A Benthic Carbon Budget for the Continental Slope off Cape Hatteras, N.C.

C.J. Thomas¹, N.E. Blair ¹, D.J. DeMaster ¹, R.A. Jahnke² and C.S. Martens ³.

¹ Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, N.C. 27695-8208, USA

² Skidaway Institute of Oceanography, 10 Ocean Science Circle, Savannah, G.A. 31411, USA

³ Department of Marine Sciences, University of North Carolina, Chapel Hill, N.C. 27599-3300, USA

SUBMITTED TO DEEP SEA RESEARCH JANUARY 31, 1999
ABSTRACT

The continental slope off Cape Hatteras, N.C. from approximately 36° 00'N to 35° 20'N is a region of relatively rapid sediment accumulation, organic matter deposition and subsequent remineralization. The measured fluxes are the highest reported for the slope off the eastern U.S. Sediment accumulation rates range from 40 to 140 cm ky⁻¹. Organic carbon deposition rates range from 3.5 to 7.4 moles C m⁻² yr⁻¹. The areal coverage of this "depocenter" is probably controlled by interactions between physical oceanographic processes and the rugged topography of the seafloor.

The organic matter deposited on the seafloor is primarily marine in origin and a mix of old and fresh particles. 73-93% of the depositing detritus is rapidly oxidized near the sediment/water interface. The controls on subsurface remineralization appear to be a complex function of the relative amount of metabolizable carbon delivered to the seabed both now and in the distant past (≥500ybp) and the extent of seabed irrigation. The age of DIC and CH₄ produced within the seabed indicates that relatively young, reactive carbon is advected below the sediment surface and fuels subsurface remineralization. The stable isotopic composition of DIC produced within the seabed indicates the selective degradation of ¹³C-enriched fractions of the organic matter. The metabolizable fraction has a carbon isotopic signature of ~-18‰, while the organic matter that survives degradation and is buried has a δ¹³C closer to -20‰.

We have no objection from a patent standpoint to the publication or dissemination of this material.

[Signature]
Office of Intellectual Property Counsel
DOE Field Office, Chicago

2/8/2000
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
ABSTRACT

The continental slope off Cape Hatteras, N.C. from approximately 36° 00'N to 35° 20'N is a region of relatively rapid sediment accumulation, organic matter deposition and subsequent remineralization. The measured fluxes are the highest reported for the slope off the eastern U.S. Sediment accumulation rates range from 40 to 140 cm ky⁻¹. Organic carbon deposition rates range from 3.5 to 7.4 moles C m⁻² yr⁻¹. The areal coverage of this “depocenter” is probably controlled by interactions between physical oceanographic processes and the rugged topography of the seafloor.

The organic matter deposited on the seafloor is primarily marine in origin and a mix of old and fresh particles. 73-93% of the depositing detritus is rapidly oxidized near the sediment/water interface. The controls on subsurface remineralization appear to be a complex function of the relative amount of metabolizable carbon delivered to the seabed both now and in the distant past (≥500ybp) and the extent of seabed irrigation. The age of DIC and CH₄ produced within the seabed indicates that relatively young, reactive carbon is advected below the sediment surface and fuels subsurface remineralization. The stable isotopic composition of DIC produced within the seabed indicates the selective degradation of 13C-enriched fractions of the organic matter. The metabolizable fraction has a carbon isotopic signature of −18‰, while the organic matter that survives degradation and is buried has a δ¹³C closer to -20‰.
INTRODUCTION

The continental slope off Cape Hatteras has been proposed to be an area of enhanced carbon sequestration (Walsh et al. 1985). High animal densities are supported by elevated fluxes of organic material into the area (Rowe et al. 1988, Schaff et al. 1992, Blake and Grassle 1994). Rates of sediment accumulation and organic matter remineralization in the region off Cape Hatteras, N.C. are reportedly an order of magnitude higher (Blair et al. 1994 & 1996, DeMaster et al. 1994) than those reported for the slope further north in the Mid-Atlantic Bight (Biscaye and Anderson 1994, Anderson et al. 1994) where a portion (~11%, Walsh 1994) of the particles produced on the continental shelf is exported onto the adjacent slope via complex currents, largely associated with storms (Biscaye and Anderson 1994, Brunner and Biscaye 1997).

The unique physical oceanography of the region directly off Cape Hatteras, N.C. generates optimal conditions for the transport of particles to and subsequent deposition on the continental slope. The southward flowing Virginia Current and northward flowing Gulf Stream converge at the cape, focusing particulate transport into the region. Episodic upwelling and cold-core ring formation associated with the convergence cause localized areas of elevated production (Janowitz and Pietrafesa 1980, Csanady and Hamilton 1988, Flagg et al. 1998). Quiescent, near-bottom conditions facilitate deposition (Csanady et al., 1988) of particles both exported from the adjacent shelf regions and produced over the slope. The bottom topography of steep canyons and gullies may further serve to funnel particles into the area (Biscaye and Anderson 1994, Suayah et al. In prep.). Mass wasting is an important process shaping the geomorphology of this region (Prior 1986, Mellor and Paull 1994).

Though there is considerable evidence to indicate that the slope offshore of Cape Hatteras
is a depocenter for sedimenting organic matter, there has not been a comprehensive benthic C budget prepared. To that end, this paper presents a benthic carbon budget for the continental slope directly off Cape Hatteras. In addition, the stable and radio-carbon isotopic compositions of remineralization products, as well as POC and animals, are used to characterize the metabolizable organic matter reaching the seabed. The data presented are used to refine our estimates of C preservation in slope sediments and evaluate the effects of non-steady state deposition on the early diagenesis of organic matter.

METHODS

Study area and sampling methods -- Sampling sites were part of the Department of Energy’s Ocean Margin Program on the Cape Hatteras continental slope. Three transects were established along 36° 20'N, 35° 51'N and 35° 25'N between 400 and 1500m water depth (Table 1). An additional site was visited at 35° 23'N, 74° 48'W. This site has been described previously (Kelchner 1992, Schaff et al. 1992, Blair et al. 1994, DeMaster et al. 1994, Blair et al. 1996, Levin et al. 1997) and is referred to as Site III. Stations were occupied during three cruises aboard the R/V Cape Hatteras (September 1993), R/V Seaward Johnson (July 1996), and R/V Edwin Link (August 1996). The submersible, R/V Johnson Sea-Link, was used during the August 1996 cruise.

Sediment for ship board flux incubations was collected by submersible using a 15 x 15 x 20cm Ekman-style box corer fitted with a 14.5 cm-i.d. Lucite subcore. The round subcore was held in place by set screws. Sediments for dissolved inorganic carbon (DIC) production rate incubations were collected in 40cm long push cores using the submersible. Samples for porewater, particulate organic carbon (POC) analyses and 14C chronologies were collected using
a 12cm x 12cm x 3m kasten corer during all three cruises.

We suspect that surface-deployed coring techniques introduced a sampling bias that was caused by seafloor topography. Cores that impacted the relatively flat tops of ridges were probably recovered more successfully than deployments that intersected steep slopes. Cores could be efficiently collected from all three geographies using the submersible.

Experimental and analytical methods -- Benthic DIC fluxes were measured both *in situ* and during shipboard incubations. All shipboard incubations were conducted in darkness at 4°C and atmospheric pressure. After recovery of the Ekman box corers, the Lucite subcores were removed and closed at the bottom. The overlying water was gently aerated for several hours to allow the core to equilibrate to atmospheric pressure and incubation temperature. The cores were sealed at the top prior to the start of the incubations. Cores were gently stirred and monitored for DIC and O₂ concentrations every 3-6 hours for 24 hours. DIC concentrations were determined on board ship by flow-injection analysis (Hall and Aller 1992). The precision of this technique is estimated to be ± 2%. O₂ concentrations were measured using a modified micro-Winkler technique (Strickland and Parsons 1972), which has a precision of ± 1%. Aliquots of overlying water from each sample were sealed in glass ampoules for isotope analysis of DIC at N.C.S.U. (see description below).

In situ diffusive fluxes were determined using a free-vehicle lander and submersible-emplaced chambers. The free-vehicle benthic chamber instrument (BECI) inserted a 30 x 30 cm titanium chamber, capped it and sampled the overlying water within the chamber every 2-3 hours (Jahnke and Christiansen 1989). Samples were drawn into spring-loaded syringes and gas tight
ampoules (for O₂ analyses). At the beginning of each incubation NaBr was injected into the overlying water to be used to estimate chamber volume. O₂, DIC, and nutrient concentrations were measured on samples recovered from the incubations. The smaller submersible-emplaced chamber operated in a similar fashion. The manually placed chamber allowed for control of placement adjacent to other experiments.

DIC production rates were determined using closed tube sediment incubations. Cut-off 60-ml plastic syringes were used to subcore the top 5 cm of push cores collected by submersible. The sediment plugs were then sealed in the syringes with a butyl rubber stopper. Four syringes were filled from each core. Stoppered syringes were placed in half gallon Mason jars (Ball ™). Then the jars were flushed with N₂ and capped in a glove bag. One sediment plug was immediately processed for porewater DIC concentration, and the remaining plugs were incubated at 4°C. Every 24 hours for three days, one incubation was ended and processed. DIC production rates (R) were calculated using the following equation:

\[R = \frac{dC}{dt} \phi_s h \]

where,

\(\frac{dC}{dt} = \text{change in concentration with time (\mu\text{moles cm}^{-2} \text{cm}^{-3} \text{hr}^{-1})} \)

\(\phi_s = \text{average porosity for the 0-5cm interval (cm}^{-3} \text{cm}^{-3} \text{)} \)

\(h = \text{height of incubated plug (cm) } \)

Porewater profiles of DIC δ¹³C, Δ¹⁴C and concentrations were determined on kasten cores. Sediment was subsampled using cut-off syringes. Porewater was separated by centrifuging the sediment in 30-ml Teflon centrifuge tubes at 7500 rpm (5000 g) for 15 min. DIC concentrations
of porewaters also were determined on board ship by flow-injection analysis (Hall and Aller 1992). Surplus porewater was sealed in glass ampoules for isotopic analyses. At N.C.S.U., the δ^{13}C of the DIC was determined on one milliliter aliquots of porewater. Samples were placed in 3ml bottles and sealed with crimped rubber stoppers (Wheaton). The samples were acidified and the resulting CO$_2$ was stripped with He and trapped cryogenically (Blair and Carter 1992). The 13C/12C ratio of the CO$_2$ was measured on a modified Finnigan MAT Delta E isotope ratio mass spectrometer (Hayes et al. 1977). The precision of the vacuum line concentration measurements was \pm 5%. The precision of the carbon isotope measurements was \pm 0.4‰. The isotopic signatures of the DIC samples were corrected for degassing during storage in the ampoules. Samples were assumed to have equilibrated with the headspace gas inside the containers. The corrected value (δ^{13}C$_c$) was calculated using the following equation:

$$\delta^{13}C_c = (f \times \delta^{13}C_m) + (1 - f)(\frac{\delta^{13}C_m + 1000}{\alpha} - 1000)$$

where:

f = DIC concentration after storage/concentration before storage

$\delta^{13}C_m$ = isotopic signature measured after storage

α = fractionation factor for CO$_2$ - HCO$_3^-$ equilibrium (Friedman and O'Neil 1977).

Δ^{14}C-DIC measurements were made on porewater that was processed using a modified procedure of the stable isotope protocol. Sediment was quickly collected in cut-off syringes and
transferred to centrifuge tubes in a glove bag under N_2. After centrifugation, the porewater was placed in ampoules under N_2. At N.C.S.U. the samples were transferred to glass Wheaton bottles that had been previously flushed with He. The bottles were crimp-sealed, and the DIC was converted to CO$_2$ using the same method described above. The resultant gas was analyzed for its isotopic content by accelerator mass spectrometry at the Lawrence Livermore National Laboratory AMS Facility. The precision of the $\Delta^{14}C$ measurements was $\pm 7\%$, which translates to an error of $\pm 10\%$ on the age estimates.

Porewater profiles of CH$_4$ concentrations, $\delta^{13}C$, and $\Delta^{14}C$ were determined on kasten cores. Sediment targeted for CH$_4$ concentration analyses was subsampled using 3-ml cut-off syringes. The sediment was then extruded into 50-ml serum vials (Wheaton) containing 1 ml of 3M NaOH and sealed with rubber stoppers. CH$_4$ concentrations were determined by gas chromatography on a Shimadzu Mini-2 GC using a molecular sieve 5A column (Alltech) and flame ionization detector. Analytical precision was $\pm 6\%$. Based on previous observations, sample to sample variability could have been an order of magnitude greater due to the gaseous losses of CH$_4$ during core retrieval and sampling.

Sediment targeted for CH$_4$ isotopic analyses was collected in 60-ml cut-off syringes and extruded into one pint Mason jars that had been flushed with N_2 and contained 20 ml DI water. Samples were stored frozen. At N.C.S.U. the thawed samples were shaken vigorously for five minutes. Headspace gas was removed from the jar using a can piercing sampler (Alltech). The methane was converted to CO$_2$ by passing it through a 790°C furnace packed with CuO (Matthews and Hayes 1978). The resultant CO$_2$ was either analyzed for its $^{13}C/^{12}C$ or $^{14}C/^{12}C$ content as described above. Precision of the $\delta^{13}C$ measurement was 0.3%. The relative standard
deviation on the Δ^{14}C measurement was ±6%.

Particulate organic carbon data-- Particulate organic carbon 14C ages, sediment porosities and dry bulk densities were determined at N.C.S.U. POC 14C ages were determined following the procedures described in Harden et al. (1992) and DeMaster et al. (1994). POC concentrations and δ^{13}C on sediment from all stations except Site III were generated at U.N.C.-Chapel Hill using a Carlo-Erba 1500 Elemental Analyzer. Small aliquots of sediment were weighed into aluminum boats. Vapor Phase acidification with HCl was used to remove carbonates prior to analyses (Hedges and Stern 1984). Precision on the concentration analyses was 3%.

Particulate organic carbon concentrations and isotopic compositions of sediments from Site III were determined at N.C.S.U. Sediments were dried and then acidified with 4N HCl. Sediments were redried and ground to a fine powder. Subsequently, several milligrams were combusted in a Carlo Erba 1108 CHNS analyzer (Blair and Carter 1992). The resultant CO$_2$ was cryogenically collected and analyzed for its 13C/12C content as described above.

Grain size determinations -- Sediment from Site III (kasten core 142, CH93) was analyzed for its carbonate-free grain size distributions downcore. Approximately 5g of dry sediment from each depth interval were acidified with 4N HCl to remove all carbonates. The sample was rinsed repeatedly with DI water until the pH reached 4. Then the sediment was sonicated for 2 minutes and rinsed through nested 63 and 25 μm sieves. The mud fraction that passed through the sieves was collected in a 1L graduated cylinder for separation of mud and clay particles at 8 phi (4 μm). Five mls of a 250g L$^{-1}$ solution of sodium metaphosphate were added to each cylinder, the
volume brought to 1L and allowed to equilibrate overnight. Subsequently, the samples were
stirred for one minute and 20mls were removed (≤ 4 phi). After 1hr 59min at 19°C, 20mls were
removed from a depth of 10cm (≤ 8 phi). All of the grain-size samples were oven dried and
weighed.

Calculation of budget terms -- Mass balance equations were used to model C fluxes within slope
sediments. This method required the assumption that the system has been at steady state in terms
of sediment accumulation and organic matter input over the last 5,000 y. Stations were
considered to violate this assumption if the change in the 14C age of POC downcore was not
linear (least square fit, $r^2 \leq 0.6$). All budget terms (i.e. fluxes and rates) were converted to the
common units of moles C m$^{-2}$ yr$^{-1}$ to facilitate additional calculations and comparisons.

Organic carbon deposition rates (J_{tot}) were estimated for four stations on the North Carolina
slope by summing the flux of remineralization products (J_{diff}) leaving the seabed with the total
burial flux (J_{bur}) of remineralization products in porewaters and of particulate organic matter
escaping remineralization:

$$J_{tot} = J_{diff} + \Sigma J_{bur},$$

Error of J_{tot} was estimated by taking the square root of the sum of the squares of the standard
deviations associated with the diffusive flux and POC burial terms. Porewater burial terms were
not included in the propagation of error because multiple measures were not made, and the size
of the terms was an insignificant portion of the total.

The diffusive flux (J_{diff}, μmoles C cm$^{-2}$ hr$^{-1}$) of DIC out of sediment contained in flux
chambers was estimated using the following relationship:
\[J_{\text{diff}} = H \frac{dC}{dt} \]

where,

\(H \) = height of headspace in the flux chamber (cm)

\(\frac{dC}{dt} \) = linear concentration gradient with time (\(\mu \text{moles cm}^{-3} \text{ hr}^{-1} \)).

Availability of flux measurements restricted the number of stations at which budget calculations could be made. Flux measurements were largely made on the August 1996 cruise when the July kasten coring stations were revisited with the submersible. As a result, fluxes were pooled with porewater and POC measurements made at the same coordinates on different dates. The water depth of collection given for each station is the depth from which the kasten core was collected. The water depths of flux measurements at a given site vary as much as 50m due to the rugged topography of the seafloor.

Burial rates for dissolved species were determined using the following relationship:

\[J_{\text{bur}} = \phi_z \omega C_z \]

where,

\(\phi_z \) = sediment porosity at depth, \(z \) (\(\text{cm}^3_{\text{pw}} \text{ cm}^3_{\text{sed}} \))

\(\omega \) = sediment accumulation rate (\(\text{cm}_{\text{sed}} \text{ ky}^{-1} \))

\(C_z \) = concentration of DIC or CH\(_4\) at depth (mM).

Burial terms would ideally be calculated at depth where concentrations become asymptotic.
However, in most cores, concentrations of dissolved species never reached that point. As a result, burial depth was defined as the deepest interval sampled for all carbon pools.

Burial rates for the POC fraction were calculated as follows:

$$J_{\text{bur}} = \omega \rho_{\text{DB}} C_z$$

where,

$$\rho_{\text{DB}} = \text{sediment dry bulk density at depth (g}_{\text{dry sed}} \, \text{cm}^{-3}_{\text{wet sed}})$$

$$C_z = \text{concentration of POC at the burial depth (moles C g}^{-1}_{\text{dry sed}}).$$

RESULTS AND DISCUSSION

Overview of site-specific carbon budgets

Complete carbon budgets (i.e. containing estimates of organic carbon accumulation rate, benthic DIC fluxes, and CH$_4$ + DIC porewater burial rates) could be constructed for four of the twelve study stations. Organic carbon deposition rates at the four sites were estimated to be 3.6 to 7.7 moles C m$^{-2}$ yr$^{-1}$ (Table 2). The carbon that is deposited in these locations appears to be marine in origin based on the δ^{13}C composition (~21‰) and C/N weight percent ratio (~8) of the organic matter that accumulates. The 14C ages of organic material at the sediment surface ranges from 500 (upslope, 400m) to 2500 ybp (downslope, 1000m). Some portion of the particles sedimenting in this region of the slope are derived from higher latitude regions and may be heavily weathered. This is inferred from previous examinations of the clay mineralogy at Site III which revealed an abundance of chlorite, a high-latitude weathering product proposed to have originated in the Chesapeake Bay area (Kelchner 1992).

Some fraction of the POC reaching the seafloor is considerably younger and more labile
than the POC that accumulates in the seabed. 14C dating of benthic infauna collected in the study area gives modern ages and requires incorporation of nuclear bomb-tagged 14C into body tissues (DeMaster et al. 1998, Blair et al. Submitted). Visual observations during submersible dives reveal a steady rain of marine snow and the occurrence of green phytodetritus near the bottom in these locations. Viable diatoms and measurable Chl a within the slope sediments also indicate the delivery of recently fixed carbon to the slope seafloor (Cahoon et al. 1994). Although at some locations the surface POC-14C ages are offset from the material that is accumulating below the surface (e.g. Site III, Fig. 1 & 2), the relatively old ages (≥ 500ybp) measured in most surface sediments and the high flux of DIC out of the seabed (Table 2) suggest that most young carbon deposited is quickly remineralized.

Diffusive loss of carbon from slope sediments is not limited to DIC. Fluxes of dissolved organic carbon (DOC) have been measured at one of the carbon budget sites, Station N740, on the 36°20'N transect (Alperin et al. Submitted.). The flux of DOC out of the sediment was estimated at 0.028 moles C m$^{-2}$ yr$^{-1}$. This loss is approximately 1% of the remineralization flux and is well within the level of error in the DIC flux measurements. For this reason, DOC flux out of the sediment was not included in carbon budget calculations.

Also not included in the budget was the loss of organic carbon through predation by demersal and pelagic species. Infauna biomass (>300µm) is by far most abundant at Site III, averaging 54.5 ± 14.4 g wet wt. m$^{-2}$ (Schaff et al. 1992). Infauna is generally half as abundant at nearby slope sites (Blake and Grassle 1994). As a high end estimate, consider the following calculated loss of carbon due to predation. If we assume that the infauna were 40% water and 15 dry wt. % OC
(based on slope infauna analyzed at N.C.S.U.), then infauna biomass accounts for 0.4 moles C m\(^{-2}\). If all of this biomass were removed by predation annually, the loss is \(\leq 10\%\) of the carbon deposited on the seafloor and well within the error of the largest budget term, diffusive flux.

Approaching the predation issue from the consumer end of the trophic chain provides an additional estimate of the potential loss. Reported maximum fish densities at mid-slope depths (400-1000m) are 1-1.3 individuals m\(^{-2}\) (Hecker 1994). Most fishes in this environment weigh between 2 and 10g wet weight (Sulak and Ross 1996). Using an average respiration rate reported for deep-sea fishes of 0.3 moles O\(_2\) g\(^{-1}\) wet wt yr\(^{-1}\) (Smith 1978, Smith and Laver 1981), an average fish weight of 5g, and the above densities, the respiration demand from demersal fishes at mid-slope depths is 1.5 - 1.9 moles O\(_2\) m\(^{-2}\) yr\(^{-1}\). If each mole of O\(_2\) consumed by the fish oxidizes one mole of C, then the fishes must consume 1.5 - 1.9 moles C m\(^{-2}\) yr\(^{-1}\) to create this metabolic demand. If the entire C demand is met by predation on benthic infauna, then the loss is equivalent to 25 - 50% of the diffusive fluxes recorded in this environment (Table 2). Without more accurate estimates of predation rates for this environment, this term cannot be assessed more directly.

Of the carbon that survives near-surface degradation and is advected below the interface, only a small amount (1 - 7%) is remineralized within the upper 2-3m of seabed (Table 2). The age of the organic matter that is remineralized below the sediment surface at Stations S480, M620a and S818 is significantly younger than the POC buried (10). Both the age of the DIC and CH\(_4\) buried is offset from POC ages downcore (Fig. 3), again suggesting at least two pools of organic carbon, one younger and more reactive and another older and more recalcitrant. At one station, M415, both the CH\(_4\) and the DIC at depth are older than the POC (Fig.3). Either the
fraction of the organic matter that is degraded at this station is old, or older DIC and CH₄ are diffusing up from deeper in the sediment.

Slope-wide variability in budget terms

POC burial -- Variations in POC burial rates across the slope result from differences in sediment accumulation rates and weight percent OC. Sediment accumulation rates across the entire study region vary by a factor of less than four, ranging from 37 to 140 cm ky⁻¹ (DeMaster *et al.* 1998). On average, the rates are highest on the two southern transects and peak at water depths between 400 and 900m.

Conversely, mean sediment organic carbon content decreases to the south, averaging 2.6% (dry wt.) on the northernmost two transects and 1.5% on the southernmost transect and at Site III. The shift in organic carbon content may be the result of at least two processes. First, dilution from increased amounts of large sand-size particles could reduce the weight percent organic carbon in southern locations. Kelchner (1992) reports similar POC distributions for the region and used grain-size analyses to attribute lower levels in the area between 35°00' and 35°30' to an increase in the relative amount of silt and sand size particles. The bulk of those particles were planktonic foraminifera. Second, increased loading on fine particles sedimenting in northern regions could cause the relatively elevated percentages. We have no gauge of the occurrence or magnitude of the second process.

Depth distributions for POC concentrations, its δ¹³C and ¹⁴C age for the budget stations are displayed in Fig. 1. They are typical of distributions found at other stations. Isotopic shifts in the upper 1m are associated with an enrichment in the ¹³C content of the POC at Stations S818 and
Site III (Fig. 1). Though a diagenetic isotope effect cannot be ruled out a priori, the shifts in δ^{13}C in these and other cores are most likely the result of source variations.

For example, at Station M811 (Fig. 2), downcore POC concentration changes are irregular, large (3-4%), and associated with a depletion in 13C content as compared to the other stations. These downcore shifts are associated with an offset in the 14C ages of the POC (Fig. 2), suggesting that deposition at Station M811 has been non-steady state in the recent past. POC buried as shallow as 100cm was produced before the Holocene, while POC ages in the upper 50cm of the seabed range from 1000 to 9000 ybp. The δ^{13}C and weight percent of the POC suggest at least three, and perhaps four, changes in the source of organic matter. Given the high accumulation rates for adjacent sites (72-115 cm ky$^{-1}$), it seems unlikely that an extended hiatus in deposition has caused the observed profiles. It is more likely that some mass-wasting event affected the sediment column in the past. Steady state accumulation may have resumed recently. The organic matter accumulating over the upper 20cm or so resembles that accumulated at other stations on this transect (wt % OC = 2.5, δ^{13}C = -20.9). Similar discontinuities in POC ages and δ^{13}C are found at M620a, S480, S818 and Site III, suggesting non-steady state deposition (Figs. 1 & 2).

At Site III subsurface 14C ages are consistently ~2000ybp between 50 and 150cm depth (Fig. 1) suggesting very rapid deposition. The vertical subsurface 14C age profile at Site III requires cautious interpretation of accumulation rates. If sediment accumulation has been steadily rapid and the young offset at the surface of the core represents recent delivery of fresh detritus, the budget terms reported in Table 2 could be an order of magnitude higher. Conversely, if rapid accumulation of sediment occurred long ago (> 500), and deposition has been
slower since then, the estimated burial rates in Table 2 may be too rapid relative to current rates.

A previous report of accumulation at the site supported the first scenario – rapid, steady state accumulation (DeMaster et al. 1994). A kasten core recovered from 1150m of water at 35° 24'N had a nearly vertical ¹⁴C depth profile. The ¹⁴C ages of the POC became somewhat younger downcore, but averaged an age of 2400ybp with no young offset at the sediment surface.

Calculation of an accumulation rate from a vertical ¹⁴C profile was impossible, so ²¹⁰Pb profiles from the region between 35°20' and 35°38'N were used to estimate the unusually high sediment accumulation rate of ~1 cm yr⁻¹ (DeMaster et al. 1994)

While rapid, recent accumulation in the region cannot be ruled out, it seems likely that the ²¹⁰Pb profiles were affected by bioturbation to the bottom of the short cores (15-30cm). Biological mixing of the sediment would make the ²¹⁰Pb profiles more vertical and increase the apparent accumulation rate (Benninger et al. 1979, Cochran and Aller 1979, Nittrouer et al. 1979). Porewater profiles from the region (Fig. 4) clearly show bioirrigation of the seabed to depths of 40cm and deeper. It follows that biological transport of particles could also occur to these depths. X-ray images and biological mixing parameters for sediment in the region show rapid bioturbation to 20cm that overshadows accumulation and strata formation (Diaz et al. 1994).

Additional evidence now available also supports the second scenario – non-steady state accumulation potentially including a mass-wasting event. First, ²³⁴Th inventories do not suggest that recent deposition (last 100 days) at Site III has been any more rapid than at Station S818 where ¹⁴C accumulation rates are considerably slower (Table 2). ²¹⁰Pb inventories also vary little throughout the region, suggesting that delivery of organic particles over the last one hundred
years has been similar at Site III and other locations slightly north of it (DeMaster et al. 1994, Suayah et al. In prep.).

Second, discontinuities occur in POC 14C age, grain size distributions, weight percent C, and POC δ^{13}C at 60-65cm deep in the sediment. The organic carbon age at the sediment surface is 1000y younger than organic carbon deeper in the core. Carbonate-free grain size distributions shift from 70% sand and 30% silt + clay to a 50:50 mix. Weight percent carbonate is 8% over the upper 60cm. In the 60-65cm interval, the same interval where the other discontinuities occur, the carbonate concentration drops to 6%. Below that depth, the percentage is highest (10%). Finally, the wt. % OC shifts from 1.6 to 1.4%, and the POC δ^{13}C shifts from -21 to -20% (Fig.1).

Similar isotopic shifts in both 14C ages and POC δ^{13}C can be found in sediments at stations in close proximity to Site III (S480, S818, and M620b; Figs. 1 & 2). The calculation of accumulation rates at non-steady state sites is tenuous; however, rates calculated above the transitions in the 14C-age profiles can be used to constrain the timing of the changes. Dividing the depth of the transition by accumulation rate yields similar dates of 550 and 540 years ago at Site III and Station S480, respectively. The transitions at Stations M620a and S818 appear to have occurred 1,200 and 2,700 years ago.

Benthic fluxes -- Benthic fluxes were not only variable from one station to another, but also variable at each study site. The standard deviation of fluxes were nearly as large as the mean flux at any given station. Fluxes at four sites (Stations N740, M620, S818, and Site III) were replicated four to nine times using *in situ* and shipboard techniques (Table 3). The large variances were due mainly to submersible-emplaced *in situ* fluxes (August 1996) that were 2-3
times higher than fluxes obtained by shipboard incubations during the same cruise and lander deployments during the cruise in 1993. The range of values may reflect the patchiness of benthic communities in this dynamic environment (Blake and Hilbig 1994, Rhoads and Hecker 1994). The submersible-deployed chambers were specifically placed on high-accumulation rate plateaus where other experiments had to be deployed. These flat areas were not the normal topography, thus, it is unlikely that surface-deployed landers would sample these locations.

Additional experimental artifacts associated with the flux measurements cannot be ruled out. Porewater profiles suggest that irrigation represents a major transport mechanism. Other studies have provided evidence for irrigation at Site III (Blair et al. 1994, 1996, Submitted). However, irrigation did not appear to be an important mechanism for water exchange in any of the chambers. Br− tracer concentrations in chamber headspaces did not change significantly during lander and submersible-placed chamber incubations. Shipboard incubations chambers were sealed, preventing water exchange. If irrigation were inhibited, then the measured fluxes may have been too low. Because we had no gauge of the source of the variability, we chose to include all of the data when computing average fluxes for the sites used in the budget.

Across the entire study area, individual measurements of benthic fluxes of DIC out of the sediment ranged from 0.8 to 13.2 moles C m−2 yr−1. Fluxes of O2 into the sediment ranged from 0.7 to 9.9 moles O2 m−2 yr−1. The magnitude of the fluxes was not clearly correlated with sediment accumulation rate or weight percent organic carbon. For example, Station S818 had the highest DIC flux of the budget stations and the lowest accumulation rate and weight percent organic carbon.

Sediment accumulation rates and weight percent organic carbon contents are not
necessarily good proxies for assessing the delivery of reactive carbon. Organic-poor particles may dilute more reactive material, creating high delivery rates and low weight percent carbon. Conversely, high weight percent organic carbon does not insure high concentrations of labile organic matter. Non-steady state conditions may also restrict correlations between long-term accumulation rates and fluxes that are more responsive to short-termed variations in the delivery of organic material.

Benthic fluxes of DIC as measured in the flux chambers can be affected not only by the rate of organic matter oxidation, but also by seabed irrigation and carbonate dissolution (Aller 1982a). Aerobic oxidation of organic matter, S\(^2\), Fe\(^{+2}\) and Mn\(^{+2}\) can decrease alkalinity and cause carbonate dissolution to release an equivalent amount of DIC in carbonate-rich sediments (Emerson et al. 1982). In other words, the expected DIC/O\(_2\) flux ratio would be 2 if a stoichiometric quantity of carbonate were dissolved. In general, the flux of DIC out of the sediment was balanced by the flux of O\(_2\) into the sediment (Table 3). The ratio of DIC/O\(_2\) fluxes at the budget stations were 0.7 - 1.1, indistinguishable from an ideal ratio of 0.9-1.0 based on the complete oxidation of organic matter according to the Redfield ratio without dissolution (Emerson et al. 1980).

The sediments in the study region are well above the CaCO\(_3\) lysocline and have carbonate concentrations of 10-25 wt. %. As a result, porewaters may be super-saturated with respect to CO\(_3\)\(^-\). Acid production from remineralization reactions could titrate alkalinity without causing significant carbonate dissolution. The flux ratio of total alkalinity to O\(_2\) was approximately 1.7 because of the NO\(_3\)\(^-\) and PO\(_4\)\(^{3-}\) coincidently released during remineralization.
The DIC production incubations provided a measure of the rate at which organic matter can be degraded near the sediment surface. Rates at the budget stations were 4.7 (n = 1), 2.6 ± 0.5 (n = 2), and 3.1 ± 0.01 moles C m⁻² yr⁻¹ (n = 2) at Stations N740, M620, and S818, respectively. The DIC production rate from one other site on the 35°51'N transect at 543 m water depth was 3.2 moles C m⁻² yr⁻¹. These production rates indicate that 50 - 100% of organic remineralization in these sediments potentially occurs in the upper 5cm.

Porewater burial terms -- Porewater profiles of dissolved species also were variable across the slope region (Fig. 3). Nearly vertical profiles of low DIC concentrations and high δ¹³C indicate irrigation of overlying waters to depths of ~40cm in most cores. Deeper irrigation, as deep as 100cm in many locations, is implicated by SO₄²⁻ concentration profiles (Alperin et al. Submitted) and the occurrence of burrows to >100cm (visual observations). Two cores from Stations S818 and S1200 show no signs of irrigation.

Comparatively low DIC concentrations (5-25mM) at depth in sediments along the 36°20'N transect could be the result of irrigation or carbonate precipitation. Relatively high DIC production rates for surface sediment at Station N740 on this transect (Table 3) suggests that the low concentrations downcore may be either the result of oxidation localized in the upper 5cm of sediment or some loss mechanism downcore. Alperin et al. (Submitted) report Ca⁺⁺ concentrations that drop downcore indicating carbonate precipitation in sediment near the 36°20'N transect. Irrigation likely controls porewater concentrations at Stations N501 and N1027, because DIC concentrations at these stations are nearly constant downcore and only slightly higher than that of overlying water (Fig. 4). Given the high degree of patchiness over small
spatial scales on the slope, this evidence can hardly be considered conclusive. Without ancillary
data such as DIC δ^{13}C, the potential mechanisms are difficult to resolve.

Below the biologically irrigated zone, the ratio of SO_4^{2-} consumed to the amount of DIC
accumulating is approximately 2 at most locations indicating that the source of accumulating
DIC is primarily SO_4^{2-} reduction (Emerson et al. 1980, SO_4^{2-} data from Alperin et al. Submitted).
Plotting the concentration of DIC against its isotopic composition further helps to resolve the
sources of porewater DIC (Fig. 5). An isotope mass balance (see discussion below) indicates that
the organic material being degraded has an isotopic signature of $\sim -18\%$. The ideal mixing curve
shown in Fig. 5 represents the addition of -18% DIC to overlying seawater assumed to contain
2mM DIC with a δ^{13}C of 0%. Deviations from the ideal curve indicate that processes other
than the accumulation of organic material-derived DIC are affecting DIC concentrations and
isotopic compositions.

Data from only two stations, S818 and S1200, (Fig. 5, Station S818 not shown) fall along
the ideal mixing curve. Porewater profiles of DIC and SO_4^{2-} concentration at both Stations S818
and S1200 do not show signs of irrigation. In fact, the concave-down appearance of the profiles
strongly suggests that DIC is diffusing up with little or no precipitation or advective loss
(Reeburgh 1976, Martens and Berner 1977). As discussed in the preceding section, sediment
low in organic carbon is accumulating slowly at these stations. Diffusive fluxes at Station S818
are high, indicating rapid oxidation of OC at the sediment/water interface. Subsurface
degradation rates are apparently low, based on the lack of accumulating DIC and CH_4 (Table 2).

At Stations M415, M620a, S480 and Site III methanogenesis drives DIC δ^{13}C values more
positive as $^{12}\text{CO}_2$ is preferentially reduced to methane at depths 1.5-2.5m deep in the sediment
DIC concentrations reach 50-60mM at these stations and can be explained by the complete reduction of 25-30mM \(\text{SO}_4^{2-}\) prior to methanogenesis as the porewater was buried.

The four stations with relatively shallow methane production all have current sediment accumulation rates over 100 cm ky\(^{-1}\), comparatively high for this region. Stations M415, M620, and S480 all accumulate organic carbon at rates on the order of 2.0 \(\pm\) 0.1 moles C m\(^{-2}\) yr\(^{-1}\), and begin to produce methane somewhere between 150 and 200cm. Site III accumulates OC at a rate of 0.6 \(\pm\) 0.4 moles C m\(^{-2}\) yr\(^{-1}\) and has the shallowest methanogenic zone. Station M1170 accumulates OC twice as quickly (1.2 moles C m\(^{-2}\) yr\(^{-1}\)) as Site III (based on the conservative accumulation rate estimate), yet methane is not produced within the top 2m of sediment.

Methane production typically occurs at depths below where \(\text{SO}_4^{2-}\) concentrations become <1mM (Claypool and Kaplan 1974, Martens and Berner 1974). Accumulation rate and irrigation are thought to control the thickness of the \(\text{SO}_4^{2-}\) reduction zone (Reeburgh and Heggie 1977, Berner 1978, Reeburgh 1980, Blair in press). Accumulation rate clearly covaries with sulfate gradients over wide ranges of accumulation rates (Berner 1978); however, non-steady state accumulation and irrigation obscure the relationship on the North Carolina slope.

Present-day OC depositional environment is not an accurate predictor of shallow methane production in this region. Of the methanogenic cores, only station M415 has had steady state accumulation over the length of the core. Deposition at the other three methanogenic stations, M620a, S480 and Site III, apparently has not been steady state, and may have been very rapid in the past. The quality, composition and accumulation rate of the organic matter 500+ years ago may be the factor controlling methane accumulation.

In addition, advection of \(\text{SO}_4^{2-}\)-rich overlying water to depth during irrigation may expand
the SO$_4^{2-}$ reducing zone, pushing the methanogenic zone deeper in locations where rapid accumulation should support shallower production (Reeburgh and Heggie 1977, Reeburgh 1980). Again, evidence for deep irrigation comes from porewater profiles and animal distributions. Deep burrowing crustaceans, tube building anemones and deep dwelling polychaetes are abundant in these areas and most likely responsible (Schaff et al. 1992, Blake and Hilbig 1994, Hecker 1994). This deep irrigation may be spatially patchy and temporally variable.

Associated with the methanogenic zone at these stations is an overlying zone of anaerobic methane oxidation that contributes to the DIC pool. Little if any methane was lost diffusively out the sediment water interface, because methane concentrations in surface sediments were approximately equal to those of the overlying water. The concave-up appearance of the methane profiles implies that CH$_4$ is consumed as it diffuses upward (Fig. 4). Methane oxidation rates are estimated to be 0.05 - 0.09 moles C m$^{-2}$ yr$^{-1}$ based on the porewater methane gradients. DIC δ^{13}C values from intervals where methane oxidation occurs are offset from the ideal mixing curve due to the addition of 13C-depleted DIC (Fig.5).

In addition to the stations where the methanogenic zones were sampled, sediments collected at Stations M620a and M1170 have CH$_4$ profiles indicative of the oxidation of CH$_4$ diffusing up from depth (Fig. 4). CH$_4$ concentrations are low, and the profiles are concave-up in shape (Martens and Berner 1974). Sediments collected at Station M620b clearly became methanogenic at depths of ~1.5m, therefore evidence of methane oxidation in the shorter core (1m) collected at M620a is not surprising.

The lack of methane production, coupled with low concentrations of 13C-depleted DIC, suggests in situ carbonate precipitation at Station M811 (Fig. 5). Calcite precipitation is
generally inhibited in marine sediments by Mg\(^{2+}\), DOC and dissolved sulfide (Garrels and Christ 1965, Berner 1975, Berner et al. 1978, Morse and Mackenzie 1990). However, given the extremely old age of the sediment at this station with the probable low S\(^{2-}\) and DOC concentrations (Alperin et al. Submitted), enough time may have elapsed for carbonate to precipitate. Pressure changes during core retrieval may cause additional precipitation, although the contribution is expected to be small (Murray et al. 1980).

Isotope mass balance

A complete carbon isotope mass balance can be constructed for Station M620, further characterizing the carbon isotopic composition of the metabolizable fraction (Table 4). The $\delta^{13}C$ of the labile organic matter was estimated using three approaches to minimize potential biases and uncertainties that might be associated with any single methodology. The three approaches were based on the measured $\delta^{13}C$ of the: 1) DIC fluxes, 2) benthic fauna, and 3) burial flux of DIC and CH\(_4\).

The magnitude and isotopic composition of the total benthic and the diffusive DIC fluxes were measured and calculated using two separate techniques. First, the isotopic composition of DIC in the overlying water was measured during three of the ship-board flux core incubations at Station M620b. The ratio of the change in concentrations of $\text{DI}^{13}C/\text{DI}^{12}C$ with time (R_{flux}) was determined by the following relationship:

$$R_{\text{flux}} = \frac{\left(13D_s\right) \frac{d^{13}C}{dt}}{\left(12D_s\right) \frac{d^{12}C}{dt}}$$
where:

\[C = \text{concentration of DI}^{13}\text{C or DI}^{12}\text{C} \]

\[t = \text{time} \]

\[D_s = \text{diffusivity (assumed }^{13}\text{D}^{12}\text{D} = 1.0, \text{Boehme et al. 1996).} \]

The \(\delta^{13}\text{C} \) of the DIC flux out of the sediment was then calculated by inserting \(R_{\text{flux}} \) into the following equation:

\[\delta^{13}\text{C}_{\text{flux}} = (1 + \left(\frac{R_{\text{flux}}}{R_{\text{std}}} \right)) \times 10^3. \]

where \(R_{\text{std}} \) is the \(^{13}\text{C}/^{12}\text{C} \) ratio of the standard and equals 0.0112372. The measured benthic flux was \(5.7 \pm 4.0 \) moles C m\(^{-2}\) yr\(^{-1}\) and had a \(\delta^{13}\text{C} \) of \(-17.1 \pm 1.3\%_o\).

In addition, the apparent diffusive flux supported by porewater concentrations in one tube core was calculated as above with \(R_{\text{flux}} \) defined by the gradient of \(^{12}\text{C} \) and \(^{13}\text{C} \) across the sediment/water interface. The magnitude of the supported flux was calculated using (Li and Gregory 1974, Ullman and Aller 1982):

\[J_{\text{diff}} = \Phi_o^3 \left(D_o \frac{\partial C}{\partial z} \right) \]

where:

\[\Phi_o = \text{porosity at the surface (0.82 cm}^3_{\text{pw/cm}^3_{\text{wet sed}}} \]

\[\frac{\partial C}{\partial z} = \text{linear concentration gradient across the interface} \]

\[D_o = \text{free solution diffusivity of } \text{HCO}_3^- \text{ (0.0224 cm}^2\text{ yr}^{-1}). \]

The concentration gradient supports a diffusive flux of \(5.4 \) moles C m\(^{-2}\) yr\(^{-1}\) with a \(\delta^{13}\text{C} \) of
Several factors other than the production of DIC via organic carbon oxidation may influence both the magnitude and isotopic composition of the flux. First, carbonate dissolution could shift the isotopic signature of the benthic flux. This mechanism would be exacerbated by acid produced during remineralization of OC and the oxidation of solid phase sulfides and by irrigation (Aller 1978 & 1982b, McNichol et al. 1991, Green et al. 1992). Assuming that there is no fractionation associated with the oxidative degradation of -21.3‰ POC and assuming an addition of carbonate with a δ¹³C of 1-2‰, an average range for shells and forams (McNichol et al. 1991, Berger and Killingley 1977), mass balance indicates that 18-20% of the diffusive flux would have to be from carbonate dissolution to shift the signal from -21.3 to -17.1‰. As mentioned previously, dissolution does not likely occur to a large degree at this station because the DIC/O₂ flux ratio was 1.1.

Second, there could be an isotope effect associated with chemosynthesis along burrow linings. The presence of bioturbating organisms enhances bacterial activities, including chemoautotrophic oxidation of NH₄⁺ and Fe-sulfides (Aller and Yingst 1978, 1985, Kristensen et al. 1985). Porewater DIC would be fractionated during autotrophic consumption of CO₂ as a direct result of the isotope effect associated with ribulose 1,5 bisphosphate carboxylase (Schidlowski et al. 1983, Roeske and O’Leary 1984, Ruby et al. 1987). As mentioned above, high rates of sulfide and metal oxidation would drive carbonate dissolution as alkalinity is reduced during CO₂ consumption and metal oxidation, further enriching porewaters in ¹³C. The additional fractionation from biosynthetic reactions could enrich the flux and reduce the amount of aerobic metabolism required to explain the signal. We cannot constrain the importance of this
potential mechanism.

Third, the 13C-enrichment of DIC in deep-sea sediments has been argued to occur as a result of a steep pH gradient at the sediment water interface (Sayles and Curry 1988, Archer et al. 1989). If the DIC flux is sufficiently low, the HCO$_3^-$ gradient is reversed, 13C-enriched bicarbonate diffuses into the sediment, and 13C-depleted CO$_2$ diffuses out. This cannot be the explanation for the 13C-enrichment on the North Carolina slope, because the DIC flux out is not 13C-depleted, as would be predicted from the deep-sea model. In all likelihood, the presumed deep-sea process is not operative in coastal sediments in general. In near-shore sediments DIC fluxes are greater, and the net direction of bicarbonate diffusion is out of the seabed as demonstrated at Cape Lookout Bight, N.C. (Boehme et al. 1996).

Finally, the 13C-enriched benthic flux could be created by the selective degradation of a specific fraction of the POC, either organic matter from a specific source where a variety of sources are represented (Anderson 1994, Blair et al. 1994, Harvey 1994) or specific compound classes (McNichol et al. 1991). The enrichment most likely results from biodegradation of fresh marine carbon and burial of a mix of reworked marine and terrestrial material (Blair et al. 1994, DeMaster et al. 1994). Lipid markers for both marine and terrestrial material are found in these sediments (Harvey 1994). Terrestrial material typically is characterized by more 13C-depleted isotopic signatures (-25 to -27%) than marine material (-19 to -22%, Anderson and Arthur 1984). Presumably any terrestrial material deposited at mid-slope depths is refractory, while the marine material could be either fresh or reworked.

Animals from collected from the areas have isotopic compositions that differ only slightly in δ^{13}C but drastically in Δ^{14}C. Metazoans from stations N740 and M620 had average isotopic
compositions of -20.3 ± 1.4 (n=14) and -18.6 ± 1.5‰ (n=9). The δ¹³C of annelids at Site III is -19.0 ± 0.2 ‰ (n=30, Levin et al. In press). Generally, the isotopic signatures of consumers are similar to that of their food, but because the animals are at least one trophic level removed from the bulk organic matter in the sediment, they are often ~1‰ enriched in ¹³C than their diet (DeNiro and Epstein 1978, Rau et al. 1983, and many others). The animal’s δ¹³C values therefore suggest that the diet of the animals could be anywhere from -18 to -20‰. However, the ¹⁴C ages of animals recovered from the region are modern indicating a selective diet of a young, reactive fraction (DeMaster et al. 1998, Blair et al. Submitted).

The δ¹³C of the organic matter deposited on the seafloor can be calculated using the following relationship:

$$ \delta J_{tot} = \frac{\sum [(\delta J_i)(J_i)]}{\sum (J_i)} $$

where J_i = the diffusive and burial fluxes of DIC, CH₄ and POC (Boehme et al. 1996). Because the magnitude of the benthic DIC flux term dominates J_{tot}, its δ¹³C basically determines the δ¹³C of -17.8‰ (Table 4). Removing the POC burial term and simply examining the diffusive and burial fluxes of DIC and CH₄ gives a remineralization flux (J_{rem}) of 5.8 moles C m⁻² yr⁻¹ with a δ¹³C of -17.1‰ (Table 4). Additionally, the burial flux of remineralization products (DIC + CH₄) is 0.051 moles C m⁻² yr⁻¹ with an associated δ¹³C of -17.4‰. Burial fluxes at five stations; Stations M415, M620, S480, S818 and Site III; have an average δ¹³C of -17.6 ± 1.7‰. The isotopically heavy porewater burial flux is probably not caused by carbonate dissolution. Alkalinity changes associated with SO₄²⁻ reduction and methanogenesis are generally associated
with carbonate precipitation, not dissolution (Pisciotto and Mahoney 1981, Gautier 1982).

In summary, most if not all of the DIC flux is directly related to organic matter oxidation.

The similarity of the $\delta^{13}C$ values of the buried remineralization products with the $\delta^{13}C$ values of the diffusive DIC flux and the animals supports the conclusion that the metabolizable fraction of the organic matter has an isotopic composition ($\delta^{13}C$) of $-18 \pm 1\%$. Comparison of this value to the isotopic composition of the bulk POC fraction suggests that certain organic carbon fractions are preferentially oxidized. These fractions are apparently marine in origin. The ^{14}C ages of animals, DIC and CH$_4$ further indicate that this fraction is also younger than the bulk POC (Figure 3 and DeMaster et al. 1998).

Location of Cape Hatteras “Depocenter”

During the 1970's and 1980's the U.S. Department of Energy conducted the Shelf Edge Exchange Program (SEEP) experiment in two phases. SEEP-I examined the production and fate of organic particles in the northern Middle Atlantic Bight. SEEP-II focused on the southern end of the Mid-Atlantic Bight. This project has focused on the slope region off Cape Hatteras, N.C., a region immediately adjacent to the SEEP-II research area. Each program produced carbon budgets for the continental slope within its latitudinal range (Table 5) with the purpose of determining how much shelf production is deposited and sequestered within slope sediments. Methods for determining sediment accumulation and diffusive fluxes were similar in all three studies; however, deposition rates from the SEEP studies were determined from sediment trap data. The SEEP-II trap data were validated with the same calculations used in this study to estimate deposition rates, so comparisons between studies should be valid.
Comparisons of the three budgets reveal clear latitudinal trends in sediment accumulation rates, diffusive fluxes, and therefore, deposition rates (Tables 2 & 5). More carbon is deposited in the rapidly accumulating sediments of the southern slope region off Cape Hatteras. This deposition in turn supports higher DIC diffusive fluxes. Interestingly, burial efficiencies do not vary significantly with latitude, and appear to be slightly lower to the south. Many factors may control burial efficiencies, including the relative mix of labile and recalcitrant source material deposited and the residence time of particles in the bioactive zone. The material that is deposited on the slopes of all three of the regions appears to be largely marine and a mix of old and fresh particles (Anderson et al. 1994, DeMaster et al. 1998). In addition, burial efficiency calculations will be biased in environments such as this because deposition has been non-steady state. Consequently, DIC flux measurements and estimated POC burial rates diverge as a result of the mismatched timescales each represents.

There are apparent trends within the budgets from this study that further constrain the region of elevated deposition and remineralization, in addition to the latitudinal trends from New England to Cape Hatteras. The fluxes and C budget at stations on the northernmost transect (36° 20') are quite similar to those described for the Mid-Atlantic Bight (Anderson et al. 1994, Tables 2 & 5). However, diffusive fluxes, POC burial rates and OC deposition rates nearly double on the 35° 51'N transect and are elevated as far south as Site III at 35° 23'N. Accumulation and remineralization rates are lower further south at 34° 15'N (Site II, Schaff et al. 1992, DeMaster et al. 1994, Blair et al. 1994) placing a rough southern limit on the location of the Cape Hatteras depocenter.

Not only are DIC and O₂ diffusive fluxes, deposition, sediment accumulation and POC
burial rates the highest reported for the western Atlantic, they are also higher than those reported for slope sediments off Washington and central California (Table 5). In fact, the sediment accumulation rates reported here are similar to those reported for the highly productive area off the coast of Peru. The carbon content of sediments on the Peru slope (2-3%) and the resultant POC burial rates are similar to those reported here for the 35° 51'N transect (Muller and Suess 1979, Walsh et al. 1985).

Although the POC burial rates and diffusive fluxes reported for the slope off Cape Hatteras are comparatively high for slope environments, they are lower than those reported for rapidly accumulating shelf environments such as Skan Bay, Alaska, Cape Lookout Bight (CLB), and the Amazon shelf. Reported organic carbon deposition rates for these locations are 1-2 orders of magnitude higher and support diffusive DIC fluxes of 15-40 moles C m⁻² yr⁻¹ (Alperin et al. 1992, Martens et al. 1992, and Aller et al. 1996).

Present-day depocenters are largely identified as upwelling regions and areas undergoing eutrophication (Walsh et al. 1985). The area of elevated deposition described here is apparently defined by the convergence of the Virginia Current and the Gulf Stream. Oscillations in the position of the zone over hundreds or thousands of years may have caused episodic changes in the rate of delivery and composition of organic matter delivered to the seabed, in turn creating offsets in the organic carbon Δ¹⁴C and δ¹³C records. Future investigations should examine other convergence zones that may also function as depocenters, such as the slope off eastern Japan.

CONCLUSIONS

1. The continental slope off Cape Hatteras, N.C. from approximately 36° 00'N to 35° 20'N
is a region of relatively high sediment accumulation, organic matter deposition and subsequent remineralization. The rates reported are the highest reported for the slope off of the eastern U.S. The areal coverage of this “depocenter” is probably controlled by interactions between physical oceanographic processes and the rugged topography of the seafloor.

2. Most of the organic matter deposited on the seafloor is marine in origin and reactive. Seabed preservation efficiencies range from 7 to 27%. The age of DIC and CH₄ produced within the seabed, as well as the age of infauna, indicate that relatively young, reactive carbon is advected below the sediment surface and fuels subsurface remineralization.

3. Non-steady state deposition of organic material affects subsurface remineralization. Some methane production may be the result of more rapid deposition in the past. In addition, present-day deep irrigation extends the zone of SO₄²⁻ reduction, increasing the depth of biogenic methanogenesis.

4. The stable isotopic composition of DIC is produced within the seabed by the selective degradation of a fraction of the organic matter. This metabolizable apparently has a carbon isotopic signature of -17 to -19‰, while the organic matter that survives degradation and is buried has a δ¹³C closer to -20‰. Carbonate dissolution does not extensively affect the isotopic signature of the DIC subsequently fluxing out of and being buried in the seabed.
Acknowledgements

We thank R. Aller, M. Alperin, D. Beauregard, W. Fornes, M. Green, H. Mendlovitz, G. Plaia, R. Pope, K. Perdue, and D. Zhu for their hard work during cruises and in the laboratory. The authors also thank the captains and crews of the R/V Cape Hatteras, R/V Seaward Johnson and R/V Edwin Link. Helpful comments were provided by L. Cahoon, W. Fornes, R. Pope and W. Savidge on an early draft of this manuscript. This study was funded by grants from DOE and NSF.
Literature Cited

Blair, N.E., In press. The $\delta^{13}C$ of biogenic methane in marine sediments: The influence of C_{org} deposition rate. Isotope Geoscience.

Nittrouer, C.A., Sternberg, R.W., Carpenter, R., Bennett, J.T., 1979. The use of \(^{210}\)Pb

Marine Biology 61, 261-266.

Unver, A.A., Himmelblau, D.M., 1964. Diffusion coefficients of CO_2, C_2H_4, C_3H_6, and C_4H_8 in water from 6° to 65° C. Journal of Chemical Engineering Data 9, 428-431.

Table 1. Locations of sampling stations.

<table>
<thead>
<tr>
<th>Transect</th>
<th>Station</th>
<th>Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36° 20'</td>
<td>N501</td>
<td>501</td>
</tr>
<tr>
<td></td>
<td>N740</td>
<td>740</td>
</tr>
<tr>
<td></td>
<td>N1027</td>
<td>1027</td>
</tr>
<tr>
<td>35° 51'</td>
<td>M415</td>
<td>415</td>
</tr>
<tr>
<td></td>
<td>M620</td>
<td>620</td>
</tr>
<tr>
<td></td>
<td>M811</td>
<td>811</td>
</tr>
<tr>
<td></td>
<td>M1170</td>
<td>1170</td>
</tr>
<tr>
<td>35° 25'</td>
<td>S295</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>S480</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td>S818</td>
<td>818</td>
</tr>
<tr>
<td></td>
<td>S1200</td>
<td>1200</td>
</tr>
<tr>
<td>35° 23'</td>
<td>Site III</td>
<td>850</td>
</tr>
</tbody>
</table>
Table 2. Carbon budgets for four continental slope sites off Cape Hatteras, NC. Reported depths are for kasten core deployments at each site. Units are moles C m\(^{-2}\) yr\(^{-1}\) ± S.D., unless otherwise noted. Data for DIC fluxes and production rates are pooled from sub deployments at the same coordinates. Water depths recorded during sub core collection deviate as much as 50m from depths recorded during Kasten core collection. N.d. means no data collected.

<table>
<thead>
<tr>
<th>Station</th>
<th>Transect</th>
<th>N740</th>
<th>M620</th>
<th>S818</th>
<th>Site III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Depth (m)</td>
<td>36° 20'</td>
<td>35° 51'</td>
<td>35° 25'</td>
<td>35° 23'</td>
<td></td>
</tr>
<tr>
<td>14C Accumulation Rate (cm ky(^{-1}))</td>
<td>84 ± 5</td>
<td>115 ± 4</td>
<td>37 ± 4</td>
<td>108 ± 57</td>
<td></td>
</tr>
<tr>
<td>Weight % Organic Carbon</td>
<td>2.5 ± 0.2*</td>
<td>2.7 ± 0.3*</td>
<td>1.4 ± 0.2*</td>
<td>1.4 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>Dry Bulk Density (g sed cm(^{-3}))</td>
<td>0.40</td>
<td>0.68</td>
<td>1.07</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>Burial Depth for Calculations (cm)</td>
<td>225</td>
<td>175</td>
<td>185</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>234Th inventory (dpm cm(^{-2}))</td>
<td>2.9 ± 0.5 (n= 4)</td>
<td>9.9 (n= 1)</td>
<td>30.6 ± 9.5 (n= 2)</td>
<td>28.4 ± 7.9** (n = 5)</td>
<td></td>
</tr>
</tbody>
</table>

Minimum C\(_{org}\) Deposition Rate	3.6 ± 3.3	7.7 ± 4.0	7.2 ± 3.7	4.3 ± 1.1	
DIC Diffusive Flux	2.9 ± 2.8 (n= 9)	5.7 ± 4.0 (n= 6)	6.7 ± 3.7 (n= 4)	3.7 ± 1.0 (n= 4)	
Porewater Burial:	DIC	0.01 (n= 6)	0.05 (n= 4)	0.004 (n= 4)	0.04
CH\(_4\)	n.d.	1.0 x 10\(^{-3}\)	2.0 x 10\(^{-6}\)	2.0 x 10\(^{-3}\)	
POC Burial	0.7 ± 0.04	2.0 ± 0.1	0.5 ± 0.06	0.6 ± 0.35	
Preservation Efficiency (%)	20 ± 22	27 ± 14	7 ± 3	14 ± 9	

* From Martens et al. (In prep.)
** From Fornes (1996)
† Values are the slope ± standard error of a line fit by least squares to 14C ages and depth.

\[\text{Preservation Efficiency} = \frac{\text{POC Burial Rate}}{\text{Deposition Rate}} \times 100 \]
Table 3. Diffusive fluxes and DIC production rates at four sites on the Cape Hatteras continental slope.

<table>
<thead>
<tr>
<th>Station Transect</th>
<th>N740 36°20' N</th>
<th>M620 35°51' N</th>
<th>S818 35°25' N</th>
<th>Site III 35°23' N</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIC Flux (moles C m⁻² yr⁻¹)</td>
<td>2.9 ± 2.8 (n = 9)</td>
<td>5.7 ± 4.0 (n = 6)</td>
<td>6.7 ± 3.7 (n = 4)</td>
<td>3.7 ± 1.0 (n = 4)</td>
</tr>
<tr>
<td>O₂ Flux (moles O₂ m⁻² yr⁻¹)</td>
<td>3.9 ± 1.8 (n = 8)</td>
<td>5.3 ± 2.9 (n = 6)</td>
<td>5.8 ± 3.8 (n = 4)</td>
<td>3.8 ± 0.7 (n = 4)</td>
</tr>
<tr>
<td>DIC Production (moles C m⁻² yr⁻¹)</td>
<td>4.7 (n = 1)</td>
<td>2.6 ± 0.5 (n = 2)</td>
<td>3.1 ± 0.01 (n = 2)</td>
<td></td>
</tr>
<tr>
<td>DIC/O₂ Flux Ratio</td>
<td>0.7</td>
<td>1.1</td>
<td>1.1</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Table 4. Carbon isotope mass balance for Station M620 on the 35° 51'N transect.

<table>
<thead>
<tr>
<th></th>
<th>J</th>
<th>δ¹³C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(moles m⁻² yr⁻¹)</td>
<td>(%)</td>
</tr>
<tr>
<td>DIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diffusive</td>
<td>5.7 ± 4.0</td>
<td>-17.1 ± 1.3</td>
</tr>
<tr>
<td>Buried</td>
<td>0.05</td>
<td>-16.0</td>
</tr>
<tr>
<td>CH₄</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buried</td>
<td>0.001</td>
<td>-86.2</td>
</tr>
<tr>
<td>Jₚₑᵐ</td>
<td>5.8</td>
<td>-17.1</td>
</tr>
<tr>
<td>POC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buried</td>
<td>1.6</td>
<td>-20.9</td>
</tr>
<tr>
<td>Jₜₒᵗ</td>
<td>7.4</td>
<td>-17.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Budget Term</th>
<th>Slope off Cape Cod (SEEP-I)</th>
<th>Mid-Atlantic Bight (SEEP-II)</th>
<th>Washington Slope</th>
<th>Central California Slope</th>
<th>Peru</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω cm ky$^{-1}$</td>
<td>10-20</td>
<td>30 - 60</td>
<td>n.r.</td>
<td>1.3 - 77</td>
<td>66 - 140</td>
</tr>
<tr>
<td>g_{sed} cm$^{-2}$ yr$^{-1}$</td>
<td>0.02</td>
<td>0.02 - 0.05</td>
<td>0.02 - 0.05</td>
<td>n.r.</td>
<td>n.r.</td>
</tr>
<tr>
<td>Wt. % OC</td>
<td>1</td>
<td>1 - 3</td>
<td>2.7</td>
<td>0.7 - 4.3</td>
<td>2-3</td>
</tr>
<tr>
<td>OC Deposition Rate</td>
<td>1 - 2</td>
<td>2</td>
<td>3</td>
<td>0.4 - 1</td>
<td></td>
</tr>
<tr>
<td>C Equivalent O_2 Flux*</td>
<td>0.2 - 0.4</td>
<td>1.5 - 2.1</td>
<td>0.8</td>
<td>0.05 - 0.5</td>
<td></td>
</tr>
<tr>
<td>POC Burial</td>
<td>0.1 - 0.2</td>
<td>0.5 - 1.0</td>
<td>1.1</td>
<td>0.02 - 0.3</td>
<td>3</td>
</tr>
<tr>
<td>Burial Efficiency (%)</td>
<td>20</td>
<td>25 -50</td>
<td>35</td>
<td>5 - 30</td>
<td>12</td>
</tr>
</tbody>
</table>

* DIC fluxes out of the sediment were not actually measured, instead the authors estimated the DIC flux from measured O_2 fluxes.
Figure Legends

Fig. 1. POC 14C ages, wt. % OC, and δ^{13}C POC for the four budget stations. The regressions between POC 14C ages and depth used to generate sediment accumulation rates are shown in the upper panels.

Fig. 2. POC 14C ages, wt. % OC, and δ^{13}C POC for non-steady state stations.

Fig. 3. 14C ages of POC, DIC and CH$_4$ from kasten cores collected at four locations on the N.C. continental slope.

Fig. 4. Porewater profiles of δ^{13}C DIC and DIC and CH$_4$ concentrations in slope sediments. Actual CH$_4$ concentrations are 100x higher than shown in the (*) plots.

Fig. 5. The concentration versus δ^{13}C value of porewater DIC. Solid and broken lines represent the mixing curve for the addition of DIC with a δ^{13}C of -18 ± 1‰ to bottom water (2 mM, 0‰).
Fig. 4

36° 20' Transect

35° 51' Transect

35° 25' Transect

N501

M415*

S295

N740

M620b*

Site III*

N1027

M620a

S480*

M811

S818

M1170

S1200

δ¹³C DIC, [CH₄] μM, or [DIC] mM

* [CH₄] μM x 10⁻²
The diagram illustrates the relationship between DIC δ¹³C and DIC concentration ([DIC], mM) for various processes. The y-axis represents DIC δ¹³C values ranging from -25 to 5, while the x-axis represents DIC concentration in mM, ranging from 0 to 80.

Key observations include:
- Methanogenesis is indicated by a trend towards higher DIC δ¹³C values at higher DIC concentrations.
- Carbonate dissolution shows a downward trend with DIC concentration.
- Carbonate precipitation is represented by a curve that levels off near a DIC δ¹³C value of -20.

Legend:
- S480
- S1200
- M620b
- M811
- M415
- -18 ± 1‰ mixing curve
The biogeochemistry of carbon in continental slope sediments: the North Carolina margin

Neal Blair¹, Lisa Levin², David DeMaster¹, Gayle Plaia¹, Chris Martin², William Fornesi, Carrie Thomas¹ and Robin Pope¹

¹Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695-8208

²Marine Life Research Group, Scripps Institution of Oceanography, La Jolla, CA 92093-0218

Submitted to the Proceedings of the 1998 Organism-Sediment Interactions Symposium/Workshop, Belle Baruch Institute for Marine Biology and Coastal Research, University of South Carolina.
Abstract

The responses of the continental slope benthos to organic detritus deposition were studied with a multiple tracer approach. Study sites were offshore of Cape Fear (I) and Cape Hatteras (III), NC (both 850 m water depth) and were characterized by different organic C deposition rates, macrofaunal densities (III >I in both cases) and taxa. Natural abundances of 13C and 12C in particulate organic carbon (POC), dissolved inorganic carbon (DIC) and macrofauna indicate that the reactive organic detritus is marine in origin. Natural abundance levels of 14C and uptake of 13C-labeled diatoms by benthic animals indicate that they incorporate a relatively young component of carbon into their biomass. 13C-labeled diatoms (Thalassiosira pseudonana) tagged with 210Pb, slope sediment tagged with 113Sn and 228Th-labeled glass beads were emplaced in plots on the seafloor at both locations and the plots were sampled after 30 min., 1-1.5 d and 14 mo. At Site I, tracer diatom was intercepted at the surface primarily by protozoans and surface-feeding annelids. Little of the diatom C penetrated below 2 cm even after 14 months. Oxidation of organic carbon appeared to be largely aerobic. At Site III, annelids were primarily responsible for the initial uptake of tracer. On the time scale of days, diatom C was transported to a depth of 12 cm and was found in animals collected between 5-10 cm. The hoeing of tracer from the surface by the malvacnid Praxillea sp. may have been responsible for some of the rapid nonlocal transport. Oxidation of the diatom organic carbon was evident to at least 10 cm depth. Anaerobic breakdown of organic matter is more important at Site III. Horizontal transport, which was probably biologically mediated, was an order of magnitude more rapid than vertical displacement over a year time scale. If the horizontal transport was associated with biochemical transformations of the organic matter it may represent an important but nearly invisible diagenetic process.
Introduction

The deposition of organic carbon on the continental slope is an important component of the global and marine biogeochemical carbon cycles. Nearly 90% of the sedimentary inventory of organic carbon deposited during the Holocene resides on the slope and rise (Premuzic et al. 1982; Romankevich 1984; Walsh et al. 1985). Deposition is focused on the upper slope between 500–900 meters water depth (Martens 1987; Thomas 1998; Thomas et al. submitted). Approximately 26% of the anaerobic carbon oxidation in marine sediments occurs between 200-2000 meters as a result of the significant carbon flux to the slope even though the region represents only 9% of the seafloor surface (Henrichs and Reeburgh 1987). The detailed sources and fates of organic matter on the slope are poorly understood, but are of importance to understanding the roles of continental margins in historical and future changes in the global carbon cycle.

Considerable spatial heterogeneity exists in terms of sediment deposition and carbon cycling in this transitional environment between shallow and deep waters. Bathymetry ranges from gently sloping, nearly featureless bottoms to steep slopes that are cut with canyons, sometimes over small areas, such as on the North Carolina margin (Blair et al. 1994; DeMaster et al. 1994). Non-steady state deposition and mass wasting characterize the steep or incised environments (Thomas 1998; Thomas et al. submitted). Organic carbon depositional fluxes and benthic oxidation rates vary 1-2 orders of magnitude and 2-3x respectively over 100-km scales (Anderson et al. 1994; Blair et al. 1994; DeMaster et al. 1994; Thomas 1998; Thomas et al. submitted). Benthic organism abundances and species compositions reflect those variations (Schaff et al. 1992). Accordingly, the pathways through which the carbon is processed are expected to vary as
well.

The objective of this study was to elucidate the nature of and benthic responses to organic matter on the continental slope off North Carolina. We examine the sources and age of naturally occurring organic carbon in sediments and fauna, and with tracer experiments, examine particle mixing mechanisms and selectivity, carbon residence time, and the roles of benthic organisms in these processes. Comparisons are drawn between two continental slope locations with contrasting carbon depositional regimes and faunal assemblages. This paper represents a synthesis of work previously published by the authors and new data.

The study sites, I and III, are offshore of North Carolina in approximately 850 meters of water (Fig. 1). Site I (32° 52'N, 76° 27'W) is 170 km southeast of Cape Fear, NC and has a gently sloping seafloor. Site III (35° 24'N, 74° 50'W) is 61 km northeast of Cape Hatteras, NC. The region in the vicinity of Site III is extensively carved by small canyons and gulleys (Mellor and Paull 1994). The convergence of the Gulf Stream and Virginia Current offshore of Cape Hatteras focuses particulates into the Site III region producing an organic depositional flux that is 20-200 times greater than at Site I (DeMaster et al. 1994; Thomas 1998; Thomas et al. submitted). Macrofauna (>300 μm) are 2-6x more abundant at Site III as a result of the elevated food supply (Schaff et al. 1992; Levin et al. in press).

A multi-tracer approach was used in this study. Natural abundance levels of 12C, 13C and 14C provided information about the sources and fates of the organic debris in the two environments. In addition, diatoms artificially enriched in 13C (95%) along with radiotracer-tagged sediment and glass beads were used in situ to identify particulate and solute transport processes in the seabed, determine organic carbon oxidation rates and to identify the organisms responsible for
the uptake and mixing of the diatomaceous material. The time scales of the in situ experiments ranged from 1 day to 14 months. The combined multi-tracer approach provided a novel view of the benthic carbon cycle on the continental slope.
Methods

A particle mixture containing 13C- and 210Pb-labeled diatoms (freeze-dried onto kaolin), 113Sn-labeled local slope sediment (10-60 μm in size), and 228Th-labeled glass beads (105-149 μm in size) was spread on the seafloor in August 1994 and October 1995 via submersible. Details concerning the multi-tracer methods are provided in Blair et al. (1996), Levin et al. (1997), and Fornes et al. (in press). Tracer particles were selected to represent a variety of natural particle types and sizes. The pelagic diatom, *Thalassiosira pseudonana*, was used because diatoms in this genus are found in surface sediments on the NC slope and beneath other upwelling regions (Cahoon et al. 1994). Subsurface sediment (>100 years in burial age) collected near Site III was used to represent local sediment low in labile organic matter. Sand-sized particles (glass beads) also were chosen because they comprise approximately 32% of the naturally occurring sediment at the study site (Kelchner 1992).

Algae, slope sediment, and glass beads were tagged with γ-emitting tracers to permit rapid detection following core recovery from the seabed. In the case of the tagged diatom, the 210Pb also served as a conservative tracer to detect particle removal from the plots for the longer 14-month experiments. Experimental design avoided excessive organic carbon enrichment of sediments; labeled diatom carbon accounted for < 1.1% of existing POC levels (1.2-1.7% C) in the upper 1 cm of sediment.

The tagged particles were spread in 40x40 cm plots on the seafloor and then were sampled using Ekman boxcores within 30 minutes of tracer spreading (T=0 plots), after ~1-1.5 days or after 14 months. The Ekman boxcores (15x15x15cm) each contained 4 subcores (a-d). Sediments within the subcores were analyzed for (a) δ13C of dissolved inorganic carbon (DIC)
and particulate organic carbon (POC), (b) $\delta^{13}C$ of infauna sorted on board ship then frozen, (c) radiotracers and glass beads, and (d) infaunal abundance and composition. Cores of background sediment were collected within 10 m of the plots for comparative purposes. All cores were stored on board ship at in situ temperature (4-6°C) until they could be subsampled.

Sediment porewater was separated from the solid phase via centrifugation and the two fractions were stored frozen until analysis. One ml porewater samples were acidified, and the resulting CO$_2$ was stripped with helium, dried via passage through magnesium perchlorate and Nafion™ tubing (Perma-Pure), and then trapped cryogenically for isotopic analysis. Subsamples of the centrifuged sediment were used for the POC analysis. CO$_2$ for isotopic analysis was produced from the POC as described in Blair and Carter (1992). The $^{13}C/^{12}C$ content of the CO$_2$ from both the DIC and POC was measured via isotope ratio mass spectrometry (Blair et al. 1996). Analyses of background cores were used to correct for the natural occurrence of ^{13}C (Blair et al. 1996). Concentrations are reported in terms of total C ($^{13}C + ^{12}C$) derived from the 95% ^{13}C-labeled diatom.

Faunal samples for ^{13}C analysis were sorted from sediments retained on a 0.3 mm mesh screen, and then frozen at -20 °C. Subcore sediments targeted for infaunal counts were sieved through a 0.3 mm screen and the animals retained were preserved in 8% buffered formalin and seawater (Levin et al., 1997).

In the laboratory, frozen animals were acidified with 1 N HCl in silver boats and dried in vacuo. The samples were then treated in an identical fashion as the POC for $^{13}C/^{12}C$ analyses. Samples that were used for the determination of ^{14}C-age were prepared similarly except that the CO$_2$ produced by combustion was analyzed by accelerator mass spectrometer at the Lawrence
Livermore Laboratory. Preserved specimens were sorted from sediments at 12 times magnification and identified to species, when necessary using a compound microscope with higher magnification.

γ-activities from the tracers were measured on wet sediment with an intrinsic germanium γ-detector (DeMaster et al. 1994; Fornes et al. in press). The 210Pb and 228Th activities in the experimental plots were corrected for naturally-occurring 210Pb and 228Th, based on profiles from background sediment cores.
Results and Discussion

Sources of Organic Matter

The organic carbon concentrations of the surface sediments (0-15 cm depth) average 1.2% and 1.7% on a dry weight basis for Sites I and III respectively (DeMaster et al. 1994). The bulk of the organic matter at both locations is marine in origin as indicated by the respective $\delta^{13}C$ values of $-18.7\pm0.1%$ and $-21.2\pm0.1%$ (Blair et al. 1994). These values are characteristic of those found along the shelf and slope of the Eastern U.S. (Hunt 1966; Tanaka et al. 1991). The different $^{13}C/^{12}C$ compositions may be attributed to the mixing of marine and terrestrial sources with approximate end member $\delta^{13}C$ values of $-19\pm1%$ and $-26\pm2%$ (Hedges and Parker 1976; Fry and Sherr 1984).

The proximity of Site III to potentially major sources of terrigenous material, such as the Chesapeake Bay and the North Carolina sounds, is consistent with the difference in sedimentary $^{13}C/^{12}C$ compositions, as well as, reported elemental C/N ratios (Site I - 7.5, Site III - 10; Blair et al. 1994). Lipid indicators of terrigenous organic matter have been identified in sediments from the Cape Hatteras slope near the Site III location (Harvey 1994). However, even though the evidence points towards a gradient in marine-terrestrial sources from Site I to III, we should not rule out the possibility that the isotopic difference originates, at least in part, from multiple marine sources with either varying species composition or diagenetic history (Gearing et al. 1984; Fry and Sherr 1984).

The sedimentary marine organic matter is a complex mixture, resulting from multiple sources. Microscopic analyses reveal planktonic and benthic diatoms and foraminifera, and seagrass fragments (Kelchner 1992; Cahoon et al. 1994; Levin et al. unpublished data). Lipid
distributions of Cape Hatteras slope sediments suggest inputs from dinoflagellates and marine heterotrophs (Harvey 1994). The abundances of microbial and zooplankter lipids indicate extensive heterotrophic recycling of the organic pool.

At Site III, particulate transport plays a role in determining the composition of the organic mix. The seaward deflection and convergence of the Gulf Stream and Virginia Current offshore of Cape Hatteras focus shelf-derived debris onto the slope (Csanady and Hamilton 1988; Walsh 1994; Blair et al. 1994; Thomas 1998; Thomas et al. in prep.). This material likely originates from a combination of terrestrial, estuarine and marine production and has been heterotrophically reworked during storage and/or transport on the shelf and upper slope. Delivery to the Site III seafloor appears to occur primarily via the slow settling of a dense suspension of flocculent snow punctuated by episodic lateral transport events (Hecker 1990; Blair et al. 1996). The complexity of the physics and geology in the Cape Hatteras area virtually guarantees that the organics are a mixture of partially reworked young and old materials.

The mechanisms of organic matter delivery to Site I are less well characterized. Downslope mass wasting should not be an important factor due to the gentle slope (2-3°, Schaff et al. 1992). In addition to local productivity, an additional source of material may be transport from the south via the Gulf Stream. Also, Gulf Stream meanders may entrain nearshore production from the west and transport it seaward to the site.

Particle Transport within the Seabed

Biological particle mixing rates are dramatically different at the two sites. The biodiffusion coefficients, \(D_b\), estimated using naturally occurring excess \(^{234}\)Th profiles in the seabed, were
0.3±0.1 and 13±7 cm² yr⁻¹ for Sites I and III respectively (Fornes 1996; Fornes et al. in press).

Infaunal abundances and activities are potential controls on the Δ¹³C values. Metazoan macrofaunal densities were nearly 3 times greater at Site III during the study period, which is consistent with past observations (Schaff et al. 1992; Blake and Grassle 1994; Fornes et al. in press; Levin et al., in press; Table 1). Macrofauna appeared to be distributed deeper at Site III. Of the approximately 25,000 individuals m⁻² counted in 1994-95 at Site III, about 15% were found below 5 cm (Fornes et al. in press; Levin et al. in press). In contrast, 8% of 9,000 individuals m⁻² were collected from below 5 cm at Site I. Polychaetes were the dominant metazoan macrofaunal taxon at both sites though the major polychaete taxa differed between Sites I and III (Table 1; Schaff et al. 1992; Levin et al., in press). Agglutinated protozoa (foraminifera and xenophyophores) were common at both sites yet were slightly more abundant and much more diverse at Site I (Hughes 1996; Gooday, pers. comm.). Larger infauna (megafauna) were not quantified by our Ekman cores, but also may be important bioturbators.

The artificial multi-tracer mixture containing ¹³C-labeled Thalassiosira pseudonana, tagged sediment and glass beads was emplaced in plots at both sites to determine how the particle mixing processes might vary. At Site I, little ¹³C-tracer was detected below 1 cm depth in the seabed in the T=0 controls (4±5%, n=5 for 1994-95) and the T=1, 1.5 d plots (4±5%, n=6; Fig. 2). The tagged sediment and glass beads exhibited parallel behaviors (Fornes 1996; Fornes et al. in press). The similarities between the T=0 and T=1, 1.5 d plots indicate that passive settling of tracer down burrows and tubes and artifacts associated with the experimental procedure cannot be discounted as an important mode of delivery of the tracers below 1 cm in those experiments. Evidence for biologically mediated transport was observed in a portion of a 1.5 d plot that was subsampled for
the γ-emitter measurements. In that subcore, subsurface peaks of 210Pb (tagged diatom) and 113Sn (sediment) were observed at 3-5 cm that accounted for 2% and 0.4% of the total respective inventories (Fig. 3). The transport appears to have been selective for the diatom as indicated by the 210Pb/113Sn ratios for the peak (24±8) and the total core (5±0.2).

After 14 months, 4.1±3.6% (n=3; Fig. 4) of the 13C-tracer remained in the plots. Loss from the plot occurred by both in situ oxidation or horizontal transport. The relative importance of those two processes was resolved using the inventory of diatom-tagged 210Pb. The portion of tracer 210Pb remaining after 14 mo, 10±8.6%, indicates that approximately 90% of the diatom may have been lost via horizontal transport if it is assumed that the 13C and 210Pb tracked each other reasonably well. The mode of horizontal removal could have been either biological or physical. We currently do not have a means to distinguish between the two at this site.

The bulk of the tracer that remained in the plots at Site I after 14 mo was sequestered in the upper 2 cm of the seabed. Transport below that depth was minimal with the exception of the creation of a subsurface peak centered at 6 cm in one subcore. In summary, bioturbation over time scales of days to one year at this site is best characterized by slow diffusive mixing of particles coupled with an occasional nonlocal advective transfer of material to depths of 3-6 cm (Fornes et al. in press).

Mixing occurred more rapidly and deeper at Site III. In the T=0 control plots, ≤2% of the 13C-labeled diatom was found below 2 cm (Fig. 2). In contrast, 7-17% of the diatom tracer was found below 2 cm in the two T=1.5 d plots. Multiple subsurface peaks were observed with the most prominent occurring at 10-12 cm. The tagged glass beads and sediment exhibited similar distributions (Levin et al. 1997; Fornes et al. in press).
The whitish tracer mixture was observed at the base of a maldanid tube (*Praxillella* sp.) at 13 cm depth in one T=1.5 d subcore. The individual in the tube had not ingested the tracer (as indicated by its $\delta^{13}C$ value) which suggests that the tracer was hoed to depth by this head-down deposit feeder (Levin et al. 1997). Shallow-water members of the same subfamily (*Euclyminae*) appear to drag fresh surface material down their tube into the feeding cavity as well (Mangum 1964; Kudenov 1978; Weinberg 1978; Dobbs and Whitlach 1982). The ratios of tagged diatom, sediment and glass beads indicates that the transport process was nonselective for the tracer particle types (Fornes 1996; Fornes et al. in press; Levin et al. in press).

Shallower subsurface peaks in tracer concentration were observed in these (Fig. 2) and previous in situ experiments using ^{13}C-Chlorella at this site (Blair et al. 1996). The transport processes that created the peaks were not significantly selective for any of the particle types in the tracer mixture (Fornes et al. in press). The animals responsible for the movement of tracer to depths of 2-6 cm have not been positively identified. Based on ^{13}C-incorporation (see below), faunal vertical distributions within the sediment, and the construction of distinct tube and burrow systems that might serve as repositories of tracer, candidates for the nonlocal transport include the polychaete *Scalibregma inflatum*, *Aricidea quadrilobata*, several species of maldanids, and the nereid *Ceratocephale loveni* (Blair et al. 1996).

The ^{13}C-diatom organic matter and other tracers were largely lost from the plots at Site III after 14 months. The portions of ^{13}C and ^{210}Pb remaining were 0.9±0.5% and 1.7±0.9% respectively and were distributed to at least 8 cm depth (Fig. 4). Biological removal is suspected because of the extensive tracks and trails on the sediment surface. Certain demersal fish species, such as the eelpout *Lysenchelys verrilli*, have population densities nearly an order of magnitude
higher on the middle slope of Cape Hatteras than adjacent slope regions possibly as a result of abundant infaunal prey (Hecker 1994). These same predators may be responsible for rapid horizontal particulate transport. For example, eelpout were observed wallowing in plots shortly after tracer emplacement. Flags and stakes marking some 14-mo plots were pushed out radially from the center suggesting disturbance from within the plot as opposed to a unidirectional movement across plots as might be expected by a physical process.

Initially vertical particle mixing at Site III was primarily nonlocal in nature but it took on a diffusive appearance over time scales of weeks to months (Blair et al. 1996; Fornes et al. in press). At the same time, large, surface-dwelling deposit feeders and predators competed for the newly deposited material and moved it laterally. Rapid vertical transport provides a means for subsurface organisms to deal with the competitive pressures on the surface for the same food resources (Jumars et al. 1990) and may be critical for the support of the subsurface ecosystem (Levin et al. 1997).

Organic carbon uptake, assimilation and oxidation in the seabed

The natural abundances of 12C, 13C, and 14C provide information concerning the source of the organic carbon that is assimilated into benthic biomass. The δ^{13}C of annelids (-16.5±0.3‰, n=16), non-annelid metazoans (-18.2±0.6‰, n=7) and agglutinating protozoans (-18.7±0.2‰, n=25) at Site I were the same as, or more positive than that of the sedimentary organic matter (Levin et al. in press) in background (non-experimental) sediments. The isotopic composition of the protozoans likely reflects in part the carbon associated with their tests of sediment particles. The 13C-enrichment exhibited by the metazoans relative to the bulk sediment may have been the
result of either the selective incorporation of an organic fraction from the sedimentary pool or a metabolic isotope effect by the animal itself (Hentschel 1998; Levin et al. in press). All of the $\delta^{13}C$ values indicated a diet dependent on marine organic sources (Fry and Sherr 1984).

Similar patterns existed at Site III. Annelid, non-annelid and agglutinated protozoan $\delta^{13}C$ values were $-19.0\pm0.2\%$ (n=30), $-19.8\pm0.8\%$ (n=8) and $-20.0\pm0.1\%$ (n=5) respectively. These values were comparable to that of the metabolizable organic fraction, -18%, estimated from DIC production and fluxes (Thomas 1998; Thomas et al. submitted).

Natural ^{14}C abundances of animals from the Cape Hatteras slope indicated clearly that young organic matter was preferentially incorporated into biomass (Table 2). All animals, ranging from the demersal eelpout to subsurface-dwelling annelids, had modern ^{14}C ages despite a >900-year age of the surface organic matter. Particle discrimination, possibly by feeding on young surficial floc, and the selective incorporation of biochemically recognizable fractions may have contributed to the young ages.

Some of the macrofauna that first accessed recently deposited organic matter have been identified by their elevated ^{13}C-content following the 1 to 2 day exposure to the tracer diatoms. Approximately 60% of the agglutinated protozoan and annelid specimens collected in the 1-1.5 d experiments had ^{13}C-contents in large excess of that found in the T=0 controls (Fig. 5; Levin et al. in press). Non-annelid metazoans (molluscs, crustaceans and other taxa) incorporated far less tracer on average. Surface-deposit feeding annelids were important consumers of the tracer, whereas subsurface-deposit feeders and carnivores were not (Levin et al., in press). Both annelids and protozoans retained significant levels of diatom carbon 14 months after tracer emplacement with annelids apparently retaining more (Fig. 5). The tracer C was distributed through surface-
and subsurface-deposit feeding as well as carnivorous annelids.

Annelids were the primary consumers of tracer in the 1.5 d treatments at Site III (Fig. 5; Levin et al. in press). Over 60% of the individuals collected for isotope analysis from the 1.5 d plots were 13C-enriched. Aricidea spp. and maldanids consumed the most diatom tracer (Table 3). The tracer 13C was retained in some species (e.g. Ceratocephale loveni, Levinsenia and Cossura sp.) after 14 months, though levels were considerably lower than at Site I. The between-site difference in retention reflects the greater loss of tracer from the Site III plots via horizontal transport.

Oxidation of the 13C-labeled diatom led to the accumulation of dissolved inorganic 12C (DI13C) in the sediment pore water at both sites (Fig. 6). At Site I oxidation occurred principally at the surface and the DI13C appeared to diffuse into the seabed. Application of a reaction-transport model (see Appendix) verified that observation and indicated that solute transport is dominated by molecular diffusion. Bioirrigation was not a significant factor at Site I.

The oxidation of organic carbon is typically treated as a pseudo-first order process (Berner 1980). The rate coefficient, k, is dependent on molecular structure (de Leeuw and Largeau 1993), sample matrix (e.g. diatom frustules, clay aggregates; Burdige and Martens 1988; Hedges and Keil 1995; Cowie and Hedges 1996), age (Middelburg 1989) and environment (Cowie and Hedges 1991; Sun et al. 1993; Canfield 1994). In the in situ experiments, time was required for the colonization of the newly emplaced tracer, thus k should have increased with time until a maximum value is reached. The fit of the model output to the data was improved by the inclusion of a time-dependent k. Examples of potential trajectories of k as a function of time are depicted in Figure 7. The apparent rate coefficients increased to realistic values ($\sim 10-20 \text{ yr}^{-1}$);
Westrich and Berner 1984) in less than two days. Values >50 yr\(^{-1}\) may have been attained for a short period after 1.5 d as the very labile fractions were oxidized (Westrich and Berner 1984; Henrichs and Doyle 1986). After the most reactive or accessible components in the diatom matrix were consumed, \(k\) would have decreased with time. Based on the apparent oxidative loss from the long term plots, the 14-mo average value of \(k\) was \(-1\) yr\(^{-1}\), which is consistent with laboratory-based algal degradation experiments (1-7 yr\(^{-1}\); Garber 1984; Westrich and Berner 1984).

\(\delta^{13}C\) penetration into the seabed was deeper at Site III (Fig. 6). Coincident subsurface peaks in PO\(^{13}C\) and \(\delta^{13}C\) centered near 10 cm indicated that the \(\delta^{13}C\) found deep was the result of the oxidation of subducted diatom tracer. Much of the subsurface oxidation of organic carbon was anoxic as suggested by the natural abundances of \(^{13}C/^{12}C\) in the background DIC pool (Blair et al. 1994). If the fate of the diatom tracer was characteristic of what happens to natural detrital falls then the subduction activities of macrofauna at this site play a significant role in determining the aerobic/anaerobic exposure history of reactive organic matter. This in turn will influence the pathways and rates of organic diagenesis and the resulting geochemical record.

The reaction-transport model along with background DIC pore water profiles, indicated irrigation is an important solute transport process at Site III. The model output also suggested that either irrigation rates were higher at the surface than in the subsurface, or \(k\) was larger for subducted material. The former scenario is plausible because infaunal densities decrease with depth (Levin et al. in press). Aller (1988) discussed the relationship between burrow density and irrigation intensity. Subduction of newly deposited organic matter may have increased \(k\) by mixing the material with sediment and thus providing an inoculum for microbial degradation. The relative importance of the two scenarios has not been determined.
Summary and Conclusions

The physical oceanography of the North Carolina continental slope leads to the deposition of organic detritus that is complex in composition. The detritus is predominantly marine in origin and much of it has been recycled heterotrophically. Components of the organic mixture are modern to greater than 900 years in age. The range in age is possibly due to differential storage on the shelf and upper slope. The youngest material is preferentially incorporated into the benthic biomass presumably because it alone is biochemically recognizable by organisms for anabolic processes.

How the benthos react to the deposition of organic detritus appears to be linked to the average rate of deposition. Organic matter deposited in an environment that normally receives a slow particulate flux tends to be consumed aerobically on or near the sediment surface. Agglutinating protozoans and surface-feeding annelids are the primary macrofaunal consumers of phytodetritus shortly after deposition. Non-local transport of material to the subsurface occurs sporadically. Microbial colonization of the deposited material occurs over the time scale of days.

Organic matter falling on a seabed that is characterized by rapid particle deposition is rapidly mixed into the seabed and much of it is decomposed anaerobically. Offshore of Cape Hatteras, nonlocal transport of material down to >10 cm by annelids is a frequent phenomenon and may be an important source of food for subsurface-feeding animals and the anaerobic ecosystem.

At least an order of magnitude more material was moved horizontally across the sediment surface than vertically into the seabed over a year's period. If the horizontal transport is largely physical in nature or associated with faunal locomotion, the most obvious impact on the carbon
biogeochemistry will be the homogenization of the surface sediments. On the other hand, if transport is the consequence of ingestion and egestion, it could represent a significant, yet virtually invisible, diagenetic process. The importance of horizontal transport on the organic geochemical record merits further investigation.

The interrelationship between sedimentary organic carbon and the benthos is complex. The character and depositional flux of organic carbon have a profound influence on faunal composition and density. At the same time, the characteristics of the benthic organisms control the fate of the organic matter after deposition. Thus, the resulting molecular organic record and the organic carbon flux are linked. Characterization of that linkage awaits future studies of organism-sediment interactions.

Acknowledgments

The skilled contributions of the crews, pilots and captain of the R/V Edwin Link and Johnson SeaLink were essential for this project. We thank the many participants of the SLOPEX cruises, which includes D. Beauregard, S. Boehme, E. Clesceri, R. Collman, J. Crooks, D. Daley, C. DiBacco, D. Dinsmore, A. McCray, T. Pease, C. Reimers, W. Savidge, and D. Talley, for their technical assistance. D. Albert, R.C. Aller, L. Benninger, M. Alperin, R. Jahnke and C.S. Martens were of great assistance during the DOE Ocean Margins Program portion of this research. This research was supported by grants from the NOAA National Undersea Research Program at Wilmington, NC, the National Science Foundation (OCE 93-11711 and 93-01793), and the Department of Energy (DE-FG05-95ER62082).
Appendix

A reaction-transport model that employs nonlocal as well as diffusive mixing was used to simulate 13C-labeled diatom movement and oxidation in the seabed. Portions of this model have been used to reproduce subsurface profiles of 13C-labeled Chlorella emplaced in situ on NC slope sediments (Blair et al. 1996), and 13C-labeled diatoms in laboratory experiments using slope and shelf sediments (Thomas 1998). The model describes the distribution of tracer in two pools: the instantaneously deposited surface layer and the subsurface distribution. The concentration of PO13C in the deposited tracer layer, $C_o (0 \leq x \leq \varepsilon)$, is described by:

$$\frac{\partial C_o}{\partial t} = \frac{\partial}{\partial x} (D_b \frac{\partial C_o}{\partial x}) - [k + R] C_o$$ \hspace{1cm} (1)

where:

- $C =$ concentration of PO13C (μmoles 13C cm$^{-3}$),
- $t =$ time (yr),
- $x =$ depth in sediment (cm),
- $D_b =$ biological mixing coefficient (cm2 yr$^{-1}$),
- $k =$ first order decay constant for the diatom (ym$^{-1}$),
- $R =$ nonlocal transport removal term (yr$^{-1}$), and
- $\varepsilon =$ thickness of the tracer layer (1mm).

Removal of tracer from the surface layer is assumed to be first order with respect to surface
concentration and to be unidirectional. It is also assumed that the 1 mm thick tracer layer remains well-mixed and that deposit feeding is depth independent within the layer. The concentration profile of PO13C below the tracer layer (\(\epsilon \leq x \leq L \)) was simulated using:

\[
\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} (D_b \frac{\partial C}{\partial x}) - kC + s_x \overline{C_o},
\]

where:

\[L = \text{depth of sediment in the flux chamber (cm)}, \]

\[
\overline{C_o} = \frac{1}{\epsilon} \int_{0}^{\epsilon} C_o \, dx
\]

\[s_x = \text{nonlocal transport supply term (yr}^{-1}). \]

Where there are multiple subsurface peaks, the nonlocal removal term, \(R \), is given by:

\[
R = \sum_{x=1}^{n} r_x
\]

where \(n \) is the number of peaks. For any given peak, the nonlocal supply term, \(s_x \), is related to \(r_x \) by:

\[
\int_{0}^{\epsilon} r_x \, dx = \int_{x_i}^{x_f} s_x \, dx.
\]
Equations 1 and 2 were solved numerically with an explicit finite difference method. The two equations were coupled by the nonlocal transport term, $s_x \mathcal{C}_o$, and the boundary condition described in 6b, which establishes conservation of tracer flux across the interface at $x = \epsilon$.

Boundary conditions for the solutions were:

\[
\frac{\partial C_o}{\partial x} = 0 \quad x = 0 \quad (6a)
\]
\[
\frac{\partial C_o}{\partial x} = \frac{\partial C}{\partial x} \quad x = \epsilon \quad (6b)
\]
\[
\frac{\partial C}{\partial x} = 0 \quad x = L. \quad (6c)
\]

The reaction portion of the model simulated D^{13}C production in the surface tracer layer and subsurface porewater pools. The concentration of D^{13}C oxidatively produced was simulated using:

\[
\frac{\partial [\text{D}^{13}\text{C}]}{\partial t} = D_o \frac{\partial \Phi}{\partial x} \left(\frac{\partial [\text{D}^{13}\text{C}]}{\partial x} \right) + kC \quad (7)
\]

where:

\[
D_s = D_o \times \Phi^2 \quad (\text{Ullman and Aller} 1982) \quad (8)
\]

$D_o = \text{temperature/viscosity corrected free solution diffusivity of HCO}_3^-$

$\Phi = \text{sediment porosity}$.

At time zero, the concentration of D^{13}C in both the sediment and overlying water was set at zero. The overlying water was assumed to be well-mixed, and the only source of D^{13}C to the
overlying water was the flux out of the sediment. All model profiles were integrated over 1 cm intervals to facilitate comparison with data. Time steps of 0.1 hours were adequate to maintain stability and deal with stiffness.
Literature Cited

Table 1: Densities and taxonomic composition of North Carolina slope benthic macrofauna. Data are from August 1994 background cores and experimental plots.

<table>
<thead>
<tr>
<th></th>
<th>Site I</th>
<th></th>
<th>Site III</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># of boxcores</td>
<td>9</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Individuals m⁻²</td>
<td>10,249</td>
<td></td>
<td>29,362</td>
<td></td>
</tr>
<tr>
<td>Standard error</td>
<td>1,145</td>
<td></td>
<td>3,734</td>
<td></td>
</tr>
</tbody>
</table>

Percentages of major taxa

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Site I</th>
<th>Site II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polychaetes</td>
<td>36.1</td>
<td>32.0</td>
</tr>
<tr>
<td>Oligochaetes</td>
<td>14.6</td>
<td>3.9</td>
</tr>
<tr>
<td>Crustaceans</td>
<td>14.2</td>
<td>23.3</td>
</tr>
<tr>
<td>Molluscs</td>
<td>16.1</td>
<td>21.1</td>
</tr>
<tr>
<td>Coelenterates</td>
<td>9.3</td>
<td>11.6</td>
</tr>
<tr>
<td>Other</td>
<td>9.7</td>
<td>8.1</td>
</tr>
</tbody>
</table>
Table 2: Natural abundance 14C contents and ages of fauna and sediment from the Cape Hatteras continental slope region. Positive Δ^{14}C values (or negative 14C ages) reflect the addition of 14C produced by the atmospheric testing of nuclear weapons. Positive 14C ages are in years before present (1950).

<table>
<thead>
<tr>
<th>Fauna/Sample</th>
<th>Depth in sediment (cm)</th>
<th>Δ^{14}C (s.d.)</th>
<th>14C age (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumbrineridae1</td>
<td>10-15</td>
<td>82.5 (8.4)</td>
<td>-655</td>
</tr>
<tr>
<td></td>
<td>>15</td>
<td>66.1 (5.2)</td>
<td>-529</td>
</tr>
<tr>
<td>Onuphidae1</td>
<td>5-7</td>
<td>77.9 (6.8)</td>
<td>-620</td>
</tr>
<tr>
<td></td>
<td>9-11</td>
<td>80.4 (5.8)</td>
<td>-667</td>
</tr>
<tr>
<td>Maldanidae1</td>
<td>?</td>
<td>47.9 (7.0)</td>
<td>-388</td>
</tr>
<tr>
<td></td>
<td>10-11</td>
<td>53.5 (8.7)</td>
<td>-431</td>
</tr>
<tr>
<td></td>
<td>10-15</td>
<td>58.1 (8.3)</td>
<td>-467</td>
</tr>
<tr>
<td>Trichobranchidae1</td>
<td>1-2</td>
<td>40.3 (8.7)</td>
<td>-348</td>
</tr>
<tr>
<td></td>
<td>10-15</td>
<td>47.0 (7.0)</td>
<td>-380</td>
</tr>
<tr>
<td>Goniadidae1</td>
<td>2-5</td>
<td>48.0 (6.1)</td>
<td>-388</td>
</tr>
<tr>
<td>Cirratulidae1</td>
<td>2-5</td>
<td>19.5 (6.8)</td>
<td>-160</td>
</tr>
<tr>
<td>Lysencheley2 verrilli</td>
<td></td>
<td>73.8 (6.8)</td>
<td>-589</td>
</tr>
<tr>
<td>Surface sediments</td>
<td>0-4</td>
<td>-100 to -220</td>
<td>+870 to +2050</td>
</tr>
</tbody>
</table>

1 polychaete
2 demersal fish
Table 3: Examples of heavily 13C-labeled macrofauna from 1-1.5 d experiments. Background (nonlabeled) δ^{13}C values of annelids and agglutinating protozoans at Site I were -16.5±0.3‰ and -18.7±0.2‰, respectively. Background annelid, non-annelid and agglutinated protozoan δ^{13}C values were -19.0±0.2‰, -19.8±0.8‰ and -20.0±0.1‰ at Site III.

<table>
<thead>
<tr>
<th>Site I</th>
<th>Site III</th>
</tr>
</thead>
<tbody>
<tr>
<td>** annelids</td>
<td>** annelids</td>
</tr>
<tr>
<td>Melinna sp.</td>
<td>Melinna sp.</td>
</tr>
<tr>
<td>Cirratulid</td>
<td>Maldanid</td>
</tr>
<tr>
<td>Ceratocephale sp.</td>
<td>Aricidea sp.</td>
</tr>
<tr>
<td>Protozoans</td>
<td></td>
</tr>
<tr>
<td>Mudball (foram)</td>
<td>Scaliobregma</td>
</tr>
<tr>
<td></td>
<td>inflatum</td>
</tr>
<tr>
<td>Astrorhiza-like</td>
<td></td>
</tr>
<tr>
<td>Bathysiphon rufum</td>
<td></td>
</tr>
</tbody>
</table>

Background δ^{13}C values for annelids, non-annelid, and agglutinated protozoans were taken from Site I and Site III.
Figure Captions

Figure 1: Study site locations on the North Carolina continental slope.

Figure 2: The concentration of tracer carbon in the POC fraction as a function of depth in the seabed at Sites I and III. Open circles represent T=0 controls. The closed triangles are concentrations after 1.5 d on the seafloor. Graphical inserts have expanded concentration scales so that subsurface peaks can be seen. The subsurface peaks near 10 cm at Site III are associated with maldanid feeding chambers.

Figure 3: Depth distribution in the seabed of tracer 210Pb and 113Sn. The 210Pb and 113Sn were sorbed to the labeled diatom and old slope sediment, respectively. At Site I in the 1.5 d experiments the two tracers typically tracked each other indicating that transport was not particle selective. However, in the situation shown diatoms were selectively transported to 4-5 cm relative to the tagged sediment suggesting biological mediation. The plot on the right has an expanded activity scale to show the subsurface peak.

Figure 4: The concentration of tracer carbon in the POC fraction after 14 months. Note the difference in concentration scales between this and Fig. 2. Most of the loss from the plots was due to horizontal transport rather than in situ oxidation as indicated by tracer 210Pb inventories. The symbols denote data from two separate experimental plots.

Figure 5: Incorporation of tracer carbon by infauna. Plots 5a and c illustrate the percent of analyzed individuals that were labelled as a function of major taxon (annelids, non-annelid metazoans and protozoans) and time of exposure to tracer at Sites I and III. δ^{13}C values of -12% and -15% were used as thresholds to determine label uptake at Sites I and III respectively. The numbers shown on the bars are the number of individuals analyzed. Plots b and d show the mean
\[\delta^{13}C \text{ values of the infauna}. \] Values on the bars are the standard deviations for the means.

Figure 6: The concentration of tracer diatom carbon in the DIC fraction after 1.5 days. Oxidation of emplaced diatoms was largely localized at the surface at Site I. DIC transport into the seafloor was controlled by molecular diffusion. At Site III, oxidation occurred at depth. Note the subsurface peaks near 10 cm which correspond with those in the POC fraction.

Figure 7: The potential evolution of the rate coefficient for the oxidation of the tracer carbon as a function of time at Site I. The time dependence was estimated by fitting reaction-transport model output to the measured DIC profiles from 1-1.5 d experiments. The model is described in the Appendix. Model parameters were as follows. \(C_0 \) was adjusted to match the depth-integrated inventory of diatom POC. \(D_b = 0.5 \text{ cm}^2/\text{yr} \) except in some cases the fit was improved if \(D_b \) was set to 5-10 cm²/yr in the upper 1 mm. This higher value may reflect small scale mixing processes that were either natural or the result of experiment manipulations. \(D_o \), the diffusivity of bicarbonate in seawater, equaled 0.58 cm²/d. \(T=0 \) DIC profiles were used to correct \(T=1, 1.5 \) d distributions for the oxidation that occurred during core retrieval and storage. The different line types (solid, dash, dot, etc.) correspond to individual experimental plots.
Site I T=1.5 d

Fig. 3 Blair
Site III

Diatom C (umol cm$^{-3}$ ws)

Site I

Diatom C (umol cm$^{-3}$ ws)

Depth (cm)
Fig. 6 Blair