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CONSTRAINED WALKS AND SELF-AVOIDING WALKS:
IMPLICATIONS FOR PROTEIN STRUCTURE DETERMINATION

JEAN-LOUP FAULON*, MARK D. RINTOULt , AND MALIN M. YOUNGf

Abstract.

While the protein folding problem on lattices is known to be NP-hard, we prove in this paper

that lattice protein structures of size n matching specific lists of O(n) distance constraints can be

determined in linear time on 2D honeycomb, 2D square, 3D diamond and 3D CUM]Clattices.
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1. Introduction. A protein is a heteropolymeric chain of amino acids that folds

into a complex three-dimensional native structure. The structure of a protein is

intrinsically related to its biological function(s). In the human cell, for example, some

100,000 proteins form the architecture of the cell and carry out its metabolism. With

the amount of genomic information currently being generated, there is great interest

in the development of high-throughput methods for determining the structures of the

encoded protein products.

Experimentally determining the structures of all of these proteins is simply not

possible for the foreseeable future even with advances in X-ray crystallography and

NMR spectroscopy. Many proteins cannot be crystallized and both experimental

techniques require 10-100 milligrams of pure materials and take months to years to

elucidate a structure. Thus, many researchers are pursuing alternative computational

approaches.

Sequence alignment, fold recognition and homology modeling approaches make

predictions based on the similarity between a sequence of unknown structure and the

database of known protein structures. Although these approaches are quite successful
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at predicting and modeling structures when there is sufficient similarity to a known

structure, they become unreliable in the absence of such simih-i.rity[Daune1999]. Ab

initio structure prediction techniques, because they aim to predict the structure of a

protein from its amino acid sequence alone, can be used for structure prediction in

situations where there are no homologs of known structure. However the accuracy of

ab initio techniques, with a few notable exceptions, remains quite low[Duan 1998].

Prom the aforementioned observations, it becomes clear that the development

of computational methods to calculate structure from sequence is more important

than ever. Exhaustive search of a protein’s confirmational space is clearly not a fea-

sible algorithmic strategy. The number of possible conformations is exponential in

the length of the protein sequence. Instead, computational models of protein fold-

ing have been formulated to find the global minimum of a potential energy function.

Thus, the protein foldlng problem has been formalized as a global opttilzation prob-

lem. Computational complexity results and approximate solutions to the protein

optimization problem have been derived both in continuous and discrete spaces. In

continuous space, solutions are based on distance geometry [Crippen 1988], while in

discrete space, solutions have been proposed using lattice models[Fraenkel 1993]. lJn-

fortunately, in both cases, the protein optimization problem has been proven to be

strongly NP-hard[Saxe 1979, Mor6 1995, Hart 1997].

Although protein foldhg is strongly NP-hard, this fact does not prevent the

problem to be solvable in polynomial time when restrictions are applied. In fact,

as shown in Crippen and Havel[Crippen 1988], if all pairwise distances between the

amino acids are known and a solution exists, then protein folding can be solved in

polynomial time using distance geometry. The solution involves the computation of

the largest three eigenvalues and eigenvectors of a specific distance matrix. However,

compiling n(n – 1)/2 pairwise distances for a protein of size n requires an experimental

effort that is as costly as to elucidate protein structures dliectly from NMR or X-ray

crystallography data.
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Recently, a rapid experimental protocol for protein structure determination has

been proposed[Young 2000]. The technique, called MS3D is based on cross-litilng

technology and mass spectrometry. The protocol requires 3-4 days and less than 100pg

of protein and provides low-resolution “interatomic dk.tance information. While cur-

rent cross-linklng technology limits the number of distance information to about n/3,

experimentalists anticipate that this technology coupled with combinatorial chemistry

techniques will lead in the near future to a number of dktance information close to n.

The obvious question is then: Is it at all feasible to elucidate protein structures using

only O(n) distance information ?

This paper demonstrates that on the usual 2D and 3D lattices protein structures

can indeed be retrieved in polynomial time when at most n specific pairwise distances

are provided. More precisely, we represent protein structures by self-avoiding walks

on lattices, and prove in section 2 that for the 2D honeycomb, 2D square, 3D diamond

and 3D cubic lattices there exist sets of distrmce constraints, named canonical distance

lists, for which there is only one corresponding walk or self-avoiding walk. In section

3 we give algorithms for the 3D lattices that constructs walks and self-avoiding walks

from given canonicaJ distance lists. We also prove our algorithms to run in liiear time.

Finally, in section 4 we give algorithms for the 3D lattices that compiles canonical

distance lists using a linear number of distance measurements.

2. Unique representation for walk and self-avoiding walk. In the follow-

ing, L is an infinite lattice embedded in the Euclidean d-dimensional space, R is the

set of reals, and Z is the set of integers. Let z be a site of L, w(z) are the Eu-

clidean coordinates of site x. We assume that neighboring sites are equidktat, that

is, for all closest neighbors y of site z we have [u(z) – u(y) I = 1 where I I denotes

the Euclidean norm. Examples of lattices verifyhg the equidistance constraint are

honeycomb, square, diamond, and d-dimensional cubic lattices.
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DEFINITION 2.1. A n-step walk, W, on L, beginning at the origin, is a sequence

of vertices U(O),w(l),..., w(n) with w(O) = O and \w(i)– u(i – 1)1 = 1 for 1< i < n

DEFINITION 2.2. A n-step se~-avoiding walk, SAW, on L, is a n-step walk on L

verifying w(i) # w(j) for all pairs i # j in [0,..., n].

DEFINITION 2.3. Two n-step walks WI and W2 on L are said to be tsomoryhic
. ........

iff a combination, x, of translations, rotations, and reflections of L can be found such

that m(W1) = W2. The dejhition naturally eztends to SAW’s.

DEFINITION 2.4. A m-distance list, D, associated to an n-step walk W is a se-

quence of m triplets (i, j, dij) where w(i) E W, w(j) c W, and dij E R.

.

..........

DEFINITION 2.5. Given W a n-step walk on L and D an associated m-distance

list. W is a m-constrained, n-step walk on L, ig for all triplets (i, j, dij) in D,

Iw(i) - w(j)! = dij. The definition naturally extends to SA W’s.

DEFINITION 2.6. A m-distance list, D, is said to be W-canonical zff there is only

one m-constrained n-step walk on L corresponding to D. The definition naturally ex-

tends to SA W’s, where D is then said to be SAW-canonical.

2.1. Lattice coordinates. Prior seeking a unique representation for walk and

self-avoiding walk, it is necessary to define more precisely the four lattices we are

considering. These are 2D honeycomb, 2D square, 3D diamond and 3D cubic. In

order to compute cartesian coordinates on these lattices we arbitrarily place the origin

of our Euclidean space at specific lattice sites as described in Figures 14. For any

given lattice site x we then define some subset of the operators L, R, U, D, F, and B

depending on the coordination number of the lattice. These operators return different
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neighbors of z. The operators are defined next for each lattice considered.

2.1.1. L = 2D honeycomb lattice. For the honeycomb lattice we define only

the functions L, R, and U. The functions are defined indirectly using the Euclidean

coordinates of their images. As can be seen in Figure 1, the sites x on a honeycomb

lattice fall into two dktinct sets, based on the positions of their neighbors. We define

set A as {z Iw(z) . (O,1) = 3k/2, k G Z}, and set B as {zlz # A}. Using our orientation

in Figure 1, set A contains the sites that have a neighbor directly below, and set

B contains the sites that have a neighbor directly above. We define the operators

separately for the two sets as:

-XEA

u(L(x)) = U(Z) + (–@2, 1/2); @(z)) = W(X) + (@2, 1/2);

U(u(z)) = u(x) + (o,–l).

-XEB

u(L(z)) = w(z) + (–J5/2, –1/2); u(R(z)) = W(Z) + (ti/2> –1/2);

W(u(x)) = u(z) + (o,1).

2.1.2. L = 2D square lattice. For the square lattice (cf. Figure 2) we define

the functions L, R, U, and D with their associated Euclidean coordinates:

u(L(z)) = (.4X) + (–1,0); @(z)) = u(x) + (1,0);

LiJ(u(z))= u(x) + (o,1); w(D(x)) = u(z) + (O, –l).

2.1.3. L = 3D diamond lattice. For the diamond lattice we define the func-

tions L, R, U, and D. As one can see in Figure 3, the sites on the diamond-lattice

fall into two distinct sets based on their neighbor environment, just like the 2D hon-

eycomb lattice. We define set A to be {zIw(z) . (1, O,O) = 2k~, k 6 Z} and B to be

{XIX @ A}. For the two sets, we define the operators as:

-XCA

u(L(x)) = (J(X) + (@, O,–~); u(R(z)) = U(Z) + (@, O,@);
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L@(x)) = w(z) + (–@, @p, o); f-d(l)(z)) = L@) + (–~, –@, o).

-XCIB

LIJ(qz)) = L@) + (+ip,o, –@p); L@(z)) = (J(Z)+ (+ip,o, @);

L4J(u(z)) = f.d(z) + (@, @i, o); L@(z)) = L@) + (~, –J2p, o).

Note that for all lattice sites Z, we have: u(R(L(z))) = w(z), w(L(R(z))) = u(z),

w(U(.D(Z))) = u(z), and u(D(U(Z))) = u(z). These relations define operator inverses

for all of the operators, and we will take advantage of this during later proofs. We

also note that for a point in set & all of its neighbors belong to set B, and vice versa.

2.1.4. L = 3D cubic lattice. For the cubic lattice (cf. Figure 4) the functions

L, R, U, D,F, and B are:

u(L(z)) = w(r) + (–1,0,0); u(R(z)) = (@) + (1,0,0);

LJ(U(Z))= w(z)+ (o,1,0); u(D(z)) = ~(x) + (0, –1,0);

w(F(z)) = w(z) + (0,0, 1); W(B(Z)) = U(z) + (0,0,–l).

2.2. Unicity theorems. The series of theorems that follows defies canonical

representations for walks and self-avoiding walks on honeycomb, square, diamond and

cubic lattices.

THEOREM 2.7. On the honeycomb lattice the following distance list is W-canonical.

D = d2, d3,..., d~, where

di =

with

(i, i-2,0), or
(i, i – k~,O), or
(i, i – ki, ti), Or
(i, i – ki,2), Or
(’i,’i – ki, /7), or
0, otherwise.

ki={~ink C[3,..., n]s..t. i-k~O, w(i-k)# u(i-l), andw(i-k)#w(i-2)

Prooj We prove by induction that there is only one walk W corresponding to

D. Let us first notice that for a zero-step, or a one-step walk, D = 0. The theorem

6

—



,

is true since on the honeycomb lattice there is only one non-isomorphic walk having

zero or one step.

We now assume the theorem is true up to step i – 1, that is, there is only one walk

corresponding to the list dx, d3, ..., di-l. We need to prove that given di there is only

one location for step i. If di = (i, i – 2, O) then step i is uniquely located and has the

same location than step i – 2, i.e., w(i) = w(i – 2) (cf. Figure 5a). All other distances

use step i – ki, which is.the last step on the walk u(O), u(1),... ,w(i – 1) at a different
:-:.----

location than steps i – 1 and i – 2. If di = (i, i – k~,O) then step i is uniquely located

and ti(i) = w(i – ki) (cf. Figure 5.b). Without loss of generality, we now assume that

the lattice site corresponding to step i – 1 is an element of A. (the reader can verify

that the remaining of the proof holds true when 2/3 (w(i – 1). (O,1) – 1) E Z). There

are three possible locations for step i – 2, these are o(i – 2) = w(l?(i – l)), u(i – 2)

= w(L(i – l)), and w(i – 2) = u(~(i – l)).

We first treat the case u(i – 2) = u(ll(i – l)), which is depicted in Figure 5.

Ifdi = (i, i–lq, W), then the path between steps i – ki and i is of length 2

(cf. Figure 5.b). Since step i – 1 is neighbor of step i and since-step i – 1 is in the

path between i – ki and i, we have @(i – ki) = u(U(i - 1) (ssin Figure 5.b), or

w(i – ki) = w(L(i – l)). From the definition of k~we cannot have u(i – k~) = w(i – 2)

= w(l?(i – l)). It is then obvious that w(i) = w(L(i – 1)) if u(i – ki) = @(i – 1),

and u(i) = @Y(i – 1))otherwise. Note that w(i) # ti(lt(i – 1)) since we have w(i – 2)

= w(R(i – 1) and we already have eliminated the case w(i) = w(i – 2) (i.e., di =
.>.;: (i,i - 2,0)).

If d, = (i, i - ki, 2) then according to Figure 5.c, we have w(i) = w(U(i - 1))

if u(i – ki) = u(l?(i – 2)), and u(i) = w(L(i – 1)) if w(i – k~) = oJ(U(i – 2)). For

di = (i, i – ki, W), we have w(i) = w(L(i – 1)) if w(i – ka) = u(ll(i - 2)), and u(i)

= w(U(i – 1)) if w(i – ki) = ~(U(i – 2)).

Finally, if di = 0 none of the other values for d~ have been found. In particular,

ki was not found such that the location of step i – ka differs from the locations of
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steps i – 1 and i – 2. Consequently the walk W up to step i – 1 occupies only two

adjacent lattice sites. Step i can be located at three different locations u(~(i – 1)),

w(L(i – l)), and w(l?(i - l)). The case u(i) = w(ll(i – 1) is eliminated since w(i– 2) =

w(L(i – 1) and di # (i, i – 2, O). It is easy to verify that the two remaining cases lead to

isomorphic walks. Consequently, there is only one non-isomorphic walk corresponding

to di = 0.

........

.::::....

We have thus proven that there is only one walk up to step i corresponding to

the list of distances d2, d3, ..., di in the case #(i – 2) = w(l?(i – l)). The reader can

verify that a similar conclusion can be drawn for the two cases u(i – 2) = w(L(i – l)),

and oJ(i – 2) = w(U(i - l)). U

COROLLARY 2.8. On the honeycomb lattice the following distance list is SAW-

canonical. D = d3, d4,. ... &, where

{

(iji –3,2), or
di = (i, i – 3,/7), or

0, otherwise.

Proof. Let us first notice that for a zero-, one-, or two-, step walk D = 0. The

corollary is true since on the honeycomb lattice there is only one non-isomorphic

SAW having zero, one, or two steps. The corollary is then proven by induction us-

ing the same technique tham for Theorem 2.7. Note that di takes only three values

here. Because sites cannot overlap with SAW we necessarily have IG = 3 (cf. The-

orem 2.7 for definition of kz). Hence, di = (i, i - 3,2) correspond to (i, i - ki, 2)

and di = (i, i — 3, W) correspond to (i, i — ki, J?’). The cases dz = (i, i -2, O),

di = (i, i–ki, O), and di = (i, i–ki, @ are not present here because they all implies

non SAW. D
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THEOREM 2.9. On the square lattice the following distance list is W-canonical,

D = d2, d3,..., d~, where

{

(i, i – 2,0), or
(i, i – 2,2), or

di = (iji – ki, h),
(iti - k~,@7Z), ~;
0, otherwise.

with

k~ ={ mink E [3,..., n] s.t. i–k ~ O, lU(i–k+2)-u(i-k)l # O, and

lw(i-k+2) -u(i-k)\ #2}.

andh = l~(i–l)–~(i–ki+ l)l. Note: ki is the last step on the walku(0), w(l),.. . ,w(i–

1) that does not fall onto the straight line going through w(i – 2) and w(i – 1).

Proof. We prove by induction that there is only one walk W corresponding to D.

Let us first notice that for a zero-step, or a one-step walk D = 0. The theorem is true

since on the square lattice there is only one non-isomorphic walk having zero or one

step.

We now assume the theorem is true up to step i – 1, that is, there is only one

walk corresponding to the list d2, d3, ..., di_l. We need to prove that given di there

is only one location for step i.

If di = (i, i – 2, O) then step i is uniquely located and has the same location than

step i – 2, i.e., w(i) = u(i – 2) (cf. Figure 6a).

If di = (i, i – 2, 2) then step i is uniquely located using the following formula. If

A is the operator defined by u(i – 1) = w(A(i – 2)) then u(i) = w(A(i – l)).

The two next distances make use of step i - ki. We fully develop the case cor-

responding to the orientation (1) of vector [u(i – 2), w(i – 1)]. This case is depicted

in Figure 6.b. The reader can verify that all other cases lead to the same conclusion.

The four possible locations for step i are u(L(i – l)), w(ll(i – l)), w(U(i – l)),and

~(D(i – 1)). Positions u(L(i – 1)) and w(Z?(i - 1)) are eliminated since they corre-

spond to the respective di values (i, i – 2, O) and (i, i – 2, 2). Recall that i – ki does

not fall on the straight line going through w(i – 2) and w(i – 1), therefore, w(i – ki)

= u(U(i – ki + 1))or w(i – ki) = u(D(i – ki + l)).
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Let A be the operator defined by u(i - ki + 1) = oJA(i – ki)). Then, from

Figure 6.b we can see that if d; = (i, i – ki, h), u(i) = W(A-l (i – 1). Otherwise, if

di

ki

= (i, i - ki, ~~), then ~(i)= u(A(i - l)).

Finally, if di = @ none of the other values for di have been found. In particular,

was not found such that the location of step i – ki does not fall on the line going

through steps i – 1 and i – 2. Consequently, the walk W up to step, i – 1 is limited to

a straight line. If A is defined to be w(i - 1) = u(A(i – 2)), then w(i) # w(A(i – 1))

or w(i) # W(A-l (z – 1)) since those values are covered by the cases di = (i, i – 2,2)

and di = (i, i – 2, O), respectively. The other two directions (both perpendicular to

the existing walk) lead to isomorphic walks which represent the one allowed walk

corresponding to di = 0.

We have thus proven that there is only one walk up to step i corresponding to

the list of distances d2, d3,..., di in caSe (1) (i.e., w(i – 1) – w(i – 2) = (1, O)). The

same conclusion can be drawn for the cases (2),(3) and (4). Cl

COROLLARY 2.10. On the square lattice the following distance list is SAW-

canonical. D = d2, d3, ..., dn, where

di =

with

(i,i– 2,2), or
(i, i – kilki – 2), or
(i, i - ki, ~~), or
0, otherwise.

ki={min k~[3,..., n]t.i. i- kzO, @(i-k +2)-w(i-k)l#0, and Iu(i–k+

2)–w(i–k)l #2}.

Proof The corollary is proven using the same technique than for Theorem 2.9,

and using the fact that for SAW we have h = ki – 2. Also, note that di # (i, i –“2, O)

since overlap are not allowed with SAW. Cl
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THEOREM 2.11. On the diamond lattice the following distance list is W-canonical.

D = d2, d3,..., d~, where

{

(i, i–2,0), or
(i,i -3, ~), or

d,= (i, i – k~,h), or
z (i, i - k~,~-)j or

(i,i - k~,{-), or
0, otherwise.

with

ki ={ mink c [4,..., n] s.t. i – k ~ O, lw(i – ki + 2) – o(i – ki)l # 0, and

@(i- ki+3) -w(i - ki)l # ~},

andh = lu(i–k~+ 1) –w(i– 1)1.

Note: ki is the last step on the walk w(0), w(l),..., w(i – 1) that does not fall onto the

plane going through w(i – k~+ 1), w(i – k~+ 2),..., w(i - 1).

PI-oo~ We prove by induction that there is only one walk W corresponding to

D. Let us first notice that for a zero-step, or a one-step walk D = 0. The theorem is

true since on the diamond lattice there is only one non-isomorphic walk having zero

or one step.

We now assume the theorem is true up to step i – 1, that is, there is only one

walk corresponding to the list dz, d3,. ... di–l. We need to prove that given di there

is only one location for step i. If d; = (i, i – 2, O) then step i is uniquely located and

u(i) = w(i– 2). Ifdi = (i, i– 3, m) then step i is uniquely located. To find

the location of w(i), we first define the operator A as w(i – 2) = w(A(i - 3)), then

w(i) = w(A(i – 1)). Physically, this is fairly clear since it just means that to travel

a distance ~ (the maximum distance one can travel on the unit dkunond lattice

in three steps), one must go in the same direction as the first step.

All other distances use step i–kz, which is the last step on the walk w(0), w(l), . . ..

w(i – 1) that does not fall onto the plane going through w(i – ki + 1), w(i – ki + 2),. . ..

w(i – 1). We divide the proof into two cases. First, for ki even, and then for ki odd.

For both cases, we define the operator A as w(i – ki + 1) = w(A(i – ki)).

An example case for ki even is shown in Figure 7.b. All of the points shown lie
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in a plane, except for i and i - ki. If both points are above or below the plane, then

they lie a distance h apart, while if they lie on opposite sides of the plane, they are a

distance ~- apart. From the diagram, one can see that if di

w(i) = w(A-l (i)), while if di = (i, i – ki, ~-), w(i) = ti(A(i)).

= (i, i –k~, h),

A typical case for ki odd is outlined in Figure 7.c. We have the same situation as

in ki even in which all of the points lie in the plane except for i and i - ki. If both

points are above or below the plane, then they lie a distance ~q, while if they

are on opposite sides of the plane, they are a distance ~- apart. In this case,

if di = (iji —ki, x), ‘(i) = ‘(A-l (i))~ ‘bile ‘f ‘i = (iii - ‘~>~),

w(i) = u(A(i)).

Finally, if di = 0 none of the other values for di have been found. In particular,

ki was not found such that step i – ki does not fall onto the plane going through

u(i – ki + 1), w(i –ki +2),..., w(i – 1). This implies that all of the steps up to i – 1

are in a plane. However, the two cases corresponding to i lying” in the same plane

have already been considered by the cases di = (i, i – 2, O) and di = (i, i – 3, ~).

If w(i – 2) = w(A(i – 3)), then the two cases already considered correspond to the

cases w(i) = U(A–l (i – 1)) and u(i) = w(A(i – l)), respectively. There are tectilcally

two different cases left, but they are isomorphic. They both correspond to the walk

leaving the plane in either the up or the down direction relative to the plane. Since

they are isomorphic, we have uniquely located point i up to isomorphisms. It is simply

located at one of the two directions from i – 1 not corresponding to either A(i – 1)

or A-l(i – 1).

We have thus proven that there is only one walk up to step i corresponding to

the list of distances d2, d3,.. ., da. Cl
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COROLLARY 2.12. On the diamond lattice the following distance list is SAW-

canonical. D = d3, d4,. ... dn, where

{

(i,i -3, ~), or
(i, i – ki, kz –2), or

di = (i, i – ki,~k~ – 4ki +8/3), or

(i, i – ki, ~k~ – 4k~+ 16/3), or
0, otherwise.

with

k~={7nink G[4,..., n]s.t. i–k~o, /u(i–ki +3)–kJ(i-ki)l #@}.

Proof Let us first notice that for a zero-, one-, or two-, step walk D = 0. The

corollary is true since on the diamond lattice there is only one non-isomorphic SAW

having zero, one, or two steps. The corollary is then proven by induction using the

same technique than for Theorem 2.11. Note that with SAW we have h = ki – 2 and

di# (i, i–2,0). II

THEOREM 2.13. On the cubic lattice the following distance list is W-canonical.

D = d2, d3,..., d~, where

di=(

with

(i, i – 2,0),
(i, i - 2,2),

or
or

(i, i – ki, ho ,

F

or
(iji - ki, h: +4), or

(i,i - l~z,J-),

(~,~-~ki> ~)> :
0, otherwise.

ho = Iw(i– 1) –w(i–ki+l)l,

h~ = (LJ(i– 1) – LJ(’i- I?kj+ 1)) - (U(i – 1) - LO(i– 2))7

hz = (u(i - ki + 1) –u(i – lki + 1)) . (#((i – ki + 1) –~((i–ki)),

ki={mink~ [3,..., n]s. t.i–k~O, lti(i-k+2)– w(i–k)l #O, and @(i-k+

2)–o(i–k)l #2},

andl&i= {minl~ [3,... ,n] s.t. i–l ~ O, ki–l ~ O, and ((~(i–ki+2) –~(i–ki+l))

x(~(i–ki) -~(i–ki +l))). (~(i–l+l )–ti(i-l))=+ l}.

Note: ki is the last step on the walk u(O), u(l) ,..., w(i – 1) that does not fall onto

13
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the straight line going through w(i – 2) and w(i – 1). lk~ is the last step on the walk

QJ(0),W(l), . . . , w(i - 1) that does not fall onto the plane going through w(i - ki + 2),

w(i – kz + 1),and w(i – ki).

Proof. We prove by induction that there is only one walk W corresponding to D.

Let us first notice that for a zero-step, or a one-step walk D =0. The theorem is true

since on the cubic lattice there is only one non-isomorphic walk having zero or one

step.

We now assume the theorem is true up to step i – 1, that is, there is only one

walk corresponding to the list d2, d3, . . . . di–l. We need to prove that given d+there

is onl~ one location for step i<

If di = (i, i – 2, O) then step i is uniquely located and has the same location than

step i – 2, i.e., w(i) = w(i – 2) (cf. Figure 8a).

If d~ = (i, i – 2,2) then step i is uniquely located, and its position is given by

w(i) = u(A(i – l)), where w(i – 1) = w(A(i – 2)).

The next two distances make use of step i – k~. We fully develop the case cor-

responding to an orientation such that w(i – 1) = w(U(i – 2)), just for the sake

of clarity. This case is also depicted in Figure 8.b. The reader can verify that all

other cases lead to the same conclusion. The six possible locations for step i are

w(U(i – l)), w(D(i – 1)) w(~(i – l)), w(ll(i – l)), w(L(i - l)), and w(l?(i – l)).

Positions w(ll(i – 1)) and w(U(i – 1)) are eliminated since they correspond to the

respective di values (i, i – 2, O) and (i, i – 2, 2). Recall that i – ki does not fall on the

straight line going through u(i – 2) and w(i – 1), therefore, there is four locations for

i–ki. If we define w(i–ki+l) = ~(A(i–ki)), then we have A as either F, B, L, or R.

For any of these four possibilities, we know w(i) = W(A-l (i – 1) if di = (i, i – ki, ho)

and w(i) = w(A(i – 1)) if di = (i, i – ki, ~~).

In all the above cases two positions remain unknown. For this instance, we

consider the case where w(i – ki -I-1) = w(~(i – ki)), cannot uniquely locate site i if it

is at L(i— 1) or F?(i- 1). These positions are given by the distances (i, i–lki, ~~),

14



and (i, i -1,,, ~). These last two distances introduce step i - l~i. Recall

that i – zk~does not fall onto the plane going through OJ(i– IG+ 2), w(i - IG+ 1),

and w(i – ki). Hence, for the direction defined by u(i – l~i + 1) = w(A(i – l~i)), the

onIy two possibilities for A are L and R. From Figure 8.c, we can see that for di =

(i,i-~~~ -) ~(i)= LJ(A-l(Z-l)). Otherwise,ifdi = (i,i-i~i, {~,

we have u(i) = u(A(i – l)).

Finally, in the case di = 0, step i can be located at six different positions u(D(i –

1)), u(U(i – 1)) w(F(i – l)), u(l?(i – l)), w(L(i – l)), and w(R(i – l)). The first two

positions are eliminated because they correspond to the respective di values (i, i – 2, O)

and (i, i – 2, 2). Note that if d; = 0 none of the other values for di have been found.

In particular, k~was not found corresponding to the distances di = (i, i – ki, ho) and

di = (i, i – k~,~~). Such a situation may rise when the walk W up to step i – 1

is limited to the straight line going through steps i – 1 and i – 2, or when the walk

W up to step i – 1 is in the plane defined by steps i – ki +2, i –“ki + 1,and i – ki.

The former case is easy to identify, if the walk is limited to a straight line, then all

distances up to step i – 1 have the values (i, i – 2, O) or (i, i - 2,2). In such an instance,

all the four possible locations w(F(i – l)), w(l?(i – l)), w(L(i – l)), and w(R(i – 1))

lead to walks that are isomorphic. The latter case is identified when there is at least

one distance up to step i – 1 taking the value (i, i – ki, ho) or (i, i – ki, -). In

this cases too, the two possible locations for step i lead to isomorphic walks.

We have thus proven that there is only one walk up to step i corresponding to the

list of distances dz, d3,. . . . di in case (1.1), i.e., w(i– 1) –u(i–2) = (1,0). The same

conclusion can be drawn for the cases (2.1)-(2.4),(3.1)-(3.4) and (4.1)-(4.4). Cl

15
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COROLLARY 2.14. On the cubic lattice the following distance list is SA W-canonical.

D =dz, dB,..., d~, where

di =

with

(i, i - 2,2),
(i, i – k~,k~–2),
(i,i - ki, ~~),

(i,i -1,, Jm),

(i, i -1,, ~~),
0,

or
or
or

or

or
otherwise.

h, = (w(i -1) –ti(i –t~~ + 1)) . (ti(i – 1) –w(i – 2)),

h2 = (~(i – ki +1) –#(i – th~+ 1)) . (o((i – ki + 1) –u((i – ki))j

ki ={ mink E [3,..., n] s.t. i–k~O, lu(i–k+2)–w(i –k)l#O, and

lu(i-k+2)-u(i -k)l #2},

andl~$= {minl~ [3,..., n] s.t. i–l z O, ki–l ~ O, and ((ti(i-ki+2) -u(i-ki+l))

x(ti(i- ki)-w(i -ki+l)) ).(u(i- l+l)-w(i-l))=+l}.

Proof. The corollary is proven using the same technique than for Theorem 2.13

and using the fact that for SAW we have ho = ki – 2. Also note that for SAW,

di#(i, i–2,0). II

3. Walks construction from canonical distance lists. Keeping our biolog-

ical application in mind, we give in this section an algorithm that constructs walks

on a diamond and cubic lattices from W/SAW-canonical distance lists. Note that

proteins are 3D self-avoiding structures and note that the diamond lattice is better

suited for proteins than the cubic lattice since it pictures the tetravalent character of

carbon with the appropriate bond angles and the appropriate trans conformation of

hydrocarbon chains. The algorithms are given next, similar algorithms can be derived

for the 2D lattices of the previous section.

BUILD-WALK-DIAMOND(D, W)

input: -D: n-distance list
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output : -W: n-step walk

local: -i, ki : integer

begin

1. OJ(o)=(o,o,o); LJ1)=LIJ(U(0));

2. for i=2 to n do w(i) = COMPUTE-COORD-DIAMOND(lV, D,i);

3. done

end

COMPUTE-COORD-DIAMOND(W, D ,i)

input: -D: n-distance list

output : -W: n-step walk

local: +,ki: integer

-h: real

-A: direction operator

-o(d), e(di), ~d T(di): functions returning the first and second

element of triplet di

begin

1. if di =0 then

2. let Abe the operator such that u(i–i)=w(Al(i -2))

3 return any neighbor of ti(i-1) other than w(A(i– 1)) or u(A–l(i– l))

4. else

5. ki=o(di)-e(di); h=lw(i– 1)–w(i–k~+l)l

6. let Abe the operator such that ~(i–ki+ l)=ti(A(i-ki))

7. if r(di)= h-then u(i) =w(.~-l(i–l))

8. else if r(di) ={- then w(i) =u(A(i– 1))

9+ else if ki even then u(i) =ti(A(i- 1))

17



10. else u(i) = U(A-l(i – 1))

11. endif;

12. done

end

BUILD-WALK-CUBIC(~, ~)

input: -D: n-distance list

output : -W: n-step walk

local: -i, ki: integer

begin

1. 0(0)=(0,0,0);U(l)=du(q);

2. fori=2 tondo w(i) = COMPUTE-COORO-CUBIC(TV,ll,i);

3. done

end

COMPUTE-COORD-CUBIC(W,D,i)

input: -D: n-distance list

output : -W: n-step walk

local: ‘i,kj: integer

-h: real

-A: direction operator

-o(di), e(di), and ~(di): functions returning the first and second

element of triplet di

begin

18



1. if dz = (i, i – 2,0) then w(i) = w(i – 2)

2. else if di = (i, i – 2,2) then

3. let A be defined by u(i -i) = w(A(i – 2))

4. u(i) = (iJ(A(i – 1))

5. else

6.

7.

..,.::: 8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

let ki be the first point not on a line between w(i–1) and w(i–2)

let h,. =Iw(i–1) –w(i–ki+l)\

let A be defined by u(i – k~+ 1) = w(A(i – ki))

if d~= (i, i – k~,ho) then u(i) = U(A–l(i – 1))

else if di = (i, i —ki, m) then ~(~)= ~(J4(i - 1))

else

let l!ki be the first point not on a plane formed by

u(i – ka+ 2), w(i -k~+l), ~d ~(i–ki)

let h~ = (@(i – 1) – ti(i – lki + 1)) . (w(i – 1) – U(i – 2))

let hz = (u(i – ki + 1) –w(i ‘zk~ + 1)) . (w((i – ki + 1)–w((i – ki))

let A be defined by w(i – zk~+ 1) = w(A(i ‘zki))

if di = (i, i —zk~,m) then ~(i)= ~(~-’(i - 1))

else if di = (ili— Zki,m=m) then 40 = 4J4(i - 1))

endif

20. endif

21. done

end

The scaling of the above algorithms is given by the two following theorems.

THEOREM 3.1. Given D a W/SAW-canonical distance list the following is true.

(i) The algorithm BUILD- WALK-DIAMOND(D, W) constructs a lD\-constrained n-
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step walk, W, on the diamond lattice corresponding to the distance list D.

(ii) BUILD- WALK-DIAMOND runs in O(n) steps.

(iii) All walks on the diamond lattice corresponding to D are isomorphic to the walk

generated by BUILD-WALK-DIAMOND.

(iv) If D is SAW-canonical then the walk produced by BUILD-WALK-DIAMOND is

a SAW.

Proof. (i). W is a walk since for all i we have lw(i) – w(i – 1) I = 1. It is obvious

that W is composed of n-step and is subjected to ID[ distance constraints. W matches

the distance list D since the if statements are derived from the proof of Theorem 2.11.

(ii). The loop starting at line 2 comprises n – 2 steps. (iii). W is constructed from

D, which is W-canonical, consequently all walks matching D are isomorphic to W.

(iv). If D is SAW-canonical then D was generated from a SAW W’. Since D is

canonical W is isomorphic to W’ and W isa SAW. II

THEOREM 3.2. Given D a W/SAW-canonical distance list the following is true.

(i) The algorithm BUILD- WALK-CUBIC(D, W) constructs a [n-Z) -constrained n-

step walk, W, on the cubic lattice corresponding to the distance list D.

(ii) BUILD- WALK-CUBIC’ runs in O(n) steps.

(iii) All walks on the diamond lattice corresponding to D are isomorphic to the walk

generated by BUILD- WALK-CUBIC.

(iv) If D is SAW-canonical then the walk produced by BUILD-WALK-CUBIC is a

SAW.

Proof. The proof follows exactly the same way as the previous proof using instead

Theorem 2.13. 0

4. Compiling canonical distance lists with a minimum number of ex-

periments. In this section we are interested to compute canonical distance lists for

protein structures. Since proteins are 3D objects, we will restrict ourself to SAW on

20
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the diamond and cubic lattices. The Euclidean coordinates of the probed SAW axe

unknown but we assume that the walk exists and that we have an experimental appa-

ratus that can measure the distance between any pair of steps on the walk. In other

words, our protein structure is unresolved but we have experimental technique that

can measure the distance between any pair of amino acids in the protein sequence.

Techniques such as NMR and MS3D can provide such information. The algorithms

given next computes the canonical distance list of a SAW with O(n) distance mea-

surements.

COMPILE-DISTANCE-DIAMOND(W, ~)

input: -W: n-step walk (Euclidean coordinates unknown)

output : -D: n-distance list

-W: n-step walk (Euclidean coordinates computed)

local: -i, ki: integer

-MEASURE(W, i, j) :

distance between

begin

1. D=O; w(0) =(0, O,O);

2. fori=3 tondo

function returning the Euclidean

sites i and j of W

w(l) = &J(u(o));

3.

4.

5.

6.

7.

8.

9.

10.

11.

6 = MEASURE(W,i,i – 3) ;

if J=~then D= DU(i, i– 3,6);

else ki = O;

find ki>3 St. i—ki~O~d(i —k~+3, i —ki, m)$D;

if ki = O then goto 11 endi.f;

& e MEASURE(W, i,i – ki) ;

D= DU(i, i–ki,6);

endif

~(i) = CCIMPUTE-COORD-DIAMOND(D, W,i) ;
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12. done

end

COMPILE-DISTANCE-CUBIC(~ ,~)

input: -~: n-step walk (Euclidean coordinates unknown)

output: -D: n-distance list

-~: n-step walk (Euclidean coordinates computed)

local: ‘i, ki, lki: integer

-MEASURE(lV,i,j) :

distance between

begin

1. D=O; LJ(o)=(o,o,o);

2. fori=2 ton do

function returning the Euclidean

sites i and j of

u(l) = L@(o));

3. d = MEAsuRE(w’,i,i- 2);

4. if 6=2 then D= DU(i,i–2,6);

5. else ki=O;

6. find ki>2s.t. i–ki20 and

7. if ki =0 then goto 18 endif;

8. (! =MEASURE(lV,i,i- ki);

w

(i-ki+2,i-k;,2) @D;

9. ifd=ki —20rd=~~ then

10. D= Du(i, i–ki, d);

11. else r!ki=0;

12. find lki>2 St. i–lki~o~dki–lki~o~d

((~(i-ki +2)-~(i-ki+ l)) X (~(i-ki) -~(i-ki+ l)))

- (u(i–lkz+l)–w(i–l~i)) = *1.

13. if l~i =0 then goto 18 endif;
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,

14. ~ = MEASURE(lV, i,i – l~t) ;

15. D= Du(i, i–/ki, f5);

16. end if

17. endif

18. w(i) = CEIMPUTE-COORD-CU81C(D , W,i) ;

19. done

end

THEOREM 4.1. Giuen W a SAW on the diamond lattice, the following is true.

(i) The algorithm COMPILE-DISTANCE-DIAMOND (W,D) computes a SA W-canonical

distance list for W.

(ii) The procedure MEASURE is called at most O(n) times.

Proof. (i)Proof is obvious from Corollary 2.12.

(ii) At most two measurements are carried for every i, 3< i <n. D

THEOREM 4.2. Given W a SAW on the cubic lattice, the following is true.

(i) The algorithm COMPILE-DISTANCE- CUBIC(W,D) computes a SA W-canonical

distance list for W.

(ii)

(ii)

The procedure MEASURE is called at most O(n) times.

Proof. (i) Proof is obvious from Corollary 2.14.

At most three measurements are carried for every i, 2< i <n. u

5. Extension to Real Space Protein Folding Simulations. The lattice

model of the protein gives us a straightforward means of producing structures con-

forming to a set of given constraints using established techniques of understood com-
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plexity. L-nfortunately, the actual protein structure exists in real space, with features

that may not be adaptable to a lattice treatment. However, the same general SAW

generation technique may be applicable to real space protein generation.

The idea behind SAW generation of these real space structures is that there are

limitations on the different ways that individual amino acids can connect to form

chains. The physically reasonable confirmational space available for adding an amino

acid to an existing chain can be analyzed and then broken up into discrete branching

possibilities much like that of the lattice based SAW. In this case one does not have a

fixed lattice but instead, the possible positions of the next amino acid. These positions

depend on the most probable conformations, which in turn are determined by the local

environment. Because of the limited number of amino acids, a confirmational library

for each of the 20 amino acids can be precomputed de novo using classical molecular

dynamics and Monte Carlo techniques, or statistically, from the set of solved protein

structures [Daune 1999]. Once the size of the confirmational space for each amino

acid is known, a decision can be made regarding which (and how many) conformations

will be attempted for the next step in the SAW. Generally, there is enough global and

local constraint information such that one can explore the confirmational space with

a reasonably small number of possibilities. Although the lattice complexity results

are not rigorously extendible to the real space, many of the constraint results do

apply, and we do not expect the computational complexity results to be dramatically

different.

There are additional issues to consider in the real space protein folding problem.

The primary one is how many constraints are generally needed to uniquely define

the walk. NIore generally, one could ask how many constraints are needed to have a

small number of walks, or perhaps O(n) walks, where n is the number of peptides. A

related question is what size constraints are generally the most effective. Is it better

to have lots of constraints for peptides that are close to each other in space, or far,

or perhaps a mix? One can also ask the same things about how close the constrained
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peptides should be to one another in the peptide sequence. Finally, one must consider

the effect of the uncertainty which will always be present in experimentally derived

constraints.

.-...-.

:::

6. Conclusion. We have demonstrated that given a lattice model of a protein

containing n sites (analogous to peptides), the complete structure of the protein can

be determined given O(n) distance constraints for the most commonly used lattices

in 2 and 3 dimensions. Furthermore, we have shown that reconstruction can be

accomplished in linear time, and the canonical distance list can be compiled with a

linear number of distance measurements. Future work will be directed at exploring

similar questions in real space.
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Figure Captions

Figure 1: Arbitrary embedding of 2D honeycomb lattice in Euclidian spaces.

Figure 2: Arbitrary embedding of 2D square lattice in Euclidian spaces.

Figure 3: Arbitrary embedding of 3D diamond lattice in Euclidian spaces.

Figure 4: .Arbitrary embedding of 3D cubic lattice in EuclidIan spaces.

Figure 5: Distances in honeycomb lattice.

a) Iw(R(i – 1)) –u(i – 2)1 = O,

b) lLJ(U(i – 1)) - w(i – Ici)l = O and lu(L(i – 1)) – w(i – kJ[ = W.

C) l~(ll(i – 1)) – u(i – ki)l = 2 and lw(L(i – 1)) – w(i – ki)l = W.

Figure 6: Distances in square lattice.

a) lu(D(i – 1)) –u(i – 2)1 = O, and ]w(U(i – 1)) –u(i – 2)1 = 2.

b) h = l~(i – 1) – ti(i – ki + 1)1. l~(ll(i – 1)) – u(i – ki)l = h, and

lLJ(U(’i - 1))- LfJ(’i- ki)l= /7ZiZ.

Figure 7: Distances in diamond lattice.

a) ]w(ll(i – 1)) –w(i – 2)1 = O, and lu(U(i – 1)) –w(i – 3)1 = ~.

b) h= ]LJ(i– 1) –u(i –ki+ 1)1. lw(L(i– 1)) –~(i–ki)l = h if u(i–ki) =

w(L(i – ki)), and @(L(i – 1)) - u(i – ka)l = ~- otherwise.

\ti(R(i - 1)) - u(i - ki)l = h if ~(i - ki) = w(R(i - ki)), and l~(ll(i - 1)) -

~I(i —ki) I = ~- otherwise.

C) h = Iti(i – 1) – ti(i – ki + 1)1. 10.J(L(i– 1)) – ti(i – ki)l = ~- if

~(i–ki) = W(L(i–k2)), and lw(L(i– l))–~(i–ki)l = ~motherwise.

lti(R(i - 1)) - ~(i - ki)l = ~- if w(i - ki) = w(R(i - ki)), and
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Iu(l?(i – 1)) – ti(i – ki)] = ~- otherwise.

Figure 8: Distances in cubic lattice.

a) ]u(D(i – 1)) –w(i – 2)\ = O, and lu(U(i – 1)) –u(i – 2)1 = 2.

b) ho = \u(i – 1) – w(i – ki + 1)1. lu(F(i – 1)) – u(i – ki)l = ho, and

/(JJ(B(i- 1)) -u(i - kJ( = /~.

c) hl = (W(i – 1) –U(i – ii)) . (U(i – 1) –W(i – 2)),

hz = (u(i - ki + 1) –u(i - ii)) o(u((i – Iq + 1) -u((i – ki)),

lu(L(i-l))-w(i-li)l = ~m, and Iu(l?(i-l))-ti( i-li)l= {~.
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