LED-induced fluorescence diagnostics for turbine and combustion engine thermometry

PDF Version Also Available for Download.

Description

Fluorescence from phosphor coatings is the basis of an established technique for measuring temperature in a wide variety of turbine and combustion engine applications. Example surfaces include blades, vanes, combustors, intake valves, pistons, and rotors. Many situations that are remote and noncontact require the high intensity of a laser to illuminate the phosphor, especially if the surface is moving. Thermometric resolutions of 0.1 C are obtainable, and some laboratory versions of these systems have been calibrated against NIST standards to even higher precision. To improve the measurement signal-to-noise ratio, synchronous detection timing has been used to repeatedly interrogate the same ... continued below

Physical Description

vp.

Creation Information

Allison, S. W. August 17, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Fluorescence from phosphor coatings is the basis of an established technique for measuring temperature in a wide variety of turbine and combustion engine applications. Example surfaces include blades, vanes, combustors, intake valves, pistons, and rotors. Many situations that are remote and noncontact require the high intensity of a laser to illuminate the phosphor, especially if the surface is moving. Thermometric resolutions of 0.1 C are obtainable, and some laboratory versions of these systems have been calibrated against NIST standards to even higher precision. To improve the measurement signal-to-noise ratio, synchronous detection timing has been used to repeatedly interrogate the same blade in a high speed rotating turbine. High spatial resolution can be obtained by tightly focusing the interrogation beam in measurements of static surfaces, and by precise differential timing of the laser pulses on rotating surfaces. We report here the use of blue light emitting diodes (LEDs) as a n illumination source for producing useable fluorescence from phosphors for temperature measurements. An LED can excite most of the same phosphors used to cover the temperature range from 8 to 1400 C. The advantages of using LEDs are obvious in terms of size, power requirements, space requirements and cost. There can also be advantages associated with very long operating lifetimes, wide range of available colors, and their broader emission bandwidths as compared to laser diodes. Temperature may be inferred either from phase or time-decay determinations.

Physical Description

vp.

Source

  • SPIE's 46th Annual Meeting International Symposium Optical Science and Technology, San Diego, CA (US), 07/29/2001--08/03/2001

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: P01-111616
  • Grant Number: AC05-00OR22725
  • Office of Scientific & Technical Information Report Number: 788643
  • Archival Resource Key: ark:/67531/metadc715666

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 17, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • Jan. 22, 2016, 11:46 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 9

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Allison, S. W. LED-induced fluorescence diagnostics for turbine and combustion engine thermometry, article, August 17, 2001; Tennessee. (digital.library.unt.edu/ark:/67531/metadc715666/: accessed November 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.