

Figure 3.3: Step 1: Partition the initial cuboidal volume by Voronoi cells. Each cell is a polyhedron

in 3D.

Step 2. Merge each of the short edges into one vertex. An edge is regarded as short if its length

is less than a user specified threshold value.

Note that this merging may eliminate triangles (see Fig. 3.5). Also note that this merging may

lead to the intersection between the boundaries of polyhedral cells and the surface of the spheres.

Hence, it is necessary to check that if the merging leads to the intersection. If such an intersection

happens when merging an edge, we do not carry out this edge merging. The aim of this step is to

avoid producing tiny hexahedral elements. Hence this step is optional.

Step 3. Quadrilateralize each face of Voronoi volume cells (see Fig. 3.6). For each Voronoi cell,

connect the center with the vertices and then form a pyramidal partition of the cell. Each pyramid
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Figure 3.4: Step 2: Partition each Voronoi cell into pyramids.

Figure 3.5: Step 2: Merging an edge leads to a collapse of a triangle.

Figure 3.6: Step 3: Subdivide each face polygon of the Voronoi cell into quadrilaterals. In the

figure, the empty dot is the centroid of the polygon, while the red dots are the mid-points of the

edges.
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is further subdivided into a hexahedral and another pyramidal cell by the surface of the sphere (see

Fig. 3.7). After this step, the surface of each Voronoi cells is a triangulated polygon. The inner

region of the sphere is partitioned into tetrahedra, the outer region of the sphere is partitioned into

prisms.

Figure 3.7: Step 3: Partitioning each Voronoi volume cell into prisms and tetrahedra.

Step 4. Adaptive subdivision of each cell in the radial direction. In order to avoid self-

intersection, the points around spheres may need to be moved outwards a little. The aim of this step

is to obtain adaptive meshes. Hence it is optional.

Figure 3.8: Step 4: Adaptive subdivision in the radial direction.

Step 5. Subdivide each prism into 3 hexahedra and split the tetrahedron into a hexahedron by
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adding three vertices on the edges and one vertex on the face (see Fig. 3.9–3.10). After this step,

each cell is partitioned into hexahedra (see Fig. 3.11)

Figure 3.9: Step 5: Subdivide a prism into 3 hexahedra and a tetrahedron into four hexahedra.

Figure 3.10: Step 5: Split a tetrahedron into a hexahedron by adding three vertices on the edges and

vertex on the face. The figure shows the three triangular faces of a tetrahedron and six quadrilateral

faces of a hexahedron.

Step 6. Smoothing the mesh produced by the last step using the MLCA recursive subdivision

scheme with restriction of keeping the shape of inner and outer boundaries. The smoothing is

conducted in three sub-steps.

A. Smoothing on the creases of the outer boundary.

B. Smoothing the inner and outer boundaries by 2D smoothing scheme with fixed vertices on

the creases.

C. Smoothing the volume with fixed boundary vertices.

118



Figure 3.11: Step 5: Subdivide each prism into 3 hexahedra and change each tetrahedron into one

hexahedron accordingly.

Figure 3.12: Step 5: Enlarged view of the center cell of Fig. 3.9.
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Figure 3.13: A final 2D quadrilateral mesh of the segmented image object with circular inclusions.

Figure 3.14: Cutaways of a 3D hexahedral mesh of a cuboidal domain of epoxy material with

spherical glass inclusions.

The aim of this step is to produce an improved quality finite element mesh. The smoothing could

be iterated several times. Since the shape of the inner boundaries is preserved, the mesh after

smoothing is still adaptive.

Step 7. Further refine the mesh using MLCA subdivision scheme with the constraint of keeping

the shape of the inner and outer boundaries. The aim of this step is to produce a sequence of meshes

that have hierarchical nature. From this set of meshes, one can choose the one that has the ideal

resolution.

Features of the Constructed Mesh. The mesh constructed is adaptive in the sense that it is denser

in all regions that are close to the sphere. The mesh density varies linearly decreasing away from

the spheres.

4. New Techniques

Our primary goal is to filter the noise from noisy manifolds, noisy manifold functions [6] and 3D

imaging data [7] at multiple scales, so as to improve segmentation and visualization. Our secondary

goal is to construct continuous (non-discretized) multi-scale representations for smoothed surface

geometries and segmented volumetric imaging function data.
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In paper [6] we treat discrete surface data (2-manifolds) inR
3 and function vector data defined

on the surfaces. A surface and aκ − 3 dimensional function vector data on the surface can be

considered as a discretization of a 2-manifold embedded inR
κ . We establish a unified anisotropic

diffusion model for such manifolds aiming at smoothing (fairing) out noise both in the 2-manifold

in R3 and the 2-manifold inRκ , while enhancing curve features on both 2-manifolds. We combine

theC1 limit function representation of Loop’s subdivision for triangular surface meshes and vector

functions on the surface mesh with anisotropic diffusion in a parameterized time setting, to arrive at

a sparse linear system of equations. Iteratively, solving the sparse linear system, yields a sequence

of faired (smoothed) meshes as well as faired functions with specified feature curves, enhanced. See

Figure below.

Figure 4.1: Smoothing the geometry of the model head of Picard (146,036 triangles). The second

and third figures are the meshes after 1 and 4 steps of smoothing. The time step is 0.001.

Our recent geometry driven anisotropic diffusion work on volumetric imaging data [7], is di-

rectly related with Preuber and Rumpfs level set method for anisotropic geometric diffusion in 3D

image processing. The core of their method is an evolution driven by geometric diffusion of level

surfaces. They construct anisotropic diffusion tensors based on prefiltered principal curvatures and

principal direction of curvature. Their main idea is to decrease diffusivity in the dominant princi-

pal curvature. Our method presented in [7] can achieve both feature enhancement and coherence

enhancement on the local structure, while decreasing the energy of the smooth image as well.

In [7], we construct 3D diffusion tensors by taking into account three directions of local struc-

ture.

The terms of the diffusion tensor are created with the following basic rules: If noise along the

normal direction is to be eliminated as well, this may be accomplished by encouraging diffusion

along the normal direction. The diffusion is larger at those locations which have larger likelihood
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Figure 4.2: (Left) The diffusion along the curve direction is a function of curvature of the local

structure. (Right) The diffusion along the normal direction is a function of gradient of local struc-

ture.

to be noisy, where the likelihood is measured by the gradient and choice of a suitable function

controlling the diffusion rate.

We are now attempting to apply the above 3D combined, filtering and segmentation, approach

to the scanned volumetric CT specimen (epoxy matrix with embedded glass spherical inclusions) to

yield better boundary and 3D finite-element meshes.

5. Concluding Remarks

We have developed and experimented with several 3D image processing, mesh generation and vi-

sualization support for CT imaging data as part of our effort to provide computational infrastructure

for the hierarchical models of heterogeneous materials project. Details of the intricacies of the

developed segmentation, meshing and visualization algorithms as well as results of our experimen-

tation have been summarized above. Further research is needed to determine full applicability of

using evolutionary time-based PDE approaches to both segmentation and noise reduction schemes.

The initial results look very promising.
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Figure 4.3: The left column shows an icosahedral isosurface of the function abs(x) + abs(y) +

abs(z) + noise, at different steps of the anisotropic diffusion process. The right column is the color

ramp from blue to red indicating the dominant curvature value.
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