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Abstract

In this paper we introduce by means of examples a new technique
for formulating compact (i.e. polynomial–size) LP relaxations in place
of exponential-size models requiring separation algorithms. In the
same vein as a celebrated theorem by Grotschel, Lov&sz and Schri-
jver, we state the equivalence of compact separation and compact
optimization. Among the examples used to illustrate our technique,
we introduce a new formulation for the Traveling Salesman Problem,
whose relaxation we show equivalent to the subtour elimination relax-
ation.
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1 Introduction

In the past few decades, Linear Integer Programming has emerged as perhaps
the most powerful technique for solving exactly difficult combinatorial prob-
lems. The approach relies on formulating a problem as the minimization
or maximization of a linear function over integer variables satisfying a set
of linear constraints. The Linear Programming (LP) Relaxation, consisting
in optimizing without requiring the variables to be integer, is polynomially
solvable, and its value is used as a bound in an implicit enumeration (branch
and bound) scheme. A formulation is as successful as the strength of its LP
bound. That is, if the value of the objective function over the relaxation is
close to the value over the integers, then the bound, and hence the pruning
of the search space, will be effective. The choice of a tight formulation is
therefore the key to an effective solution. Sometimes the tightest formula-
tions require a very large (exponential) number of constraints or variables. A
fundamental paper by Grotschel, Lovasz and Schrijver ([5]) states that even
if these LPs have an exponential size, this does not forbid their solvability in

polynomial time, provided that separation can be done in polynomial time.
Separation consists in solving the LP with only a polynomial subset of the
constraints, and then checking if any of the -exponentially many– constraints
that were left out is violated by the optimal solution. If this is the case, one
such constraint is found and added to the current LP, which is then solved
again. By using the ellipsoid method as the LP solver, Grotschel, Lovasz and
Schrijver showed that the above procedure converges in polynomial time.

In this work we show how oftentimes the whole process of iterating the

solution of several Linear Programs and the combinatorial algorithm for sep
aration can be replaced by the use of a suitable, single, polynomial–size (or,
as we shall call it, compact) Linear Program. This idea is not only inter-
esting from a theoretical point of view, but has also some useful practical
applications. For instance, many of the commercially available integer pro-
gramming solvers cannot be programmed or linked to user-developed code,
but rely instead on the solution of a given input formulation by means of
some general procedure (typically, a built–in branch and bound code en-
hanced by some general–purpose cuts). In particular, focusing on modeling
the problem with the right variables and constraints, and then letting the
package take care of the solution, is the approach typically used by engineers
working in industry, while more sophisticated applications are developed by
researchers in the academic world. If one gives up the possibility of writing
a procedure which alternates separation and LP–solution, he could be forced
to use inferior (weaker) formulations than others with exponentially many
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constraints. By using our approach, however, the separation algorithm can
be “hardcoded” into a polynomial number of new variables and constraints,
leading to a “static” LP–relaxation as tight as the “dynamic” one, requiring
separation on–line.

Another aspect worth mentioning is the following. Sometimes, the opti-
mization undergoes long runs of LP solution/separation in which the new-
found constraints affect only slightly the objective function. At the end, a
very large number of runs may have been required, resulting in a very large
running time. The contact map overlap problem (third example in this pa-
per) is an example of such behavior. When this is the case, it is very possible
that the solution of a single LP (altough bigger) may be faster than that
on many LPs. Furthermore, after years of refinements, state-of-the-art al-
gorithms are today known for the typical separation problems, which are
usually famous combinatorial problems such as shortest path and maximum
flow. Hence, there is probably not much to be expected in practical improve-
ments on those algorithms. However, many developments and increased in-
terest have recently been shown in speeding up traditional as well as new,
polynomial and non–polynomial, procedures for Linear Programming. Any
such improvements would translate in the speed–up of the compact version
of the relaxation vs. the one based on separation.

Finally, from a theoretical standpoint, it is interesting to note that, al-
though the issue is not usually addressed, polynomial convergence of the sep-
aration method relies on the ellipsoid algorithm for solving the LPs, which is
in practice never used. Our approach, however, does only require the use of
any polynomial algorithm for Linear Programming, such as the now widely
available interior–point methods.

2 Optimization and Separation

Let

be a formulation with an exponential number of constraints for an integer
programming problem. Let 1 be the index set for the rows of A. In a very

general way, we can usually partition the rows of A into two subsets: lP, a
family with a polynomial number of constraints, and 1., a family with an

exponential number of constraints. For instance, in the Traveling Salesman
Problemj 1P would consist of the degree constraints, while 1. indexes the
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subtour-elimination constraints. We can then rewrite the problem as

(1P) min c x
XGZ$

(2)

subject to
U~X > bi iEIp (3)

aix ~ bi i 6 Ie. (4)

Let us call P. the polyhedron defined by (3), (4) and x >0. An inequality
ax ~ b is valid for F’Z if is satisfied by each x 6 F!Z. In [5], Grotschel,
Lovasz and Schrijver show that (LP), the LP–relaxation of (1P), is solvable
in polynomial time provided that the following separation problem is solvable
in polynomial time:

Separation: Given a vector x* ~ R!, with six” > bi for i c lP, determine if
Z* c P. or find a violated valid inequality.

The proof in [5] relies on the ellipsoid method for Linear Programming.
Based on this technique, several works have appeared over the years using
tight LP-relaxations with an exponential number of constraints. Further-
more, by taking the dual of an LP-relaxation, the same technique can be
applied for solving models with an exponential number of variables, leading
to an approach known as branch–and–price. A separation problem is almost
invariably an optimization problem, whose optimal value is used to deter-
mine if Z* E F’Z, and whose optimal solution identifies a violated inequality.
Separation problems are typically solved by well–known polynomial combi-
natorial algorithms, such as shortest path, maximum flow, minimum cost
flow, and matching, bipartite and non. With the notable exception of the
nonbipartite matching, we noticed that the vast majority of these separation
algorithms can also be phrased and solved as Linear Programs. Our main
idea is to replace the exponentially many constraints in (4) with a polynomial

family 1; of new constraints, in the variables z and y (y being a new set of
polynomially many variables), which essentially represent an LP formulation
for the separation problem. That is, we suitably lijl the problem (LP) in the
(z, y) space, so that x*, the projection on the z-space of an optimal solution
(z*, y“), does not violate any of the constraints originally in (4). We therefore
obtain the following compact formulation:

(CLP) (5)

subject to

aix > bi iEIP (6)

5



a~x + a~y ~ b: i G 1;. (7)

This formulation has now a polynomial number of constraints and can be
solved in polynomial time. We call l?zv the polyhedron, in the (x, y) space,
defined by (6), (7) and x >0.

We now come to define the concepts of compact separation and compact
optimization, and prove that they are equivalent. Given the formulation
(LP), with an exponential number of constraints defining the polyhedron P.,
compact optimization is the existence of a polynomial–size Linear Program,
i.e. (CLP), defining a polyhedron” P ~Ywhose projection on the x–space is
equal to Pm. Compact separation is, loosely speaking, the possibility of stat-
ing a separation algorithm for (LP) as a polynomial-size Linear Program.
More precisely, we say that (LP) has a compact separation if there exist a
matrix D of size N’ x (n+ 1 + N“) and a vector d of size N’ x 1, such that

1.

2.

N’ and N“ are polynomial in n.

Let a vector x* G R$, with six* > bi for i ~ IP, be given. Then the
Linear Program (SEP), in the variables (a G Rn, b c R, w c RN”),
has an optimal value smaller than O if and only if x* violates some
constraints in 1.. In this case, a’z > b’ is a violated valid inequality,
where (a’, b’,w’) is the optimal solution of (SEP).

(SEP) minx* a–l. b

subject to

()
a

D. b > d.
w

(8)

(9)

We have the following

Theorem 1 For an exponential-size formulation (LP), compact optimiza-
tion is possible if and only if compact separation is possible.

Proof (ifi) Assume compact separation is possible. Since the optimal value
of (SEP) is equal to the optimal value of its dual, we formulate the dual and
force its value to be nonnegative (inequality (13)). This would correspond
to have all inequalities in I, satisfied. We therefore obtain the following
constraints, which are the family I; that, added to IP, yields a compact
relaxation of (1P). Note how x was replaced for x*.
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yD. <x (lo)

yDb<~ (11)

yDW<O (12)

yd>O (13)

where D = (D. ID, IDW).
(only it) Assume now that (LP) has a compact optimization like (CLP).

We can rewrite the constraints of (CLP) as

()(M?,) “ ; 29 (14)

for some matrix B = (.BZ113V)and vector g. Let F!Z be the polytope

defined by (LP), which is also the projection of the polytope defined by (14)
on the s–space. We are now going to describe a Linear Program that solves
the separation problem. Let x* c R; be given. z* c F’. iff (z*, y*) is feasible
for (14) for some y*, i.e. the following Linear Program has a nonnegative
optimum:

max A (15)

subject to

BEX* + Bvy – g > M (16)

where 1 is a vector of value 1 in each component. We can rewrite the
constraints (16) as

()(11 -B,)” ; <BZz* -g. (17)

By taking the dual of (15), (17), and introducing the new variables a c &

and b c 1?, we have that x* c F’Ziff the following LP has nonnegative optimal
value:

nj. ax” —b (18)

subject to
W1– WBV=(l IO.. .O) (19)

a = WBZ (20)

b = wg. (21)
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If this LP has negative optimum, then the optimal solution (a’, b’,w’)

identifies a valid inequality for F’= violated by x,*. To see this, note that,

since w’ >0 and, from (19), w’1 = 1, then W’(BZZ + BVy – g) >0 is a valid
inequality for (CLP). But, from (19), W’139 = O and hence the inequality
W’BZX > w’g, i.e. a’x > b’, is valid for F’,,; furthermore, it is violated by

z*. Hence, (18)–(19) constitute a compact LP formulation of the separation
algorithm, and the theorem is proved. o

Note that, although this is not required for the validity of our theorem,
it can be proved by projection theory
the inequality found by the compact
violated one.

(see Nemhauser and Wolsey [8]) that
separation algorithm is a maximally

3 Examples

3.1 The Minimum Routing Cost Tree Problem

The Minimum Routing Cost Tree (MRCT), [6, 4, 9], is a network–design
problem which can be stated as follows: Given an undirected graph G =
(V, E) with nonnegative lengths on the edges, find a spanning tree such that
the sum over all pairs of vertices of the length of the path connecting them
in the tree is minimized. Fischetti, Lancia and Serafini in [4] describe an
integer programming formulation with an exponential number of variables,
one for each possible path between two nodes. The model is then solved by
Branch–and-Price, and the pricing subroutine is a shortest path algorithm
for nonnegative lengths. We start illustrating our technique with this exam-
ple for two reasons. First, the MRCT shows how also a primal formulation,
with an exponential number of variables, can be modeled as a compact opti-
mization problem. The answer, of course, is to turn the exponentially many
variables into exponentially many constraints, by means of the dual problem.
To the dual, we then apply our technique. Secondly, we are going to use the
MRCT problem to derive a new 1P formulation of the TSP, as described in
the next section.

Let IVI = n, Il?[ = m, and V = {1,... ,n}. The length of an edge

e = {i, j } will be denoted as de. A pair of vertices is an edge of the complete
graph K. = (V, Ii). For a spanning tree T and a pair {i, j} E H of vertices,

d(i, j, 2’) is the length of the unique path connecting i and j in T. The routing
cost of T is defined as rc(T) := ~{i,j}en d(i, j, T). We want to determine a
spanning tree of minimum routing cost.

For each pair h = {i, j} E H, we denote by @ the set of simple paths in
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G between i and j. The set of all paths in G will be denoted by?. Since an
edge is also a path (of cardinality 1), we have E ~ P. For each path F’ 67,
we let dP := ~e=p de.

The MRCT problem is formulated as an integer program with decision
variables ZP, for F’ G ?, used to select a path between each pair of vertices.
The constraints are such that, in a feasible solution, the set {e G E I Z. = 1}
defines a tree. The LP–relaxation is the following:

(MRCT)

(22)

(23)

{e} (24)

(25)

The model has an exponential number of variables. In order to use our
technique, we first consider its dual. We define the following dual variables,
associated to the constraints (23), (24), and (25) respectively: uh, for h G It;
~eh, for e c E, h G H – {e}; and w. The dual of (MRCT) is the following:

(DMRCT) ~h>&~h20 ~(~h- ~ ~eh)+ (n-l) w
hcl_I PcPh–{h}

(26)
subject to

Ue + z veh+w <de e~E (27)
h.cn-{e}

Uh — E ‘?)& < dp hdI,P~Ph–{h}. (28)
eCP

A variable Zp, IPI >2 with negative reduced cost in (MRCT) corresponds
to a violated dual constraint (28). For a fixed h = {i, j}, define d: = ~eh+ de
for all e E ~. Since constraints (28) can be rewritten as uh < d~ for all

“h ~ II, P c Ph – {h}, the pricing algorithm in [4], consists in finding the
shortest i–j path in E – {h}, with respect to the costs d’, and checking if it
is shorter than uh.
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The shortest path algorithm for nonnegative lengths can be modeled as

a Linear Program as follows. For each pair h = {i, j}, i < j, we introduce a
variable g$ for each u < V, representing the length of the shortest i–u path
given d’ lengths. We have then the following constraints:

i<j (29)

i<j (30)

{u, v} E E. (31)

By

obtain

3.2

substituting constraints (29), (30) and (31) for constraints (28), we
a compact formulation of (DMRCT).

The Traveling Salesman Problem

The (symmetric) traveling salesman problem is perhaps the most famous
combinatorial problems in the literature. As before, we are given an undi-
rected graph G = (V, E) with nonnegative lengths de on the edges. A hamil-
ton tour is a cycle visiting each node in V exactly once. We want to determine
the hamilton tour of smallest length.

3.2.1 The subtour-elimination relaxation

The standard 1P formulation for the STSP problem is based on binary vari-

ables zii,j] for each edge {i, j} c E. For a subset of vertices S c V, let
6(S) denote the set of edges with one endpoint in S and one out of S. The
O(n) degree constraints (33) force each node to be entered and exited exactly
once by a feasible solution. However, without the 0(2n) subtour–elimination
constraints (34), an integer solution could consist of a set of disjoint cycles.

(TSP - SE)

The standard way of separating inequalities (34) is via the solution of

O(n) maximum flow problems (see, e.g., Cook et al. [3]). Namely, for a
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fractional solution x*, direct each edge {i, j} in the two possible ways creating

the arcs (i, j) and (j, i), each with capacityz;i,j}. Let ~be the set of arcs
createdthis way.Since in (34) it is enough to consider only sets S # V such
that 1< S, there are no violated constraints (34) if and only if the maximum
flows from 1 to each other vertex in V has value at least 2. It is well known

that the maximum flow problem can be modeled as a Linear Program. To
this end, define variables yfij) to represent the flow from node 1 to node u,
traveling on the arc (i, j), for all u G V – {1} and (i, j) c A. We have then
the following constraints (35), (36), (37) which can be substituted for (34)
in (TSP-SE) to obtain a compact formulation of the Symmetric Tkaveling
Salesman Problem equivalent to the subtour–elimination relaxation.

‘. . < z{~,j}qi,j)+ ?&z) u~V–{l}, {i, j}~E (35)

E ?J;J)- ~ !J/j,) = o Ucv-{l}, iev-{l, u} (36)
(i,j)~A (j,i)6A

x Vl,j) - E Y&,l)~ 2 u ~ v - {1}. (37)
(l,j)6A (j,l)EA

3.2.2 A new 1P formulation

As for the MRCT problem, we define a variable XP for each simple path P in
G. The following constraints force the set {e G Elz. = 1} to be a hamilton
tour, and Xp = 1 iff E’ is a path contained in this cycle.

(TSP - PF) min ~ dez~
eCE

(38)

subject to

E xp>2 h~ll (39)
p~ph

x Xp < Xe e< E,h~13 -{e} (40)
PCPh:P3e

z xe=n (41)
e&@

Xe c {0,1}, Zp 20 e~E, PeP– E. (42)

We call this formulation for the STSP the path formulation. If we con-

sider the LP–relaxation of the path formulation, it can be solved, similarly
to the MRCT problem in [4], by using the shortest path algorithm as the
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pricing subroutine. By taking its dual, we can obtain, as in section 3.1, a

compact formulation of the LP relaxation for this new model of the STSP.
The strength of this model, however, turns out to be exactly the same as
that of the subtour-elimination relaxation.

‘Theorem 2 The LP-relaxation of the path formulation and subtour elimi-
nation have the same value.

Proof Call zs the value of the (LP–relaxation of) the subtour elimination
and Zp the value of the path formulation. By using the Flow Decomposition
Theorem (Ahuja et al., [1]),stating that any u–v flow is the sum of a set of
u–v paths, a solution of (TSP-SE) can be mapped into a solution of (TSP-
PF) of the same value, and conversely. Let z,, e E E, be a solution feasible
for (TSP-SE). Since Z. is feasible for all constraints (34), the maximum flow
from each u c V to each v e V in the network with capacities z, is at least 2,
and, by the flow decomposition theorem, there are paths P, with values that
we denote by Xp, adding up to at least 2. Furthermore, by adding (33) for all
nodes we get (41). So, (Ze, Zp) is feasible for (TSP-PF) and hence Zp s zs.
Similarly, given a solution (z., ZP) to (TSP-PF), it is not difficult to see that
its projection Xe, e c E, is feasible for (TSP-SE), and hence Z.Ss Zp. o

By some preliminary testing, it appears that the compact formulation for
(TSP-SE) is solved faster (by using CPLEX) than that for (TSP-PF). How-
ever, (TSP-PF) may lead to a stronger bound, by replacing constraints (39)
with

x xp=2 hell. (43)
PGPh

The problem in doing so, is that the pricing algorithm would become the
shortest path in a graph with positive and negative-length edges. We have
not been able to prove that there would not be negative-length cycles, and
so the relaxation with = 2 in place of ~ 2 may in fact be NP-complete to
optimize. Note that changing ~ 2 with = 2 in (TSP-SE) would not lead to
a valid formulation of the STSP.

3.3 Non–crossing Matchings

Given two ordered sets VI = {vl,. . . . Vn,} with VI < . . . < Vn, and Vz =
{U,,..., un, }withul<... <un,, a non–crossing matching of VI and V2 is a
matching in the complete bipartite graph B = (Vl U V2,VI x V2) such that, if

#
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vi is matched with uj and v~ is matched with u~, then either k < i and h < j
or k > i and h > j. For simplicity, we can assume VI = V2 = {1,. ... n} and
introduce variables ~ij such that xij = 1 iff vi is matched with uj. Then, the
non–crossing constraints are of the form

If we draw Bin the customary way, with VI on the left and V2 on the right,
a noncrossing matching can be seen as a set of non–crossing line segments
between VI and V2. Denote a generic such line by [i, j]. If G’ the graph in
which each node corresponds to a line of B and two nodes are connected if
the lines do not cross, a set Q of lines which are all mutually crossing is a
clique in G’. Hence, we can strengthen inequalities (44) to (45), called clique
inequalities:

z X~j <1 for all Q cliques in G’. (45)
[ijj]~~

Non–crossing matchings appear as part of the model for many combinato-
rial optimization problems. In particular, in the field of Molecular Computa-
tional Biology, many problems require to align some genetic data, like DNA
or protein sequences, or 3–dimensional folds of proteins. In an alignment,
given two objects (e.g., DNA fragments) comprised of linear arrangements
of simpler units (e.g., nucleotides), we seek a mapping of some units of one
object into the other, which respects the linear orderings. Lenhof, Reinert,
and Vingron [7] give an integer programming formulation for RNA multiple
sequence alignment, which contains non–crossign matchings as part of the
model. Carr, Lancia and Istrail [2], use non–crossing matching to model some
of the variables for an 1P formulation of the Contact Map Overlap problem.
A contact map is a representation of the 3D folding of a protein as a graph, in
which each amino acid corresponds to a vertex, and there is an edge between
two amino acids if their distance is smaller than a given threshold when the
protein is folded. Given two contact maps, the contact map overlap problem
consists in finding a non-crossing matching between the amino acids which
identifies the largest common subgraph in the two maps.

Carr, Lancia and Istrail in [2] prove that G’ is a perfect graph, and give
an O (n2) algorithm for separating the clique inequalities (45). The details of
the algorithm are somewhat complex and can be found in [2], while here we
will only sketch the main ideas. What is most interesting in the contest of
the present paper, however, is the fact that this separation algorihtm, as well
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as many others in the literature, is based on dynamic programming. Since
dynamic programming can always be thought of as a shortest path problem
on a layered graph, it can be cast as an LP, and hence is suitable for our
technique of compact formulations.

A triangle in B is a set of lines originating from a common point u, on
one side of B (i.e., VI or V2), and ending in a range i, i + 1, ..., j on the
other side. Leta1<a2< . ..<a~c Vl and c1>c2>. ..>ch<V2, with

Ih – kl S 1. Connecting alto c1 to az to C2..., we obtain a “zigzag” path P in
B (similarly, the path could start from cl, to al, to Cz,...). It is shown in [2]
that the union of the triangles with tip in G and base ai, a~+ 1, ..., az+l or tip
in aj and base cj, cj + 1, . . . , Cj–l is a cliquein B, and all cliques are of this
form. Further, for a maximal clique it is always al = 1, a~ = n and c1 = n,
c~ = 1. Orient each line [i, j] c B, z ~ V1 and j G V2, in both ways, obtaining
the arcs (i, j) and (j, i). Then arc lengths 1+ (i, j) and 1+ (j, i) can be defined
(see [2] for details) as suitable sums of some z-variables, depending on i and
j, so that the length 1+ (al, cl)+ 1+ (cl, a2) + 1+ (az, C2)+... of a zigzag path
is equal to the z–value of the clique it individues. Hence, to find the most
violated clique inequality, we look for the longest zigzag path. Such path can

be found by solving the following dynamic programming relations:

V(i, j,a) = max{l+(i, j) + V(i + l,j, +), V(i, j + l,+)} (46)

V(Z, j,+) = max{l+(j, i) + V(i, j + 1,~), V(i+ l,j,~)} (47)

where V(Z, j, ~) is the length of a longest zigzag path starting at i ~ V1
and using nodes of V2only within n–j+l, n–j, . . . , 2,1. Similarly, V(i, j, -)
is the length of a longest zigzag path starting at n – j + 1 c V2 and using
nodes of VI only within i, i + 1, ..., n.

The boundary conditions needed are the values of V(n, n, ~) = Z+(n, 1)
and V (n, n, ~) = l-(1, n). The recurrence can be solved backwards from
(n, n), in time 0(n2). At the end, the maximum between V(I, 1, ~) and
V(l, 1,+) is the length of the longest zigzag path.

Define variables @ and y; to represent V(i, j, +) and V(i, j, ~) respec-
tively. We have constraints

g== Z+(n, 1) (48)

Y,; 2 L(i.1) + Y,:l,j iCVl, jcVz, i<n (50)
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Constraints (54) and (55) force all zigzag paths to have length less than

one. Constraints (48) and (49) are the boundary conditions, while (50),
(51) and (52), (53), implement (46) and (47) respectively. Together, con-
straints (48)–(55) can be replaced for the exponentially many clique inequal-
ities (45) for a compact formulation in all LF’s which have non-crossing
matchings as part of the model.

4 Conclusions

This paper introduces a formal setting, compact optimization and compact
separation, for the formulation of polynomial-size LP relaxations of integer
programming models with an exponential number of constraints or variables.
We have shown by means of some examples how this can be done. Most
known exponential 1P formulations can be cast this way. However, there is a
major exception: we have not been able to formulate a compact separation
of the weighted, non-bipartite, matching problem, and in fact we conjec-
ture that no such compact separation is possible. This is unfortunate, since
otherwise it is possible that a strong theorem can be proved, analogous to
Grotschel, LOV6SZand Schrijver, that is, optimization is possible if and only
if compact separation is possible. In a sense, this would also have provided
a simpler proof of Grotschel, Lov&z and Schrijver’s theorem.

One of the examples presented here, introduces the path formulation of
the symmetric TSP. We have shown how its LP relaxation has the same value
of the subtour–elimination relaxation. We intend to investigate on a possible
tightening of the path formulation which may lead to a better bound.
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