
SANDIA REPORT
SAND2001-3065
Unlimited Release
Printed September 2001

Experiments on Adaptive Techniques for
Host-Based Intrusion Detection

Timothy Draelos, Michael Collins, David Duggan, Edward Thomas, and Donald Wunsch

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department
of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government, nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or
assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represent
that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof,
or any of their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Government, any
agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/ordering.htm

mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov

3

SAND2001-3065
Unlimited Release

Printed September 2001

Experiments on Adaptive Techniques
for Host-Based Intrusion Detection

Timothy Draelos and Michael Collins
Cryptography and Information Systems Surety Department

David Duggan
Networked Systems Survivability and Assurance Department

Edward Thomas
Independent Surveillance Assessment & Statistics Department

Sandia National Laboratories
P. O. Box 5800

Albuquerque, NM 87185-0785

Donald Wunsch
Department of Electrical & Computer Engineering

University of Missouri/Rolla
131 Emerson Electric Co. Hall

131 Miner Circle
Rolla, MO 65409-0040

ABSTRACT
This research explores four experiments of adaptive host-based intrusion detection (ID) techniques
in an attempt to develop systems that can detect novel exploits. The technique considered to have
the most potential is adaptive critic designs (ACDs) because of their utilization of reinforcement
learning, which allows learning exploits that are difficult to pinpoint in sensor data. Preliminary
results of ID using an ACD, an Elman recurrent neural network, and a statistical anomaly
detection technique demonstrate an ability to learn to distinguish between clean and exploit data.
We used the Solaris Basic Security Module (BSM) as a data source and performed considerable
preprocessing on the raw data. A detection approach called generalized signature-based ID is
recommended as a middle ground between signature-based ID, which has an inability to detect
novel exploits, and anomaly detection, which detects too many events including events that are not
exploits. The primary results of the ID experiments demonstrate the use of custom data for
generalized signature-based intrusion detection and the ability of neural network-based systems to
learn in this application environment.

4

5

CONTENTS

1. Introduction... 9

1.1. Related Work .. 11
1.2. Organization of Report ... 12

2. Data Sources ... 12

2.1. Exploit Classes.. 14
2.2. Solaris Basic Security Module.. 15
2.3. Data Collection for Intrusion Detection System Training and Testing 15
2.4. Data Representation and Preprocessing.. 19

3. Intrusion Detection Approaches ... 22
3.1. Signature-Based Intrusion Detection .. 23
3.2. Generalized Signature-Based Intrusion Detection.. 26
3.3. Anomaly Detection ... 26
3.4. Combination of Detection Approaches... 27

4. Intrusion Detection Experiments .. 28

4.1. Intrusion Detection System Control.. 29
4.2. Intrusion Detection using an Elman Recurrent Neural Network 32
4.3. Intrusion Detection Using Adaptive Critic Designs ... 37
4.4. Anomaly Detection of Intrusions.. 46

5. Conclusions... 56

6. References... 58

7. Appendix A—Details of the Solaris BSM.. 60

7.1. BSM Statistics... 61

FIGURES
1. Theoretical comparison of intrusion detection approaches ..23

2. Comparison of different intrusion detection approaches in reality ..25

3. Potential combination of intrusion detection approaches...28

4. Future direction of intrusion detection systems..29

5. State-based intrusion detection system control ..30

6. Adaptive critic design for intrusion detection system control..32

7. Elman network Experiment 1 after 10,000 training epochs ...34

8. Elman network Experiment 1 after 50,000 training epochs ...34

6

9. Elman Experiment 2 network training results on multiple exploits36

10. Elman Experiment 2 network test results on multiple exploits..36

11. Elman Experiment 2 network training results on Variant data set ...37

12. Adaptive critic design for BSM-based intrusion detection ..40

13. Improved adaptive critic design for HDP training ...40

14. ACD training results after 10 iterations..43

15. ACD training results after 20 iterations..43

16. ACD test results after 10 training iterations ...44

17. ACD test results after 20 training iterations ...44

18. ACD training results on multiple exploits..45

20. ACD training results on Variant data set..46

21. Fraction of events by type in training set ...48

22. Distribution of fraction of events by type per session in training set48

23. Maximum value of EWMA within each session of training set ..50

24. Distribution of maximum value of EWMA within each session of training set50

25. Maximum value of EWMA within each session of test set ...51

26. EWMA process for Session 13 ..51

27. EWMA process for Session 187 ..52

TABLES
1. Possible cost assignments for intrusion detection decisions ..11

2. Clean and exploit BSM files for training and testing ID systems ..18

3. Strengths and weaknesses of intrusion detection approaches ..27

4. Expected incidence of false alarms for each intrusion detection approach............................28

5. Numeric eXpert-BSM configuration parameters ...31

6. Elman recurrent neural network-related questions, Experiment 1 ...33

7. Elman recurrent neural network-related questions, Experiment 2 ...35

8. The reinforcement-learning approach for penalizing or rewarding the IDS38

9. Labels and hexadecimal identifiers for BSM tokens..58

10. Token frequencies in the analyzed audit files ..59

11. Frequency of token patterns in the 1998 DARPA audit file ..61

12. Frequency of token patterns in the 2000 DARPA audit file ..62

13. Frequency of token patterns in the rdist audit file..62

7

NOMENCLATURE
ACD adaptive critic design

BSM Basic Security Module

CMAC cerebellar model articulation controller

DHP dual heuristic programming

DOS denial of service

EWMA exponentially weighted moving average

HDP heuristic dynamic programming

ID intrusion detection

IDS intrusion detection system

IP Internet protocol

MLP multilayer perceptron

PCA principal components analysis

R&D research and development

STAT state transition analysis technique

uid user identification

ACSAC Annual Computer Security Applications Conference

DARPA Defense Advanced Research Projects Agency

DISCEX DARPA Information Survivability Conference and Exposition

MIT Massachusetts Institute of Technology

NISSC National Information Systems Security Conference

Sandia Sandia National Laboratories/New Mexico

UMR University of Missouri/Rolla

8

MATLAB™ A high performance language for technical computing, MATLAB is
developed and marketed by The MathWorks, Inc.

NT™ NT is a trademark of Microsoft Corporation for its Windows
microcomputer operating system.

Solaris™ Solaris is a trademark of Sun Microsystems for its microcomputer
operating system.

SPARC™ SPARC is a trademark of Sparc International for a computer architecture
developed by Sun Microsystems.

UNIX™ UNIX is a trademark of AT&T Bell Laboratories for its microcomputer
operating system.

SNORT SNORT shareware is a small, highly configurable, portable network-based
IDS.

RealSecure™ RealSecure is a trademark of Internet Security Systems (ISS) for its
intrusion detection system.

NFR™ NFR is a trademark of Network Flight Recorder, Inc. for its intrusion
detection system.

Cisco Secure™ Cisco Secure is a trademark of Cisco Systems, Inc., for its intrusion
detection system.

eXpert-BSM™ eXpert-BSM is a trademark of SRI International for its intrusion detection
system.

9

Experiments on Adaptive Techniques for
Host-Based Intrusion Detection

1. Introduction

The potential of intrusions into computer networks has created a sense of urgency in developing
systems capable of detecting attacks before damage results. As computing has become more and
more distributed, the number of legitimate network transactions has increased dramatically,
setting up a classic information surety dilemma of preventing unauthorized use of network
resources while allowing authorized use.

Firewalls are intended to provide a form of electronic protection. However, even with the advent
of firewalls, adversaries can attack computer systems by exploiting errors in firewall
configuration and ambiguities in security policies, finding ways around firewalls, and attacking
network services allowed through the firewall. The failure of firewalls to fully protect computer
systems from unauthorized use demands additional defenses in the form of intrusion detection
and response.

Current network intrusion detection systems have many shortcomings including

� The inability to analyze large amounts of network traffic
� The propensity to generate huge quantities of false alarms
� The inability to identify new or evolving adversarial behaviors.

Intrusion detection is the process of monitoring computer networks and systems for violations of
security policy [B00]. The components of an intrusion detection system (IDS) are as follows:

� Information source—the data utilized by the IDS
� Analysis engine—the process by which the intrusion decision is made
� Response—the action taken when an intrusion is detected.

The research project discussed in this report utilized a computer system’s audit logs as the
information source. We focused on the development of new adaptive analysis engines rather
than on responses to intrusions. Therefore, our work falls under the genre of host-based
intrusion detection. The data source for this project was limited to audit logs on Sun
Microsystems workstations running the Solaris™ Basic Security Module (BSM). Host-based
intrusion detection is considered the best way to discover exploits on the contents of computer
systems and its applications. This is especially true as network data becomes increasingly
protected with encryption.

Intrusions are generally categorized as misuse or as anomalous behavior. Misuse refers to
known unauthorized attacks, while anomalous behavior refers to behaviors or activities other
than those normally observed. Misuse detection is found in current intrusion detection systems

10

where patterns of use are scanned for known attacks. These systems are limited to protection
against known and identifiable attacks, and are vulnerable to slight variations on known
authorized attacks as well as to new attacks. Anomaly detection is a much more difficult
problem involving recognition of abnormal behaviors of users or applications, and a judgment
about the authorization of the activity. Current anomaly detection systems can suffer a high false
positive rate if trained too tightly and a high missed exploit rate if trained too loosely. In general,
an optimal threshold exists which minimizes these error rates, but that threshold can be difficult
to find and may change over time and with differing traffic patterns.

Multiple approaches exist for the analysis engine, which is designed to make the actual intrusion
decision. In this report, we present experiments on three different analysis approaches:

1. Adaptive critic designs (ACDs)
2. An Elman recurrent neural network1
3. Statistical anomaly detection.

The original goal was the development of a complete ACD-based intrusion detection system to
detect unknown adversarial behaviors. The reason for this focus is that ACDs are capable of two
critical components important to the IDS application:

1. ACDs have the ability to learn in a very murky training environment.

One of the difficulties of training an analysis engine to perform intrusion detection is that
the exact moment of intrusion is often very unclear. Moreover, how should one treat the
events leading up to, but not technically crossing the line of, what is called an intrusion?
ACDs utilize a reinforcement-based learning approach, which assesses a penalty or
reward to a system based on the job just completed. In other words, it communicates to
the system that it should have detected an intrusion somewhere in the previous time
period, without specifying exactly where. The intrusion detection problem does not offer
the pristine supervised learning environment that one finds in an application like
character recognition, where exact outcomes are precisely known in advance and samples
abound for each training character.

2. ACDs have the ability to assign costs in a realistic and complex manner.

In general, IDSs apply a binary cost structure of “proper detection is good” and “false
alarm is bad.” ACDs can allow different quantitative costs to various kinds of detection
and different kinds of false alarms. For example, Table 1 might be used in the training of
an ACD-based IDS.

1 Neural network, inspired by biological neural processing, is the name for a distributed organization of simple

processing units that is able to acquire, store, and predict information through a learning process.

11

Table 1. Possible cost assignments for intrusion detection decisions.

Activity Cost (Negative = Reward)

No detection 0

False positive 100

Missed detection of low-impact exploit 0

Missed detection of medium-impact exploit 100

Missed detection of high-impact exploit 1,000

Detection of failed low-impact exploit –10

Detection of failed medium-impact exploit –100

Detection of failed high-impact exploit –1,000

Detection of low-impact exploit –10

Detection of medium-impact exploit –1,000

Detection of high-impact exploit –10,000

1.1. Related Work
The work documented in this report presents new approaches to a challenging information surety
problem. The goal is to develop a method capable of detecting a wide variety of old and new
exploits. Other researchers are exploring ways of developing intrusion detection systems to
adapt to new, unseen attacks. Ghosh et al. [GSS99, GWC98] have employed neural networks
for both anomaly and misuse detection. They used a feed-forward, single hidden layer
perceptron neural network. To capture a sense of time in the data, they used a leaky-bucket
enhancement to the back-propagation training algorithm. Cannady [C00] applied a
reinforcement-learning algorithm, a cerebellar model articulation controller (CMAC), to
network-based anomaly detection in order to detect denial-of-service (DOS) attacks. Another
neural network approach is aimed at learning a legitimate user behavior and detecting anomalies
when an intruder poses as legitimate [RLM98]. Hoglund et al. [HHS00] used self-organizing
maps to detect anomalies in user profiling information. Encouraging results on the use of BSM
data were reported by Endler [E98], who used a neural network as a misuse detector.

Approaches based on state or cost are two methods of intrusion detection that are relevant to the
use of adaptive critics. ACDs employ both of those methodologies. A system that models the
state of each computer process according to its current privileges and detects unauthorized
transitions of privilege is described by Nuansri et al. [NSD99]. Another state-based approach
[HCDB99] allows adaptive security levels based on the state of the system. In yet another
approach, the state transition analysis technique (STAT), intrusions are specified as sequences of

12

actions that cause transitions in the security state of a system [VEK00]. Taking a state-based
approach to intrusion detection in which the number of states is limited makes sense because the
dimensionality of the space is reduced to a finite set of states and the approach looks for
unauthorized transitions between the states.

Stolfo et al. [SFLPC00] describe a cost-based approach to fraud and intrusion detection. This
approach recognizes the various costs associated with both detecting and responding to
intrusions. These costs are real but are sometimes difficult to quantify. Identified costs include
the following:

� Damage costs caused by an undetected attack
� Challenge costs incurred when responding to a detected attack
� Operational costs needed to operate and maintain an IDS.

The ACD approach makes decisions based on both the state of the environment and the cost of
each action, and is therefore both state-based and cost-based. Exploring the potential of various
cost schemes would be worth an entire research project. The work presented in this report is a
preliminary evaluation of the use of ACDs for intrusion detection. From first principles, the
potential of ACDs for this security problem is enormous, and the goal is best approached in a
series of small steps.

1.2. Organization of Report
Section 2 of this report describes the data source issues relevant to this research, including a
description of exploits, the specifics of the audit data used, the need for preprocessing of the
data, and the collection of custom training and test data for our analysis engines. Section 3
presents the standard approaches to intrusion detection, specifically signature-based and anomaly
detection, as well as a new approach called generalized signature-based intrusion detection.
Section 4 presents the intrusion detection experiments conducted during this project involving
IDS control and detection using ACDs, recurrent neural nets, and statistical anomalies. Section
5 provides concluding remarks.

2. Data Sources

Just as a burglar alarm system uses sensors to acquire the information necessary to trigger an
alarm, an IDS must utilize information from one or more sources to arrive at an intrusion
decision. In this context, the sensor or data source does not discriminate between normal and
abnormal activity but merely collects data. Of course, high-quality data is crucial to automated
intrusion detection, as the following poem points out:

A computer, to print out a fact,
Will divide, multiply, and subtract.
But this output can be
No more than debris,
If the input was short of exact.

13

IDSs are currently hamstrung by available data sources (sensors), which typically include
auditing programs and tcpdump for network traffic. Both of these are incomplete in their
coverage of potential avenues into a computer, and neither was designed with automated
intrusion detection in mind, making them less effective, especially for IDSs that require training.
For these reasons, research and development (R&D) of new intrusion detection sensors is
advised. The point of view of IDS-directed sensor R&D will impact the completeness and
representation of data provided to IDSs, and will advance the underlying science. New sensors
as well as improvements in existing sensors will greatly benefit the effectiveness of ID.

The following list includes standard intrusion detection data sources:

� Audit data

� BSM

� System logs

� File system statistics

� Application information

� ftp, telnet, lpr, etc.

� Network packets

� tcpdump, libpcap

� Other security products

� Firewall log files

� Out-of-band information

� Economic and geopolitical indicators, computer-security news bulletins, etc.

To summarize, the difficulties with intrusion detection begin with the actual data. The designer
of an IDS must handle a subset of the following difficulties for any current data source:

� Inappropriate data representation for automated intrusion detection

� Temporal nature of data

� Variable-length information

� Massive amounts of data

� Incomplete coverage of the computer system.
Another issue critical to effective ID that is not well understood is exploit characterization, i.e.,
providing explanations of the nature of exploits and their manifestations. Malicious intrusions
involve a series of exploits that are important to detect even if the overall outcome of an attack is
unsuccessful. The problem of how best to characterize exploits (e.g., by outcome, manifestation,
technique, state, or statistically) is not clear. In addition, the complexity and sheer volume of
data is a challenge to any IDS. Visualization and analysis techniques such as cluster/pattern

14

analysis and exploit/attack taxonomies (similar to those applied in the biological sciences) may
offer some insight into these problems.

2.1. Exploit Classes
A security-significant event is one that violates a system security policy by attempting to
compromise confidentiality or integrity of data within the system, or by reducing the availability
of the data or the system itself. These events are called intrusions or attacks. An attack consists
of one or more steps called exploits. An exploit could be a buffer overflow that raises a user’s
privilege level, or a simple database command that erases the entire database after the correct
privilege has been attained. Host-based intrusion detection often uses the audit information
created and collected by the operating system. Unless these audit data were designed to cover
every security-significant event possible, exploits can be designed that can go undetected,
resulting in no manifestation in the audit file.

Determination of a taxonomy for exploits is a research topic that has received little attention in
the research community. Work done in this area is closely associated with the development of a
specific IDS. Each of the several available taxonomies has used a different approach in its
definition. The taxonomy developed in the thesis “A Database of Computer Attacks for the
Evaluation of Intrusion Detection Systems” [K99] is an example of an incomplete taxonomy that
illustrates the problems with taxonomies created thus far. An individual exploit can be placed
within several of the five categories of the author’s taxonomy. Each of the taxonomies uses a
different characteristic of exploits as its basis, and, therefore, the taxonomies are incompatible.

The following classes of exploits are defined for professional-level adversaries, but may also be
operated by script-kiddie-level adversaries:2

� DOS

� Buffer overflow

� Direct exploits (i.e., directed at known bugs in applications)

� Placing of trojan horses

� Data exfiltration (i.e., getting data out of a machine).

An overall taxonomy for exploit classification has yet to be developed. The approach for this
classification will need to be determined at an initial level under one of the existing
organizational strategies, which include:

2 A script-kiddie-level adversary is a person, normally not someone who is technologically sophisticated, who

randomly seeks out a specific weakness over the Internet in order to gain root access to a system without really
understanding what it is they are exploiting because the weakness was discovered by someone else. A script kiddie
is not looking to target specific information or a specific company, but rather uses knowledge of a vulnerability to
scan the Internet for a victim who possesses that vulnerability. (Source: http://webopedia.internet.com.)

15

� Technical implementation (e.g., buffer overflow)

� Intended outcome (e.g., privilege escalation)

� Detectable manifestation (e.g., file checksum modified).

Each of these strategies has advantages and disadvantages.

Detecting exploit attempts is just as important as detecting successful exploits. For various
reasons such as complexity and unintended interactions, exploits that should work for a
particular version of software may not work. Detecting these attempts will permit an earlier
response than will waiting for a successful exploit to occur. Since a number of exploits usually
are available to take advantage of some security vulnerability, any information that can be used
to prevent a successful attack will deprive the adversary of some advantage.

2.2. Solaris Basic Security Module
The Solaris™ operating system contains an audit capability called the Basic Security Module
(BSM). This facility allows successes and failures for certain actions to be logged for later use.
While many actions can be logged, not all the communications paths into the system are covered,
leaving the uncovered paths available for use by an adversary.

BSM was developed originally as a response to needs of the government community and, in
particular, the U.S. Department of Defense for use in classified processing. Certain audit
capabilities were required and BSM fulfilled those requirements. BSM technology was created
for use in computer accounting. Later, for security reasons, it was expanded to incorporate more
areas. Auditing the access to files and services such as print service was expanded to include
access to system calls, privilege escalation, and network access. Both success and failure in the
attempted access to these resources also became an audit item.

BSM audit files contain audit records that are comprised of audit tokens each having a different
set of token fields. Generally, BSM records are variable in length because each record can have
a variable number of tokens (not all tokens appear in each record), and several audit tokens
(especially those with textual fields) have variable length.

See Appendix A for a more detailed description of the BSM audit log structure. Appendix A
also includes some statistical analysis of the contents of BSM files, the frequency of different
tokens, and the frequency of patterns of tokens.

2.3. Data Collection for Intrusion Detection System Training and Testing
Proper data collection for training an intrusion detection system poses a considerable challenge.
The sheer volume of data generated by most systems, the inherently temporal nature of this data,
the great diversity of what constitutes normal operating conditions for networked systems, and
the lack of any clearly superior method of representing the data, required us to give considerable
thought to the question of just what our training and test sets would look like. Before describing
the particular choices we finally made, we review these difficulties.

16

Over the last three years, a large quantity of data has been gathered at Massachusetts Institute of
Technology’s (MIT’s) Lincoln Laboratory under contract to the Defense Advanced Research
Projects Agency (DARPA) for the purpose of testing and comparing IDSs. This is the most
well-known and widely used data set for IDS research. The Lincoln archive includes BSM audit
files and tcpdump files from a variety of UNIX™ systems, as well as Microsoft Windows NT™

audit files. Audit information was collected from live networks, with certain exploits
deliberately introduced into the network. When this data was used for benchmarking various
IDSs, some exploits other than those deliberately introduced were detected. It turned out that
these detections were not false alarms but rather actual exploits being run against the network
from the outside. Of course, without careful analysis, they could easily have been marked as
false alarms—a problem inherent in live data used for studies in network intrusion detection.
Real networks come under attack quite frequently, but many attacks go unrecognized.

Another difficulty of using live data is the high level of background noise—the large number of
daemons and other operating system services which cause numerous kernel events to be
happening continually, more or less independently of what the users of the computer system are
doing. Of course, an IDS must be robust in the presence of a high noise level, but it may be
difficult for a network architecture to learn anything in such a noisy environment. A plausible
bootstrapping approach is to do preliminary training on less noisy (and therefore artificial) data,
then do further training to teach the network to tolerate more noise. Also note that a persistent
problem in neural network research is the lack of any good general method for optimizing the
number of hidden layers and hidden nodes; these parameters are most often determined by trial
and error. The level of complexity needed to learn in a less noisy environment provides a lower
bound on the resources needed to function in a more noisy environment.

Another issue is the difficulty or even the impossibility of pinpointing the time of an attack. This
poses a problem for both live and artificial data. In MIT’s DARPA data, sessions are labeled as
clean or exploit, but no indication is given of the location of an exploit within a session. This
greatly reduces the value of this data for our purposes. In general, a session that contains exploit
activity may begin with a perfectly normal series of operations such as logging on as an ordinary
user with a valid password. As another example, one machine being pinged by another is neither
abnormal nor suspicious; so how many pings should occur before the behavior is identified as a
possible port scan?

Given the difficulties with live data in general and MIT’s data in particular, we chose to generate
our own artificial data. We also chose to use BSM audit files exclusively. The data produced by
tcpdump or other similar tools is qualitatively different from BSM data, so that using both would
have entailed two largely separate lines of work. This was not a viable option for us.
Furthermore, many interesting exploits occur entirely on one machine, making no use of network
connections. Tcpdump would not be relevant for detecting such exploits. In contrast, some
evidence of network-based attacks should be present in BSM audit trails.

To generate intrusion data, a variety of exploits were compiled and run on a SPARC™ Ultra
running Solaris 2.5. Most of the exploits were obtained through SecurityFocus.com.3 Audit

3 Source: http://www.securityfocus.com. SecurityFocus.com, Inc., San Mateo, CA.

17

information was gathered with BSM configured to record all events. Our machines were on an
isolated local network. They had no connection to the outside world, and no one using them for
any work other than our intrusion detection experiments. This reduces the amount of
background noise in the BSM audit data. However, the operating system was still running a
variety of nonessential services, so there was a fair amount of other activity going on during the
exploits. See Table 2 for a list of collected data sets of both clean (normal) and exploit activity.

Most of the exploits were local elevation-of-privilege attacks. In such an attack, an ordinary
user, after logging in normally, tries to obtain a root shell without knowledge of the root
password. This is generally accomplished through exploiting buffer overflows or race
conditions. Such attacks are possible because of bugs or careless coding practices in various
system libraries and services. We included both successful and unsuccessful attempts at gaining
root access; when root access was obtained, or the attempt failed, we terminated the exploit. An
actual attacker, after becoming root, would proceed to use this elevated privilege to do something
illicit on the system such as deleting or modifying files, installing trojan horses, or reading
confidential data. But simply by becoming root without the root password, or by even
attempting to do so, the user has already behaved in an abnormal manner, and we can attempt to
detect this behavior. The sooner an attack is detected, the better. Since many different attacks
make use of fundamentally similar mechanisms, it should be possible to detect attacks in their
early stages by learning to recognize these common features.

The data also include some attacks against remote machines; the target for these attacks was
another SPARC machine running Solaris 2.5. We ran a port scan, which is a way for an attacker
to probe for possible vulnerabilities on a remote machine; and we also ran a DOS attack, in
which the attacker causes the remote machine to crash. Audit trails from both the attacker and
target were used for training.

Our clean data sets contained a variety of normal activities for a UNIX system, with users
running compilers and text editors, modifying files, and using various standard system services.
Since false alarms are a major concern, it is necessary for the clean data to contain activities that
are superficially similar to activities commonly seen in exploits. Thus, the clean data also
included users pinging or connecting to remote machines and sometimes trying unsuccessfully to
access files or services for which they did not have permission.

One potential concern with such artificially generated data (and, possibly, with live data as well)
is that the network may learn to use simple but irrelevant details to distinguish the clean and
exploit cases. The presence of a particular filename or port number, or the use of a particular
command-line argument, could be enough to separate the two classes of training data. To
address this issue we wrote scripts that would replicate essentially identical behavior (both
normal and exploit) while varying these details. Note that preprocessing the data (see
Section 2.4) may eliminate most of these problems by stripping out filenames or port numbers
and leaving only information deemed to be relevant.

We have noted the importance of perturbing the data by including in the training set different
versions of the same basic attack and by varying unimportant details like file names and user
IDs. This should help generalization and prevent an IDS from learning to distinguish attacks
from normal behavior by using such clues. The BSM audit file identified as Variant in Table 2

18

contains data collected in an attempt at carry out this plan. Three successful buffer-overflow
exploits collected in other data sets (Eject, Fd, and T4) are separated by short periods of normal
activity. Nonsense filenames are used for the exploit executables and then, during the periods of
normal activity, files that have the same name but don’t do anything unusual are executed. Also
included are some command-line arguments that are the same in the normal and exploit cases,
such as doing something superficially similar to the “eject” exploit. In general, the idea is to
generate normal activity that has some superficial similarity to exploit data even though an
exploit is not really occurring.

Table 2. Clean and exploit BSM files for training and testing ID systems.

Name Type Description

Eject Buffer overflow Uses ‘eject’ utility

Fail.Blat Buffer overflow Uses ‘passwd’

Fail.Dtprint Race condition Uses print utility

Fail.Eject Buffer overflow Uses ‘eject’ utility

Fail.Rpc Buffer overflow Uses remote procedure call daemon

Fd Buffer overflow Uses floppy disk formatting utility

Rdist Buffer overflow Uses remote file distribution utility

Sdtcm Buffer overflow Uses desktop calendar manager

Sunkill Denial-of-service Open a telnet connection, flood victim with garbage

T4 Buffer overflow Slight modification of Rdist

ufsrestore Buffer overflow Uses file backup utility

Clean Normal activity User manipulates files and executes programs

Clean2 Normal activity Contains activity that is similar to exploit activity:
pings and attempts to read files without permission

Clean3 Normal activity User manipulates files and executes programs

Variant Buffer overflow

Normal activity

Includes Eject, Fd, and T4 exploits, and normal
activity similar to the exploits

19

2.4. Data Representation and Preprocessing
Given the essentially temporal nature of the data, the choice of some type of recurrent network
architecture was clear. In recurrent network architecture, there are connections from some
internal nodes to the input nodes. Thus, the raw input vector is combined with a memory of
previous states, so that the response of the network to an input depends on the context in which
this vector is seen. Such a network can learn to respond to temporal patterns in the data. The
ability to find temporal patterns is essential for our application, since an exploit necessarily
consists of a sequence of interrelated actions; no single BSM event is likely to be suspicious in
isolation.

Since BSM data are divided into records, it was natural to feed one input vector into the network
for each BSM record. The difficult problem is to determine the contents of that vector. Neural
networks require fixed-length input vectors, so variable-length fields such as file names and
command-line arguments need to be mapped to fixed-length, reasonably short inputs. Many of
the fields in a typical BSM record are not likely to be useful for intrusion detection and can be
discarded. Fields with a fixed but large range, such as port numbers or process ids, can be
simplified based on prior knowledge. Given a port number, for example, we may only record
one bit indicating that it was a reserved port or a user port.

2.4.1. BSM Filtering

Using BSM records as input vectors to a neural network-based IDS causes several difficulties.
Among these are the variable length of each record, the redundant information included in each
record, and the representation of information in each record. For effective training of a neural
network, the feature vector used to represent the state space of the host computer system should
be as small and informative as possible. In other words, dimensions of the vector that do not
contribute unique information with respect to exploit detection will only make IDS training more
difficult. Therefore, considerable effort has been spent simplifying the input BSM data as much
as possible without leaving out too much significant information. The decision about what to
retain and what to leave out is a heuristic decision that will be fine-tuned through trial and error.
The original free format of each BSM record was converted to a strict, fixed-size format for
input to a neural network. The section below describes each BSM token that was included in the
feature vectors of Sandia National Laboratories/New Mexico (Sandia) and the University of
Missouri/Rolla (UMR), and the translation of the token data.

2.4.1.1 UMR Feature Vector
Dr. Donald Wunsch of UMR, a collaborator in this work, applied his expertise in adaptive critic
designs to the problem of intrusion detection. UMR performed BSM filtering using the
following rules, and achieved data compression and a fixed-length feature vector:

� Each BSM record begins with the header token. From this token, the 16-bit event type
value that defines the system call described by the record is retained. This value is fed as
16 binary inputs, where –1 corresponds to 0, and +1 to 1.

20

� The subject token contains the identification information. The user identification number
(uid) is translated to a binary input as follows: +1 if the user is root, –1 if the user is a
system account (e.g., the uid, equals –2) or if the uid is unavailable, and 0 in all other
cases. A total of 3 binary inputs are used to feed the audit, effective, and real user
identification numbers.

� The machine Internet Protocol (IP) address is translated to one binary input: 0 if it is the
local machine, +1 if it is the remote machine address that was used to start the session, or
–1 if it is some other remote machine. If the value is more than 65534, the 32-bit port
address is entered using 16 binary inputs all set to –1.

� Since the process token has the same format as the subject token, the same rules are used.
An additional binary input is used to indicate if the process token is not present, in which
case the input is set to –1 and all other inputs for this token are set to 0. This technique is
used for all tokens that can be absent from the current record.

� The return token contains an 8-bit error code and 32-bit return value. Eight binary inputs
are used to enter the error code, but the return value is entered through one input as
follows: –1 if it is a negative number, 0 if it is zero, and +1 if it is positive (i.e., only the
sign of return value is entered).

� The arg token contains a 32-bit argument value for the system call, an 8-bit argument
number, and a descriptive text string. The value and number are represented as 32 + 8
binary inputs. To enter the text information, the 29 different strings appearing in the data
were enumerated using 5 binary inputs. To enter an unknown string, all 5 inputs are set
to –1. An additional input is used to indicate the absence of the arg token from the
current record. If there are several arg tokens in the record, the whole record is repeated
with new values of the arg inputs.

� A similar approach is used to enter the exec_args token. The total count of arguments is
entered through one input scaled to [0,1]. If there is no exec_args token in the record,
this input is set to zero. Eight binary inputs are used to enter the ordinal number of the
current argument. The length of the text argument is scaled to [0,1] and fed in via one
input. Instead of entering the text string, we enter its spectrum, 256 values corresponding
to the frequency of each character in the string. The frequency of a character is computed
as the number of appearances of this character in the string divided by the length of the
string.

� The path token is fed in using the same spectral decomposition. It yields another 256
inputs for the spectrum, one input for the length, plus another input indicating the
presence of this token in the record.

� Two fields are taken from the attribute token: the mode, entered through 32 binary
inputs; and the user identification number, which is coded the same way as for the subject
token. An additional input indicates the presence of the token.

� To input the text token, 4 binary inputs are used to code one of nine enumerated strings.
These inputs are set to –1 for an unknown string, and to 0 if the text token is not present.

21

� The IP address and port number used in in_addr, iport, and socket_inet tokens are coded
as for the subject token. Together with the presence indicators, it yields 2 inputs for the
in_addr token, 17 inputs for the iport token, and 18 inputs for the socket_inet token.

Thus, the total number of inputs is 711.

2.4.1.2 Sandia Feature Vector
Experiments conducted at Sandia using neural networks utilized a feature vector using a few
different filtering rules than the UMR feature vector (see Section 2.4.1.1), as indicated below.

Sandia feature vector rules differing from the UMR feature vector:

� The header token contains the time and date of the event recorded by the BSM record in
an 8-byte field. Three of the eight bytes are included in the feature vector. These bytes
represent a time span of about 5 minutes.

� The text strings present in the arg, exec_arg, path, and text tokens are represented using a
simple hash algorithm with a 1-byte output. For the arg and text token, a single byte is
used to represent the descriptive text string. For the exec_args token, which can include
many arguments in a single token, the first argument, last argument, and those arguments
between the first and last are each represented with a separate byte from the hash
algorithm. The path string in the path token is separated into a path minus the filename
and filename itself. Each of these strings is hashed to produce two separate bytes.

� The session id is included in the feature vector as a 16-bit unsigned integer.

� Numeric fields in various tokens are presented to the neural network as a single input
rather than as multiple binary inputs.

The Sandia feature vector representing 35 separate dimensions or inputs is described below as a
C structure.

struct feature_vector {
u_short event_id; /* header Token */
u_char event_id_mod;
u_char timeMSB;
u_char timeMid;
u_char timeLSB;
u_char arg_num; /* arg Token */
u_long arg_val;
u_char arg_hash;
u_long file_mode; /* attr Token */
u_char attr_uid;
u_char attr_gid;
u_char arg_count; /* exec_args Token */
u_char arg_first;
u_char arg_mid;
u_char arg_last;
u_char ip_addr; /* in_addr Token */
u_char in_exist;
u_short port; /* iport Token */
u_char port_exist;
u_char path_len; /* path Token */
u_char path_hash;

22

u_char file_hash;
u_char proc_uid; /* process Token */
u_char proc_gid;
u_char proc_ruid;
u_char proc_exist;
u_char ret_error; /* return Token */
u_char ret_val;
u_char sock_type; /* socket Token */
u_short sock_port;
u_char subj_uid; /* subject Token */
u_char subj_gid;
u_char subj_ruid;
u_short sess_id;
u_char text_hash; /* text Token */

};

2.4.2 Principal Components Analysis
Principal components analysis (PCA) is a statistical preprocessing method frequently used for
neural networks. The PCA algorithm finds an optimal linear transformation of data into a lower-
dimensional space that preserves most of the information present in its original form. When the
input data contain a great deal of redundancy or a great deal of linear correlation among the
coordinates, this enables us to train the network on smaller input vectors. It also means that the
network does not need to learn about such redundancy or correlation. Using data from all the
files listed in Table 2, PCA transformed our 35-dimensional feature vector to 17 orthogonal,
uncorrelated dimensions while retaining 99 percent of the variance of the original data. (When
running a trained network on new data, we use the same transformation matrix rather than
running PCA again. The transformation matrix is supposed to capture statistical properties of the
input, so it should be computed using as large a set of data as possible; this need not be the same
data used for training.)

3. Intrusion Detection Approaches

Current intrusion detection schemes tend to fall into two different categories: signature-based
detection and anomaly detection. Signature-based ID is sometimes called misuse detection in the
literature. It refers to approaches that match computer activity to stored signatures of known
exploits or attacks. Anomaly detection is self-defining in that these systems are designed to
detect anything that deviates from normal activity. Somewhere in between these two approaches
is a technique called generalized signature-based detection. This method assumes the existence
of identifiable classes of exploits. These classes may have representative known signatures that
can be collected and perturbed to define the boundary of each class.

Figure 1 depicts the three intrusion detection approaches along a sliding scale of information
that must be learned (the red or darkened areas).4 In other words, signature-based detection
requires learning the least amount of area from the feature space, whereas anomaly detection

4 The areas referred to in the text as red will appear dark gray in grayscale representations of the figure, and the areas

referred to as blue will appear light gray.

23

must learn a significant portion of the feature space that corresponds to normal activity, and
generalized signature-based detection must learn regions of feature space that correspond to
exploit classes. The differences of each of the detection approaches are illustrated in Figures 1
and 2.

Generalized Signature-
Based Detection

Anomaly
Detection

Signature-Based
Detection

.

Input
Feature
Space

Signatures of
individual exploits

Exploit
Class

.

.
.

.

.
.

.

. .

.

.

.. .

.

.
..

.
.

.
.

.

. .

.

.

.. .

.

.
. .

.
.

.
.

.

. .

.

.

.. .

.

.
..

.
.

.
.

.

. .

.

.

.. .

.

.
. .

.
.

.
.

.

. .

.

.

.. .

.

.
..

.
.

.
.

.

. .

.

.

.. .

.

.
.

Normal Operation

Anomaly or
Exploit Class

Figure 1. Theoretical comparison of intrusion detection approaches. The IDS must
learn or be programmed to recognize the areas represented in red.

3.1. Signature-Based Intrusion Detection
The most popular commercial IDSs, such as SNORT, RealSecure™, NFR™, and Cisco Secure™,
all perform their function through signature-based analysis. In a signature-based system, some
known (and supposedly unchangeable characteristic) of the exploit is compared against the data
stream, which is usually a sequence of bytes that is important to the functioning of the exploit.
When this sequence is found, an alarm is raised and the programmed response is applied.

If the signature is not chosen properly, the system will miss the exploit if it is changed even
slightly from the original. This is what makes signature-based systems unable to adapt to slight
variations of an exploit. If the signature is not specific enough, it will trigger on many naturally
occurring instances of the signature that aren’t really an exploit, thus causing a false positive.

The positive side of signature-based systems is the speed. All they are doing is a compare
operation, and that can be optimized to work at near-line speed. As other features such as stream
reunification are added, these speeds will adversely affect the effectiveness of the system but can
be diminished.

A signature-based detection approach has the advantage of precisely codifying specific exploits
that are known to exist. Although a signature-based detection approach does not allow detection
of novel exploits even when they are similar to known exploits, it is very effective and may be
the most efficient approach for detecting known exploits. For this reason, signature-based

24

detection can achieve low false-positive errors with a high incidence of missed exploits. The left
circle in Figure 1 illustrates the signature-based detection concept. It indicates individual points
in feature space that represent exploit signatures. The left circle in Figure 2 illustrates the
problem of missing exploits that are close in proximity to known exploit signatures in feature
space.

25

Figure 2. Comparison of different intrusion detection approaches in reality.

26

3.2. Generalized Signature-Based Intrusion Detection
Generalized signature-based intrusion detection approaches fall between signature-based and
anomaly-based detection on the scale of “what an IDS must learn” (see Figure 1). The basic
idea is to take advantage of the fact that there are well-defined known exploits. With this
information, one can theoretically generalize a specific exploit with a representation that will,
hopefully, include many exploits that are similar, thereby providing a means to detect new,
unseen exploits. A single exploit signature can be generalized by perturbing various dimensions
of the exploit’s feature vector in sensible ways. Each perturbed exploit will help define a class of
similar exploits in feature space. The existence of a class or group of such similar exploits
depends on the representation of each. Assuming classes of exploits (i.e., exploits that are
similar in some sense) do exist, the job of the generalized signature-based IDS is to determine
the borders of these classes or regions in such a way that all exploits can be discriminated from
normal data.

One of the problems with this intrusion detection approach is how best to characterize classes of
exploits. Do exploits that are similar in end result (e.g., elevation of privilege) or in their
technique (e.g., buffer overflow) manifest themselves in close proximity in feature space? Or is
each exploit, for all practical purposes, randomly distributed points in feature space? These are
difficult questions to answer, but based on the particular feature vector chosen to represent an
exploit, one can, at the very least, perturb various elements of the feature vector to acquire
additional samples that are close in proximity in feature space. When one defines a region or
class of exploits in feature space using this method, the question becomes, “How much of the
region represents normal activity?” Figure 2 illustrates the reality of generalized signature-
based detection and the kinds of errors that occur. If exploit classes are defined in a controlled
manner with a rich set of examples, generalized signature-based ID is expected to result in fewer
missed exploits than basic signature-based IDs, but will potentially result in more false-positive
errors.

One reason this approach is attractive is that anomaly detection requires learning an enormous
amount of data, and yet much of what is detected may not be an exploit at all. The goal of
generalized signature-based detection is to learn to detect exploits rather than anomalies in
general.

3.3. Anomaly Detection
Anomaly detection is an approach to detecting intrusions by first learning the characteristics of
normal activity. Then, anything that is abnormal is considered an intrusion. The two primary
issues in anomaly detection are

1. Learning normal activity

2. Responding to detected anomalies.

The difficulties with learning normal activity on a computer system are the complexities and
ever-changing face of computer systems. In addition to frequent hardware and software changes
in a computer, users and their habits change over time, as do the kinds of traffic into and out of a
computer. Even in the most controlled environments, the space of normal activity is considered

27

to be infinite. This fact is represented in Figures 1, 2, and 3 by the large circle of red that must
be learned. The need to indefinitely learn normal activity has been termed perpetual novelty
[SF01]. Nevertheless, techniques for anomaly detection can be designed to be as independent as
possible of computer system variability. For example, Ghosh et al. [GS99] argue that
monitoring process behavior in a computer system can be more easily captured than user
behavior, and also is independent of user variability.

Once an anomaly is detected, a decision must be made about the significance and meaning of the
anomaly. Since the goal of the system is exploit or intrusion detection, anomaly detection
requires additional qualification before raising an alarm. For this reason, anomaly detectors are
known to have a high incidence of false positive errors. However, anomaly detectors definitely
have the ability to detect new and unseen exploits that would be missed by a signature-based
approach.

Figure 1 illustrates the concept of anomaly detection with the right circle, which is filled in red
(or dark gray) to indicate the large space of normal activity. Exploits are identified by the white
regions, with individual exploits represented as blue (or light gray) dots. The problems with
anomaly detection are shown in Figure 2, where the red filling is spotted to indicate that normal
activity will never fully be learned. Each of these white dots is potentially a falsely identified
exploit, or, at least, an anomaly. Missed exploits also are illustrated in Figure 2. Section 4.4 of
this report describes an intrusion detection experiment using a statistical anomaly detection
scheme.

3.4. Combination of Detection Approaches
As noted in the previous sections on detection approaches, each approach has particular strengths
and weaknesses that are summarized in Table 3.

Although not precise and certainly open to debate, Table 4 provides a judgment as to the
expected errors from each of these approaches. This information motivates the consideration of
a system that can combine and take advantage of the strengths of each approach. Figure 3
illustrates the possible architecture and decision rule of such a system.

Table 3. Strengths and weaknesses of intrusion detection approaches.

Detection Approach Strength Weakness

Signature-based Efficient and simple High maintenance

Generalized signature-based Learn classes of exploits Difficult to define classes

Anomaly Detect novel exploits Perpetual novelty

28

Table 4. Expected incidence of false alarms for each intrusion detection approach.

Detection Approach Incidence of Missed
Exploits

False Positive Errors

Signature-based High Low

Generalized signature-based Average Average

Anomaly Average High

Figure 3. Potential combination of intrusion detection approaches.

4. Intrusion Detection Experiments

Each experiment provides preliminary results of an adaptive intrusion detection technique. By
adaptive, we mean that the system can learn and adapt to new situations. In other words, the
state of the IDS changes continually in response to changing conditions. To some extent, such
change is inherent in the recurrent network architecture described in Section 2.4. The network
response to the current vector will be different depending upon the recent history of BSM inputs.
Furthermore, the capacity for adaptive behavior is inherent in any neural network architecture,
since it is possible to continue training (with a small learning rate for stability) while the system
is in use.

29

Ultimately, we want to improve the (cost of detection)/(detection error) ratio. In other words, if
the cost of intrusion detection or the detection error is too high, then intrusion detection will be a
liability instead of an asset. Figure 4 provides a pictorial description of this problem. The circle
in the upper right of the graph depicts the current state of the art in intrusion detection, while the
circle in the lower left represents the intended eventual state of the art.

Figure 4. Future direction of intrusion detection systems. The intended trend of
future intrusion detection systems to address the two primary intrusion
detection issues, cost and errors.

The experiments conducted under this project include research and preliminary results of an IDS
controller, two neural network-based IDSs, and an anomaly detection system.

4.1. Intrusion Detection System Control
Adaptive critic designs have had much success in control applications such as aircraft
autolanding and chemical process control. For this reason, utilizing an ACD for optimal control
of an IDS may provide improved performance. A block diagram for such an IDS controller is
shown in Figure 5.

The primary difficulty of controlling an IDS is finding controllable parameters. Most IDSs
utilize a configuration file that allows the system to be tailored to the customer’s computing
environment. However, most of the settings, such as a list of authorized users, are not
controllable in a quantitative sense. It is fair to ask why the IDS would not already be
controlling itself in such a way as to provide effective detection. Here, the object is to utilize a

Future
State of the Art

Current
State of the Art

Detection
Error

Detection
Cost

Direction of
improvement

30

larger or different state space for the controller than for the IDS, thereby allowing adjustment of
the IDS to higher or lower sensitivities based on any number of environment variables. The
controller’s state space might include variables such as time, date, number of users, file system
attributes, and other standard ID-oriented information, as well as unusual yet potentially valuable
variables such as economic and geopolitical indicators, and computer-security news bulletins. In
practice, however, we found that most IDSs are not easily controllable, and constructing the state
space for the controller was at least as difficult as constructing the state space to do intrusion
detection. For these reasons, IDS control was not deemed to give a high return on investment.
Nevertheless, IDS control was considered for neural network-based ID and also for an existing
expert system-based IDS called eXpert-BSMTM.

IDS
Controller

Sensor
Input

Intrusion
Decision

State of the
Environment

Figure 5. State-based intrusion detection system control.

4.1.1. Neural Network Control

Neural networks have been used for detecting anomalous and misuse intrusions against programs
in research that utilized both standard multilayer perceptron (MLP) networks and Elman
recurrent networks as experimental IDSs [GS99, GSS99, GWC98]. Both of these networks lend
themselves to simple control. The parameters and state variables to control in these IDSs include
the output threshold values and the leak parameter of the leaky-bucket training enhancement.
For example, if the conditions indicating the probability of attack were high, the controller
might, based on the state of the environment, lower the output threshold, thereby making the IDS
more sensitive to detection of an exploit.

4.1.2. eXpert-BSM Control

Intercepting the BSM audit stream, eXpert-BSM uses an expert system rule base to detect a
variety of host-based intrusions. It utilizes a configuration file that allows user control of local
environment settings, alert production, an access policy, IP addresses, and even the heuristics
used to make the intrusion decision. Table 5 includes the somewhat self-explanatory numeric
configuration parameters deemed controllable. The goal of the controller would be to learn the
optimal settings of each parameter for a given state of the environment that achieve the best
detection of intrusions with the least number of false alarms.

31

Table 5. Numeric eXpert-BSM configuration parameters.

Parameter

BSM_MAX_LOGIN_THRESHOLD

BSM_FAILED_LOGIN_WINDOW

BSM_MAX_FTP_BADPASSWORDS

BSM_MAX_NOSPACE_ERRORS

BSM_WRITE_ERR_THRESHOLD_WINDOW

BSM_MAX_CLIENT_PROCS_PER_CYCLE

BSM_EXTERNAL_CONN_THRESHOLD_WINDOW

BSM_MAX_CLIENT_PROCS_PER_CYCLE

BSM_MAX_FAILED_PROCS_THRESHOLD_WINDOW

BSM_MAX_ECHOS_RECEIVED

BSM_ECHO_FLOOD_WINDOW

BSM_NONADMIN_EXPIRE

BSM_FTP_WAREZ_COMPLAINT

BSM_ANON_FILE_EXPIRE

A brief experiment was conducted on eXpert-BSM to evaluate its controllability. The system
was tested on DARPA’s BSM intrusion detection evaluation data under different configurations.
The configuration included manual changes only to quantitative parameters that were considered
potentially controllable by an ACD. The results of the system were indeed different, confirming
limited controllability of eXpert-BSM. However, the configuration file is not dynamically
adjustable, rendering real-time control impractical. In addition, the development of the
controller would be at least as much work as the development of an entire IDS based on adaptive
critics. Therefore, this effort was halted. Although an ACD was never developed as a controller
for eXpert-BSM, the architecture of such a system is shown in Figure 6.

32

Figure 6. Adaptive critic design for intrusion detection system control.

4.2. Intrusion Detection using an Elman Recurrent Neural Network
The second ID experiment conducted under this project utilized a recurrent neural network
known as an Elman network. The goal of this experiment was to establish the efficacy of the
Elman network in discriminating between data known to be free of exploits and data known to
contain an exploit. The ability of the network to learn a training set indicates, at the very least,
that the classes represented in the data (clean and exploit) are separable or distinguishable to a
certain extent. The Elman network consists of a multilayer perceptron network with feedback
from a hidden-layer output to the hidden-layer input. It is this connection that allows the Elman
network to detect time-varying patterns. Two experiments were conducted using an Elman
recurrent neural network architecture. The first experiment investigated basic capabilities of this
approach and the second experiment pursued a performance-oriented objective.

4.2.1. Experiment 1

When training a neural network, many questions arise. The answers to these questions can
impact the performance of the network on the specific task at hand. Table 6 lists these questions
as well as the details of the Elman recurrent neural network Experiment 1.

Back-propagation training signal

S(t) = State vector at time t O(t) = IDS Output

A(t)= Action vector at time t T(t) = IDS Target

J(t) = Approximation of cost-to-go function
= ��kU(t) = Sum of unknown future costs

U(t)= Local cost at time t = f(O(t),T(t))
= {False negative, False positive, Detection, NOOP}
= {1000, 100, 10, 0}

I(t) = IDS input vector at time t
= BSM Audit Data

Back-propagation training signal

S(t) = State vector at time t O(t) = IDS Output

A(t)= Action vector at time t T(t) = IDS Target

J(t) = Approximation of cost-to-go function
= ��kU(t) = Sum of unknown future costs

U(t)= Local cost at time t = f(O(t),T(t))
= {False negative, False positive, Detection, NOOP}
= {1000, 100, 10, 0}

I(t) = IDS input vector at time t
= BSM Audit Data

Critic Action IDS Critic
S(t)

...

� �J(t+1)

J(t)
S(t)

IDS Control Vector

--

+

U(t)

A(t+1)A(t)

Detector
Output

I(t)

S(t+1)

1�
�

�� J
JE

J(t+1)
O(t)

33

Table 6. Elman recurrent neural network-related questions, Experiment 1.
Important neural network-related questions and the corresponding answers for
the Elman recurrent neural network Experiment 1.

Questions Answers for Elman network Experiment 1

How many hidden layers? 1

How many nodes in each hidden layer? 88

Which training algorithm? Gradient descent back-propagation with
momentum and adaptive learning rate

What activation functions? Logistic sigmoid

What learning rate? Adaptive

When one performs supervised training of a neural network, a target or “correct” output value for
each input feature vector is used. Clean data were assigned a target value of 0, while exploit data
were assigned a value of 1. However, it is unrealistic to expect the neural network to recognize
an exploit after just one or a few BSM records. To address this problem, the target network
output is ramped up gradually from clean (0) to exploit (1) at the beginning of an exploit.

Figure 7 shows the results of an Experiment 1 network on a fragment of clean data followed by
a fragment of exploit data (repeated once), in this case the Rdist exploit (see Table 2 in Section
2.3). Network responses are plotted as red (or dark gray) dots, and target outputs are plotted as a
blue (or gray) dashed line. The shape of the target ramp is obvious on the left side of the exploit
data sequence. This result clearly shows that there is reason to believe that a clean fragment of
data can be distinguished from an exploit fragment. At the very least, this is a validation of a
credible feature vector.

Inspection of Figure 7 indicates that some form of postprocessing might be necessary to arrive at
a final decision about whether an intrusion exists in a fragment of data or not. The obvious
problem is placing too much value on stray or outlying samples in a clean fragment that might be
considered an exploit. Figure 8 shows an Experiment 1 network output after postprocessing
using the following steps:

1. Median filter the output to suppress outliers. Any number of signal processing filters
could be utilized here to serve the intended purpose.

2. Threshold the median filtered data, resulting in a binary output.

The results shown in Figure 8 were produced using a 5-sample median filter and a threshold of
0.5. However, a more complicated threshold scheme could be employed to minimize false
positives and missed exploits. The first three exploit and clean fragments were part of the
training data, while the final clean and exploit fragments were completely new to the network.

34

0 100 200 300 400 500 600
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 7. Elman network Experiment 1 after 10,000 training epochs.

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8. Elman network Experiment 1 after 50,000 training epochs. The data
consists of both training data and unseen test data (the final clean and exploit
segments.

35

4.2.2 Experiment 2

While Experiment was performed early on in the research project, Experiment 2 involving an
Elman recurrent neural network took advantage of all the experience gained in the project. In
addition to the specific tuning of the neural network as described in Table 7, principal
components analysis (see Section 2.4.2) was employed as well.

Table 7. Elman recurrent neural network-related questions, Experiment 2.
Important neural network-related questions and the corresponding answers for
the Elman recurrent neural network Experiment 2.

Questions Answers for Elman network Experiment 2

How many hidden layers? 2

How many nodes in each hidden layer? 10 in both hidden layers

Which training algorithm? Resilient back-propagation

What activation functions? Tangent sigmoid

What learning rate? Adaptive

Results of this Elman Experiment 2 are shown in Figures 9–11, where the target outputs are
shown in a solid line. The ability of the network to discriminate between clean data and data
from several different exploits is clear. However, while figures 9 and 10 show results using well
controlled, very clean data, Figure 11 uses “messier” data that involved intentionally introducing
similar activities as the exploits into the clean data.

36

0 1000 2000 3000 4000 5000 6000 7000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 9. Elman Experiment 2 network training results on multiple exploits. The
training data consists of the following exploits in order: Fdformat-T4-Fd-Eject-
Ufsrestore-Sdtcm-Rdist.

0 1000 2000 3000 4000 5000 6000 7000 8000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 10. Elman Experiment 2 network test results on multiple exploits. The test
data consists of the following exploits in order: T4-Fd-Eject-Ufsrestore-
Sdtcm-Fdformat-Rdist.

37

0 1000 2000 3000 4000 5000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 11. Elman Experiment 2 network training results on Variant data set.

4.3. Intrusion Detection Using Adaptive Critic Designs
Generally, two approaches to the intrusion detection problem can be taken. The first is aimed at
learning a legitimate user’s behavior, and the second is aimed at detecting anomalies when an
intruder poses as a legitimate user. The approach presented in this section is a combination of
the two, where the IDS learns both legitimate behavior and anomalous exploits, and is able to
distinguish between them.

Thus, we have the following problem: to monitor the input stream and signal when a particular
event (intrusion) occurs. We have a set of examples: stream fragments with intrusions, and
stream fragments with no intrusions. We also know the following:

� A lot of irrelevant data (data that came from other processes running on the system but
not involved in the intrusion) are contained in the fragments

� Absolute identification information may vary and does not signal an intrusion (i.e., an
intrusion can be carried out using any or several different user IDs and machine
addresses)

� Exploits leading to an intrusion do not necessarily follow the same exact sequence each
time.

Therefore, from the examples, our intrusion detection system should find how intrusions differ
from normal operations. To achieve this, we employ the reinforcement learning approach.
Unlike the supervised learning approach, in which the system is judged at every step, the
reinforcement learning approach allows a more natural way of training based on the outcome.

38

Using reinforcement learning at the end of a training fragment, the system gets a reward if the
system has correctly indicated the intrusion at any time during the fragment. The system is
penalized at the end of the fragment if the system has missed the intrusion or given a false alarm.
As a result, the system has to find out what it did right or wrong, thereby solving a credit
assignment problem. In a return, such a delayed credit gives the system the freedom of trial and
error exploration. Given a new, unknown fragment, the system makes its best guess based on
experience. At the end of the fragment, the system learns from its errors.

Since the system is trained only at the end of a training fragment, it is appropriate to implement
lifelong training in which the system keeps learning while it is in field use. This approach allows
the system to follow the changing environment and to catch up as new unknown attacks appear.

The important characteristic of an intrusion detection system is the false alarm rate. A false
alarm occurs if the system indicates an intrusion when none exists in the data. If a system “cries
wolf” too often, most likely that system will be ignored. To minimize this possibility, we
introduced a set of immediate penalties for false alarms and missed intrusions, and required the
system to minimize a discounted sum of penalties, thus casting our problem as a dynamic
programming problem.

4.3.1. Methodology

We use the heuristic dynamic programming (HDP) to approach the problem [PW97]. HDP is
the most straightforward member of the ACD family. Consider the agent-environment model.
The agent senses state information from the environment, responds with an action, and is
rewarded or penalized. In our case, the agent is the IDS and the environment is the computer
system together with a human system administrator. The environment provides the state
information through BSM data. The IDS indicates either an intrusion or no intrusion. When the
system administrator investigates the alleged intrusion or discovers a missed one, the
administrator provides the IDS with a penalty or reward, summarized in Table 8.

Table 8. The reinforcement-learning approach for penalizing or rewarding the IDS.

Intrusion Alarm Penalty/Reward*

Yes Yes –1

Yes No 1

No Yes 1

No No 0

* A negative number indicates a reward.

The adaptive critic design we use (see Figure 12) is comprised of two neural networks: action
and critic. The action network senses the input state information and responds with an action.
The critic network gets the state information, analyzes the action taken, and estimates the

39

cumulative cost. The incurred immediate cost is used to correct this estimate during training of
the critic. Then, this estimate is minimized via training of the action network.

Consider U(t), the immediate cost incurred at moment t. Then, the estimated cumulative cost
J*(t) is expressed as follows:

� � � �� ��

k

k ktUtJ �
* , (Equation 1)

where � is a discount factor (0<�<1). Let R(t) represent the state information at moment t,
A(t)=A(R(t)) represent the response of the action network, and J(t)=J(R(t),A(t)) represent the
output of the critic. The critic is trained, minimizing the following error functional

� �

� � � � � � � �tJtUtJtE

tE
t

����

�

1

,2

�

(Equation 2)

i.e., �J(t + 1) + U(t) is the target value for J(t). The update rule for the critic weights WC is given
by

� � � � � �� �
� �

C
CC W

tJ
tJtUtJW

�

�
����� 1�� , (Equation 3)

where �C is a small positive learning rate.

Since we seek a decision policy (realized by the action network) that minimizes the cumulative
cost, we minimize J(t) using gradients computed by the critic and action networks

� �
� �

� �

A
AA W

tA

tA

tJ
W

�

�

�

�
��� � , (Equation 4)

where �WA is the weights update for the action network, and �A is a small positive learning rate.

To address the temporal nature of the state information given by BSM data, we added a recurrent
identification network to our design. The purpose of this network is to extract the state
information R(t) from the input BSM data X(t) and maintain that information in the recurrent
layer. This network is trained together with the critic

� � � � � �� �
� �
� �

� �

I
II W

tR

tR

tJ
tJtUtJW

�

�

�

�
����� 1�� , (Equation 5)

where �R(t)/�WI is the gradient computed by the identification network with respect to its
weights WI. Derivatives with respect to the recurrent layer weights are calculated to depth 0. In
other words, we don’t go recursively back in time through delay elements computing these
derivatives (i.e., the delay elements of the recurrent layer are considered as additional inputs).

40

Identification
network

Action
network

Critic
network

Computer System Administrator

BSM
data

state R(t)

action A(t)

penalty U(t)

J(t)

Figure 12. Adaptive critic design for BSM-based intrusion detection.

4.3.2. Initial Results and Discussion

To train the ACD, we chose eight sessions with four different exploits (code-named format, ffb,
ftp-write, eject, with two different sessions for each type of exploit), and eight clean sessions
(i.e., sessions without exploits). The design was further tested using an additional four sessions
with exploits and four clean sessions. The design is modeled using the MATLAB™ Neural
Network toolbox. The identification network has 711 inputs, 50 neurons in the hidden recurrent
layer, and 50 output neurons. The action network has 50 inputs, two hidden layers with 30 and
10 neurons respectively, and one output signaling an intrusion. The critic has 51 inputs and one
output, and the same configuration of hidden layers as the action network. The transfer function
used in the hidden layers is the hyperbolic tangent function, and the transfer function in the
output layers is linear.

The discount factor � was chosen to be 0.9 and the learning rates were all equal to 0.01. During
training, one of 16 training sessions was chosen randomly and fed through the design. This
action was repeated 30 times and then the design was tested in eight test sessions.

This experiment was conducted several times. In most cases, the critic degenerated such that it
gave a constant output regardless of the input. As a result, the gradients �J/�R, �J/�A were zero
and the action and identification networks did not learn. A few times, when the critic was able to
provide nonzero gradients, there was not sufficient time for the action network to achieve
reasonable behavior. In some cases, the action network did not report any intrusions; in most
cases, it always reported an intrusion.

These results leave plenty of room for future research. An optimal penalty system, values for
learning rates, and the discount factor are yet to be determined. The weak performance of HDP
critics is well known; therefore, we are considering future application of the more powerful dual
heuristic programming (DHP) design.

41

4.3.3. Later Developments

To enhance the training procedure and take advantage of a variety of training algorithms
available in the Neural Network toolbox, we modified the initial ACD. The identification
network was incorporated into the action and critic networks as an additional recurrent hidden
layer. A model network, which calculates the penalty, was also introduced. To facilitate HDP
training in batch mode, a layer was added after the critic network (see Figure 13) to calculate the
error according to Equation 2. Both the action and critic networks now have at least two hidden
layers. The first hidden layer gets its input from the input layer and has a recurrent connection to
itself. The second hidden layer has input connections from both the input layer and the first
recurrent hidden layer. Additional hidden layers can be added if necessary. The model network
calculates the penalty value according to Table 8. It has two inputs: the output of the action
network (“alarm”), and another input that indicates an intrusion during the training. This
network is hard-coded and is not changed during training.

The ACD is implemented as one big network object. The original MATLAB Neural Network
toolbox was modified to allow “forward look-ups.” According to Equation 2, a value from the
next time step is needed to calculate the error in the current time step. This is possible in batch-
training mode when the error is calculated and the network is updated only after the whole
training set is presented.

The training of the design is a two-stage process. In the first stage, the critic network is trained
to estimate the cost-to-go function J. The output of the last layer is used as the training signal
while the parameters of the action network are “frozen.” In the second stage, the trained critic
network is used to train the action network, with the goal of minimizing the estimate of J. The
weights of the critic network are held frozen and –1 is back-propagated through the critic
network to get the training signal for the action network. The training procedure is repeated until
the weights of the action network stop changing.

Model
Network

Action
network

Critic
network

Input
data

state R(t)

action A(t)

penalty U(t)

J(t)

J(t+1) �
–�

–

+

Intrusion

Error

Figure 13. Improved adaptive critic design for HDP training.

42

4.3.4. Final Results

Figures 14–17 show the ability of an ACD-based IDS to learn a training set. One epoch of
training data consisted of the following exploit and clean data sets (see Table 2 for a description
of the data sets):

Clean–Fd–Clean–Clean2–Rdist–Clean2–Clean–Sdtcm

The action network of the ACD-based IDS had three hidden layers, each with 10 nodes, and the
critic network had three hidden layers, each with 5 nodes. Each training iteration consisted of 5
epochs of critic training and 5 epochs of action network training. The resilient back-propagation
algorithm was used to update weights. Inputs were preprocessed with principal components
analysis, which reduced the input dimension from 35 to 17.

Network responses are plotted as dots, and target outputs are plotted as a solid line. Note that the
ACD’s response to intrusions is easily distinguished from its response to normal behavior, in
spite of the fact that the outputs are not always close to target outputs. We also noted a shift in
the effective output range as training continued; this appeared to be an artifact of the ACD
training iterations.

The plots show the generalization performance of the network after 10 and then after 20
iterations. The clean data is a mix of some clean training data with “clean3” sessions that the
network had not previously seen. There are two exploits, neither of which was in the training
set. The longer one is the “sunkill” DOS attack (with data from the attacker’s machine), the
other shorter one at the end of the test run is the “fdformat” buffer overflow attack. As with the
training data, the neural net’s response to intrusions is distinguishable from its response to
normal behavior.

Figures 18 and 19 show results from the same ACD using slightly different numbers of training
epochs on different training data. Each iteration consisted of 25 epochs of critic training and 50
epochs of action-network training. In this case, one epoch of training data consisted of the
Fdformat, T4, Fd, Eject, Ufsrestore, Sdtcm, and Rdist exploits, with each exploit separated by a
combination of the Clean, Clean2, and Clean3 data sets. The test data is simply a replica of the
training except for the Fdformat exploit moved in time. The ACD is clearly able to discriminate
between all exploits and the clean data. However, Figure 20 shows the difficulty the ACD had
in learning the Variant data set where exploit-similar activity is introduced into the normal data.
The ACD output (shown as red or dark gray dots) does not closely follow the target (shown as a
solid gray line) and is particularly in error in the normal fragments of the data.

43

0 500 1000 1500 2000 2500 3000 3500 4000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 14. ACD training results after 10 iterations. The training data consists of the
following exploits in order: Fd-Rdist-Sdtcm.

0 500 1000 1500 2000 2500 3000 3500 4000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 15. ACD training results after 20 iterations. The training data consists of the
following exploits in order: Fd-Rdist-Sdtcm.

44

0 500 1000 1500 2000 2500 3000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 16. ACD test results after 10 training iterations. The test data consists of the
following exploits in order: Sunkill-Fdformat.

0 500 1000 1500 2000 2500 3000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 17. ACD test results after 20 training iterations. The test data consists of the
following exploits in order: Sunkill-Fdformat.

45

0 1000 2000 3000 4000 5000 6000 7000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 18. ACD training results on multiple exploits. The training data consists of
the following exploits in order: Fdformat-T4-Fd-Eject-Ufsrestore-Sdtcm-
Rdist.

0 1000 2000 3000 4000 5000 6000 7000 8000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 19. ACD test results on multiple exploits. The test data consists of the
following exploits in order: T4-Fd-Eject-Ufsrestore-Sdtcm-Fdformat-Rdist.

46

0 1000 2000 3000 4000 5000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 20. ACD training results on Variant data set.

4.4. Anomaly Detection of Intrusions
This section documents the work associated with the use of BSM audit event types as a basis for
network anomaly detection. This work follows from the approach described by Ye et al.
[YELC01]. The data used to investigate this approach are from MIT’s DARPA 1999 Intrusion
Detection Evaluation [HLFZTB01].

Development and evaluation of any anomaly detection approach requires both training data
(assumed to consist exclusively of intrusion-free network activity) and test data (normal network
activities interleaved with a number of intrusive sessions). For this investigation, DARPA data
from Friday of Week#1 comprise the training data set and DARPA data from Monday of
Week#4 comprise the test data set.

The training (test) data set consists of 141 (199) sessions, each of which is comprised of a
sequence of system level calls (events) that are recorded by the auditing system. For both the
training and test data sets, the number of system level calls per session is typically in the range
from one to several thousand. The 44-byte feature vector that was generated provides a 2-byte
representation of the event type. The high-order byte of this pair is nearly always set to zero.
Thus, the low-order byte gives a good (nearly unique) representation of the event type and is
used in the analysis that follows. For example, a relatively common event type, represented by
the mnemonic AUE:IOCTL, is associated with event ID number 158. Figure 21 displays the
logarithm of the fraction of events of each type within the training set. Note that there are only
55 event types represented within the training set. Figure 22 indicates how the fraction of events

47

within each event type varies across sessions. For example, the fraction of events associated
with event ID number 133 within a session varied from 0.00038 to 0.075.

The premise underlying the work by Ye et al. [YELC01] is that the local occurrence frequencies
of the various event types may provide an indication that a specific session is anomalous and
therefore potentially intrusive. For example, a large number of rare events occurring in a
relatively short sequence of events would by definition be anomalous. Specifically, Ye et al.
create a multivariate observation vector for the tth event in the event stream:

� � 0 and 1 where,0for),,(0,1,,,284,2,1 ��������
� itiititttt OOOtOOO ����O , and where

�i is an indicator function that takes the value 1 if event type i is present in the current
observation, and 0 if event type i is not present. Ye et al. recommend that the smoothing
parameter, �, be set to 0.3. So, each event type indexed by i has its own exponentially weighted
moving average (EWMA) process denoted by Oi,t. Evidently, as described by Ye et al., the event
stream is ordered by time and includes events in concurrent time-interleaved sessions.

The high-dimensional observation vector Ot is mapped to a one-dimensional space by computing
the chi-squared distance from the current observation to the mean of the observations in the

training data set. That is,
� �

�
�

�

�

k

i i

iti

O

OO

1

2
,2

t� , where iO is the proportion of all events within

the training set that are of the ith type. An alert is generated when 2
t� exceeds a prescribed

threshold. A problem with this metric is the singularity when 0�iO . There are numerous ways
to resolve this problem. For example, one could simply eliminate (from the summation) those
event types that do not appear in the training set. However, this would eliminate the sensitivity
of this metric (when applied prospectively to future data) to those rare event types that are not
represented in the training set. Another approach would be to add a small amount to iO (say,

��= 10-6), such that
� �

�
�

�

��

�

k

i i

iti

O

OO

1

2
,

)(
)(

�

�2
t� .

A more fundamental problem with this approach is that the event stream is not localized to a
session. The effective signal from activities associated with an intrusive session could be
dampened by events from concurrent nonintrusive sessions. A more sensitive variation of this
approach would be to establish separate EWMA processes and chi-squared metrics for each
session.

48

0 50 100 150 200 250 300
-6

-5

-4

-3

-2

-1

0

Lo
g 10

(e
ve

nt
 ty

pe
 fr

ac
tio

n)

Event Type

158

Figure 21. Fraction of events by type in training set.

49

0 50 100 150 200 250 300
-6

-5

-4

-3

-2

-1

0

Lo
g 10

(e
ve

nt
 ty

pe
 fr

ac
tio

n)

Event Type

133

Figure 22. Distribution of fraction of events by type per session in training set.

50

4.4.1. Proposed Anomaly Detection Method

The method proposed here develops a single EWMA process for each session. Let Et be the
event type of the tth event within a session. Let � �6

10 10log �

���
tEt OX , where

tEO is the

proportion of all events within the training set that are of the Et
th type. The EWMA process is

defined as � � 11
�

����� ttt YXY �� , where 10 and 00 ��� �Y . For purposes of illustration, we
will set 3.�� . Smaller values for � will increase the memory of the system while larger values
for � will decrease the memory of the EWMA process. An alert is generated (signifying an
abnormal session) when Yt exceeds some threshold that is developed based on the training set.

The DARPA data is used to illustrate the method. Figure 23 displays the maximum value of the
EWMA process obtained during each session within the training set. Figure 24 displays a
histogram of the distribution of these values. Assuming the training set sessions are
representative of future nonintrusive network activity, the distribution of values in Figure 24 can
be used to set a threshold for generating an alert. Here, depending on limitations of false alarms,
one might want to set a threshold at somewhere in the neighborhood of 3.5 to 4 (for purposes of
analyzing the test set, a threshold was set at 4). Figure 25 displays the maximum values of the
EWMA for each session within the test set. Given a threshold at 4, we find two sessions that
generate an alert (sessions 13 and 187). Figures 26 and 27 display the EWMA processes for
each of these sessions. In the case of Session 13, there are a number of rare events that take
place close in time in the vicinity of events 1000–1020. These relatively rare events have event
identification numbers 48 (AUE_RMDIR), 4 (AUE_CREAT), and 202 (AUE_UTIME). In the
case of Session 187, there are a number of consecutive instances of the rare event ID 15
(AUE_KILL) in the vicinity of events 1090–1120.

Examination of known attacks reported by DARPA [HLFZTB01, p. 54, tables 6 and 7] confirms
that Session 13 is a detection of Attack ID no. 41.084031. It is also interesting to consider
sessions 104–108, which are known to be part of a multisession attack sequence. Each of these
sessions consists of a single event with event ID 21. In this case, the full 2-byte representation of
the event IDs is 6165 (AUE_ftpd:ftp access:lo). Event ID 21 occurred six times in 303,289 total
events within the training set, giving a probability of occurrence of �

tEO 1.98x10-5. Each of

these six events within the training set corresponded to a full 2-byte representation of the event
ID of 6165. Thus, the single-byte specification was sufficient in this case. The value for the
EWMA in these cases is � � 405.110log3. 6

10 �����
�

tEO .

As is clear in Figure 24, based on its relatively low value, this value for the EWMA is not
indicative of unusual activity. Assuming these sessions involve the same user, a modification of
the proposed strategy is suggested, i.e., develop the EWMA over successive sessions involving
the same user. In this case, such a strategy applied to sessions 104–108 would result in a value
for the EWMA of –3.90 at the fifth session. Such a value would be considered at least
marginally significant.

51

0 50 100 150
1

1.5

2

2.5

3

3.5

4

Session Number

M
ax

im
um

 E
W

M
A

 W
ith

in
 S

es
si

on

Figure 23. Maximum value of EWMA within each session of training set.

52

1 1.5 2 2.5 3 3.5 4
0

20

40

60

80

100

N
um

be
r o

f O
cc

ur
re

nc
es

Maximum Value of EWMA Within Session

Figure 24. Distribution of maximum value of EWMA within each session of training
set.

53

0 50 100 150 200
1

1.5

2

2.5

3

3.5

4

4.5

5

13 187

104-108

Figure 25. Maximum value of EWMA within each session of test set.

54

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Event

E
W

M
A

Figure 26. EWMA process for Session 13.

55

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

Event

E
W

M
A

Figure 27. EWMA process for Session 187.

56

4.4.2. Modifications to Proposed Anomaly Detection Method

Admittedly, the proposed detection method could be developed further. An alert is generated
only when there is a relatively high concentration of rare events in a local window such that the
EWMA exceeds a certain threshold. The window size (and hence sensitivity to the current
event) could be adjusted by varying �. What is an appropriate value for � in this context remains
to be seen. One also could develop more objective rules for constructing an appropriate
threshold based on target false alarm rates. One might also consider other rules for generating an
alert, e.g., if the EWMA remains above a certain threshold (different than the threshold above)
for a certain number of events.

In a broader sense, one could use Xt in conjunction with some type of control-charting technique
other than the EWMA. Examples of other techniques include the cumulative sum and moving
average techniques, as reported by Wetherill and Brown [WB91]. It is not clear what
advantages, if any, each technique might offer over others in this context.

The proposed method is sensitive to a high local density of rare events. The sequence of
probabilities of individual events is used to generate an alert. It may be, however, that the
probability of a sequence of events is more informative. For example, Event ID V closely
followed by Event ID W may be a strong indicator of intrusive activity. However, the
implementation of a strategy that provides an alert based on the probability of a sequence of
events may be problematic due to difficulties associated with enumerating possible sequences of
events.

4.4.3. Conclusions Regarding Anomaly Detection Strategies

The method described here outlines an empirical approach for anomaly detection that does not
depend on knowledge of subject matter. It is clear that the method would be vulnerable to a
coordinated attack over multiple sessions. Even in its domain of applicability, the efficacy of the
approach is unknown. Clearly, as is generally the case for anomaly detection methods, the
efficacy of the approach will improve as the training set is enlarged to span a wider variety of
normal nonintrusive activities.

5. Conclusions

Intrusion detection is a need and a problem that is not going to go away soon. The challenge of
detecting novel exploits and attacks deserves special attention. The preliminary results presented
in this report confirm the ability of neural networks and statistical anomaly detectors to learn the
differences between clean and exploit data.

To our knowledge, ACDs have not been used for intrusion detection until now. Preliminary
results suggest that this approach to ID deserves more attention. Although our research barely
scraped the surface of the potential of adaptive critic designs, it yielded promising initial results.

57

The foremost lesson learned from this research is that much work will be required in order to
achieve effective detection of novel exploits. The second most important lesson learned from
this research is that IDS control is probably not truly useful. Although the concept of IDS
control is promising, practically speaking, a better course of action appears to be to incorporate
the most effective mechanisms into the IDS.

The third and final lesson learned from this research is that with current ID sensors, considerable
effort must be devoted to data preprocessing before presentation to a neural network. Even more
importantly, the availability of new sensors designed from the ground up for automated ID
would dramatically improve the possibility of detecting intrusions.

In addition to ID sensor research and development, other avenues for further research activities
have been identified. They include

� Performing extensive signature-generalization data collection

The creation of rich data sets that represent classes of exploits will allow generalized
signature-based ID to discriminate between different kinds of exploits, including failed
exploit attempts. This idea should be expanded to other ID sensors besides BSM.

� Realizing the full potential of ACDs for intrusion detection

Even though the Elman recurrent neural network produced comparable if not superior
results to the ACD-based IDS, it is expected that the situation will reverse as the Elman
neural networks are tested on more challenging problems. The following aspects of
ACDs for intrusion detection warrants further research.

� Taking full advantage of reinforcement learning

The use of reinforcement learning techniques in ACDs offers great promise in the ID
environment. The ability to learn about the existence of an exploit even when its precise
location is unknown is significant.

� Developing cost-oriented decision-making

When put into practice, many costs are associated with ID (see Section 1.1). An IDS that
can make decisions based on a cost policy established for a particular site would offer a
great benefit. ACDs have the potential to do just that.

� Continuing anomaly detection research

The statistical anomaly detection work presented in Section 4.4 successfully detected
exploits in DARPA’s ID evaluation data, yet many potential improvements are available.
Anomaly detectors will continue to be valuable in detecting novel exploits.

58

6. References

[B00] R.G. Bace, 2000, Intrusion Detection, p. 3. Macmillan Technical Publishing,
Indianapolis, IN.

[C00] J. Cannady, 2000, “Applying CMAC-based online learning to intrusion
detection.” International Joint Conference on Neural Networks, 2000 (IJCNN
2000), S.I. Amari, C.L. Giles, M. Gori, V. Piuri, ed., vol. 5, pp. 405–410.

[C98] J. Cannady, 1998, “Artificial neural networks for misuse detection.”
Proceedings of the 1998 National Information Systems Security Conference
(NISSC ’98), pp. 443–456, Arlington, VA.

[E98] D. Endler, 1998, “Intrusion detection. Applying machine learning to Solaris
audit data.” Proceedings of 14th Annual Computer Security Applications
Conference, pp. 268-279.

[GS99] A.K. Ghosh and A. Schwartzbard, 1999, “A study in using neural networks
for anomaly and misuse detection.” Proceedings of the 8th USENIX Security
Symposium, August 1999.

[GSS99] A.K. Ghosh, A. Schwartzbard, and M. Schatz, 1999, “Learning program
behavior profiles for intrusion detection.” Proceedings of the 1st USENIX
Workshop on Intrusion Detection and Network Monitoring, pp. 51–62, Santa
Clara, CA, April 1999.

[GWC98] A.K. Ghosh, J. Wanken, and F. Charron, 1998, “Detecting anomalous and
unknown intrusions against programs.’ Proceedings of the 1998 Annual
Computer Security Applications Conference (ACSAC ’98), December 1998.

[HCDB99] H. Hinton, C. Cowan, L. Delcambre, S. Bowers, 1999, “SAM: Security
Adaptation Manager.” Proceedings of the 15th Annual Computer Security
Applications Conference, pp. 361–370, Phoenix, AZ.

[HFS98] S.A. Hofmeyr, S. Forrest, and A. Somayaji, 1998, “Intrusion detection using
sequences of system calls.” Journal of Computer Security, vol. 6, pp. 151–
180.

[HHS00] A.J. Hoglund, K. Hatonen, A.S. Sorvari, 2000, “A computer host-based user
anomaly detection system using the self-organizing map.” Proceedings of the
IEEE-INNS-ENNS International Joint Conference on Neural Networks, 2000,
S.I. Amari, C.L. Giles, M. Gori, V. Piuri, ed., vol. 5, pp. 411–416.

[HLFZTB01] J.W. Haines, R.P. Lippmann, D.J. Fried, M.A. Zissman, E. Tran, and S.B.
Boswell, 2001, 1999 Intrusion Detection Evaluation: Design and Procedures.
ESC-TR-99-061, Technical Report 1062, Lincoln Laboratory. Massachusetts
Institute of Technology, Cambridge, MA.

[K99] K. Kendall, 1999, A Database of Computer Attacks for the Evaluation of
Intrusion Detection Systems. Massachusetts Institute of Technology,
Cambridge, MA (master’s thesis).

59

[L00] R.P. Lippmann, D.J. Fried, I. Graf, J.W. Haines, K.R. Kendall, D. McClung,
D. Weber, S.E. Webster, D. Wyschogrod, R.K. Cunningham, and M.A.
Zissman, 2000, “Evaluating Intrusion Detection Systems: The 1998 DARPA
Off-Line Intrusion Detection Evaluation.” Proceedings of the 2000 DARPA
Information Survivability Conference and Exposition (DISCEX), vol. 2, Hilton
Head, SC, January 2000. IEEE Computer Society Press, Los Alamitos, CA.

[NSD99] N. Nuansri, S. Singh, and T. Dillon, 1999, “A process state-transition analysis
and its application to intrusion detection.” Proceedings of the 15th Annual
Computer Security Applications Conference, pp. 378-387, Phoenix, AZ.

[PW97] D. Prokhorov and D. Wunsch, 1997, “Adaptive Critic Designs.” IEEE
Transactions on Neural Networks 8, pp. 997–1007.

[RLM98] J. Ryan, M.J. Lin, R. Miikkulainen, 1998, “Intrusion Detection with Neural
Networks.” Advances in Neural Information Processing Systems 10, M.I.
Jordan, M.J. Kearns, S.A. Solla, ed., pp. 943–949. MIT Press, Cambridge,
MA.

[S00] Sun Microsystems, 2000, SunSHIELD Basic Security Module Guide. Sun
Microsystems, Inc., Palo Alto, CA.

[SF01] S. Forrest, 2001, personal. communication. University of New Mexico,
Albuquerque, NM.

[SFLPC00] S. Stolfo, W. Fan, W Lee, A. Prodromidis, and P. Chan, 2000, “Cost-based
Modeling for Fraud and Intrusion Detection: Results from the JAM Project.”
Proceedings of the 2000 DARPA Information Survivability Conference and
Exposition (DISCEX), vol. 2, Hilton Head, SC, January 2000. IEEE
Computer Society Press, Los Alamitos, CA.

[VEK00] G. Vigna, S. Eckmann, and R. Kemmerer, 2000, “The STAT Tool Suite.”
Proceedings of the 2000 DARPA Information Survivability Conference and
Exposition (DISCEX), vol. 2, Hilton Head, SC, January 2000. IEEE
Computer Society Press, Los Alamitos, CA.

[WB91] G.B. Wetherill and D.W. Brown, 1991, Statistical Process Control Theory
and Practice. Chapman and Hall, London, England.

[YELC01] N. Ye, S.M. Emran, X. Li, and Q. Chen, 2001, “Statistical Process Control for
Computer Intrusion Detection.” Proceedings of the 2001 DARPA Information
Survivability Conference and Exposition (DISCEX), vol. 1, Anaheim, CA,
June 2001. IEEE Computer Society Press, Los Alamitos, CA.

60

7. Appendix A—Details of the Solaris BSM

A common source of data for IDSs is an audit mechanism for a host computer. Sun
Microsystems provides an auditing facility called Basic Security Module (BSM) with its Solaris
operating system. BSM keeps a log of ongoing system activities in audit trail files. The audit
files contain audit records, which contain information about one audit event (a system call).
Possible events are defined in /etc/security/audit_event. The structure of an audit record is
described by Sun Microsystems [S00]. An audit record usually comprises several audit tokens.

� Each record starts with a header token containing information about the type of event, the
time when the event occurred, and the length of the record in bytes. Usually, a record
also contains a subject token and a return token.

� The subject token stores identification data: effective and real user IDs, effective and real
group IDs, process IDs, session IDs, machine and port IDs, and audit user IDs. The same
session ID is assigned to a session at login and to all of its offsprings, allowing the
opportunity to divide the audit data into sessions. Similarly, the audit user ID does not
change, and keeps the user ID of the original user who has logged in.

� The return token stores the return value for the system call described by the record, and
the error number, if any.

� Other widely used tokens are arg tokens, exec_args tokens, path tokens, attribute tokens,
and process tokens. A text token stores a text string passed in the system call. When
dealing with remote machines (e.g., during a telnet session) in_addr, iport, and
socket_inet tokens are used.

� The arg token contains an argument of the system call. It is a 32-bit value, and an
optional text string of variable length. There are as many argument tokens in a record as
are needed by the system call.

� The exec_args token keeps text strings passed as arguments to an exec system call. Each
argument is represented as a variable-length string.

� The path token stores a variable-length text string with a path to a file system object. If
there are several paths used in the system call, the record contains several path tokens.

� If a path token contains a valid file system path, the path token is followed by the
attribute token. The attribute token contains file system attributes of the object referred
to by the path in the path token.

� The process token is similar to the subject token and is used when the system call is
dealing with a process (e.g., kill).

� In_addr and iport tokens store numbers that represent an IP address and a port used in the
call. The socket_inet token describes a socket connection to a local port and keeps an
address of the port and an IP address of remote machine.

61

7.1. BSM Statistics
A brief statistical analysis performed on three BSM audit files is presented in this appendix. The
following files were analyzed:

� 1998 DARPA—The BSM audit file from Tuesday, Week 1 of the 1998 DARPA ID
evaluation test data [L00].

� 2000 DARPA—The BSM audit file 20000307142426.20000207173942.mill.bsm from
the 2000 DARPA ID evaluation data.

� rdist—custom BSM data acquired on a Sun workstation running Solaris 2.5 using a
remote file distribution utility exploit.

Table 9 contains the labels and hexadecimal values of all of the tokens present in the analyzed
audit files.

Table 9. Labels and hexadecimal identifiers for BSM tokens.

Token Identifier Token Label

11 hex Audit File

13 hex Trailer

14 hex Header

23 hex Path

24 hex Subject

26 hex Process

27 hex Return

28 hex Text

2a hex Internet Address

2c hex TCP/UDP Port Address

2d hex System Call Arguments

2e hex Socket

31 hex Attribute

3c hex Exec System Call Arguments

3e hex Attribute 32

72 hex Return 64

62

Table 10 contains the token frequencies in each of the analyzed files. Note that the number of
audit records in the file can be measured with the number of header tokens (14 hex) plus the
number of audit file tokens (11 hex).

Table 10. Token frequencies in the analyzed audit files.
 Token DARPA 1998 DARPA 2000 rdist
Identifier Token Count Token Count Token Count
---------- ----------- ----------- -----------
 11 hex 2 2 2
 13 hex 2114291 104907
 14 hex 2114291 104907 418
 23 hex 1666366 57355 372
 24 hex 2114291 104907 418
 26 hex 229739 711 1
 27 hex 2114291 104791 418
 28 hex 579 30
 2a hex 307
 2c hex 307
 2d hex 1669290 183663 759
 2e hex 540 68723
 31 hex 1599489 368
 3c hex 15797 551
 3e hex 54285
 72 hex 116

63

Tables 11, 12, and 13 list the frequency of token patterns contained in all the records for each of
the corresponding audit files. For example, 16,648 records in the 1998 DARPA data [L00] were
represented by the series or pattern of tokens 23 3E 2D 2D 24 27 13. The variability in the
content and length of audit records within a file is obvious from these tables.

64

Table 11. Frequency of token patterns in the 1998 DARPA audit file.*
 Count Pattern
------- ------------------------------
 16648: 23 3E 2D 2D 24 27 13
 5776: 23 3E 2D 2D 2D 24 27 13
 4279: 2D 2D 24 27 13
 4342 23 24 27 13
 17920: 23 3E 24 27 13
 4456: 2D 24 27 13
 550: 23 3E 3C 24 27 13
 11519: 2D 23 3E 24 27 13
 2137: 24 27 13
 43: 2D 2D 2D 2D 2D 2D 24 27 13
 711: 2D 26 24 27 13
 97: 23 3E 24 72 13
 38: 2D 2D 2D 2D 2D 24 27 13
 31: 2D 2D 2D 24 27 13
 59: 2D 23 3E 2D 24 27 13
 15: 2D 3E 24 72 13
 479: 2D 3E 24 27 13
 20: 24 28 27 13
 237: 23 3E 2D 24 27 13
 1: 2D 2D 2D 2D 2D 2D 2D 24 27 13
 102: 2D 2D 2D 2D 24 27 13
 29: 2D 2E 2E 24 27 13
 169: 2D 3E 2D 2D 2D 24 27 13
 96: 2E 2D 2D 2D 2D 24 27 13
 49: 2E 2D 2D 2E 2D 24 27 13
 37: 2D 2D 23 3E 24 27 13
 575: 2D 3E 2D 2D 24 27 13
 46: 23 23 3E 24 27 13
 22: 2D 2D 2D 2D 2E 24 27 13
 107: 2D 2D 3E 24 27 13
 17: 23 3E 23 24 27 13
 4: 2D 23 3E 23 3E 24 72 13
 65: 2D 2E 24 27 13
 6: 2E 2E 24 27 13
 2 24 28 28 27 13
 1: 2E 2D 2D 24 27 13
 1: 2E 2E 2D 24 27 13
 34175: 2E 2D 2D 2D 2E 24 27 13
 8: 23 3E 23 3E 24 27 13
 2: 2D 23 23 3E 24 27 13
 3: 24 23 27 13
 5: 2D 23 24 27 13
 6: 28 23 3E 24 27 13
 17: 2D 2D 2E 24 27 13
 1: 23 3E 3C 2D 2D 24 27 13
 2: 2E 24 27 13
 1: 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 24 27 13

* L00

65

Table 12. Frequency of token patterns in the 2000 DARPA audit file.
 Count Pattern
------- ---
 30320: 24 27 13
 79436: 23 31 2D 2D 2D 24 27 13
 72121: 2D 24 27 13
513591: 2D 23 31 24 27 13
796996: 23 31 24 27 13
 15797: 23 31 3C 24 27 13
 65916: 23 24 27 13
112487: 2D 2D 24 27 13
175964: 23 31 2D 2D 24 27 13
 8996: 23 31 2D 24 27 13
 307: 24 28 2A 2C 27 13
 591: 2D 2D 23 31 24 27 13
 720: 2D 2D 2D 2D 2D 2D 24 27 13
 272: 24 28 27 13
 1505: 2D 2D 2D 24 27 13
 1155: 2D 2D 2D 2D 24 27 13
 6079: 2D 23 31 2D 24 27 13
 519: 23 31 23 24 27 13
 540: 2D 2D 2E 24 27 13
 581: 23 31 23 31 24 27 13
 206: 2D 2D 2D 2D 2D 24 27 13
 60: 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 24 27 13
 349: 23 23 31 24 27 13
 37: 23 23 24 27 13
 4: 2D 23 24 27 13
 1: 23 31 2D 23 23 31 23 23 31 24 27 13
 1: 23 31 23 23 31 23 23 31 23 23 23 23 23 31 23 23

 23 23 23 31 23 23 23 24 27 13
229739: 2D 26 24 27 13

Table 13. Frequency of token patterns in the rdist audit file.
 Count Pattern
------- -------------------
 10 2D 23 31 24 27
 15 23 31 24 27
 343 23 31 2D 2D 24 27
 1 2D 26 24 27
 30 2D 24 27
 4 24 27
 5 2D 2D 2D 2D 24 27
 6 2D 2D 24 27
 3 23 24 27

66

DISTRIBUTION:

5 Dr. Donald Wunsch
University of Missouri-Rolla
Department of Electrical & Computer Engineering
131 Emerson Electric Co. Hall
131 Miner Circle
Rolla, MO 65409-0040

1 MS0428 D. D. Carlson, 12300

1 MS0785 D. P. Duggan, 6516

5 MS0785 T. J. Draelos, 6514

1 MS0785 M. J. Collins, 6514

1 MS0784 R. C. Parks, 6512

1 MS0785 M. E. Senglaub, 6516

1 MS0785 D. L. Harris, 6516

1 MS0784 R. E. Trellue, 6501

1 MS0451 S. G. Varnado, 6200

1 MS0829 J. M. Sjulin, 12323

1 MS0829 E. V. Thomas, 12323

1 MS0806 T. D. Tarman, 9336

1 MS0806 L. G. Pierson, 9336

1 MS0806 E. L. Witzke, 9336

1 MS0813 R. A. Suppona, 9327

1 MS0785 R. L. Hutchinson, 6516

1 MS0455 L. R. Phillips, 6517

1 MS0455 S. Y. Goldsmith, 6517

1 MS0455 R. S. Tamashiro, 6517

1 MS0784 M. J. Skroch, 6512

1 MS0801 M. R. Sjulin, 9330

1 MS 0188 LDRD Program Office, 1030 (attn: Donna Chavez)

2 MS 0899 Technical Library, 9616

1 MS 0612 Review & Approval Desk, 9612
for DOE/OSTI

1 MS 9018 Central Technical Files, 8945-1

	Introduction
	Related Work
	Organization of Report

	Data Sources
	Exploit Classes
	Solaris Basic Security Module
	Data Collection for Intrusion Detection System Training and Testing
	Data Representation and Preprocessing
	BSM Filtering
	UMR Feature Vector
	Sandia Feature Vector

	Principal Components Analysis

	Intrusion Detection Approaches
	Signature-Based Intrusion Detection
	Generalized Signature-Based Intrusion Detection
	Anomaly Detection
	Combination of Detection Approaches

	Intrusion Detection Experiments
	Intrusion Detection System Control
	Neural Network Control
	eXpert-BSM Control

	Intrusion Detection using an Elman Recurrent Neural Network
	Experiment 1
	Experiment 2

	Intrusion Detection Using Adaptive Critic Designs
	Methodology
	Initial Results and Discussion
	Later Developments
	Final Results

	Anomaly Detection of Intrusions
	Proposed Anomaly Detection Method
	Modifications to Proposed Anomaly Detection Method
	Conclusions Regarding Anomaly Detection Strategies

	Conclusions
	References
	Appendix A—Details of the Solaris BSM
	BSM Statistics

