Formation and Diffusion of S-Decorated Cu Clusters on Cu(111)

Peter J. Feibelman

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Formation And Diffusion Of S-Decorated
Cu Clusters On Cu(111)

Peter J. Feibelman
Surface and Interface Sciences Department
Sandia National Laboratories
P. O. Box 5800
Albuquerque, NM 87185-1413

Abstract
Impurity effects on surface phenomena dominated by defects can be large because, by virtue of their relatively low coordination, defects are attractive to impurity species. A corollary is that impurities stabilize defects, and may affect surface morphology significantly. As an example of a strong impurity effect on growth morphology, SNL-CA studies on Cu(111) show that S impurities speed up Cu island ripening by three to four orders of magnitude. It is shown here that S-decorated Cu trimers are a likely agent of S-enhanced Cu transport between the decaying and coarsening islands. According to ab-initio calculations, excellent S-bonding to trimer-Cu dangling valence results in an ad-Cu₃S₃ formation energy of only ~0.28 eV, compared to 0.79 eV for a self-adsorbed Cu atom, and a diffusion barrier ≤0.35 eV.
Formation And Diffusion Of S-Decorated Cu Clusters On Cu(111)

Introduction

The power of low concentrations of foreign atoms to affect growth morphology has persuaded surface scientists to devote a decade's work to "surfactant-directed" self-assembly of ultra-thin films. But effects of impurities not deposited purposely may be as important as surfactants', and also merit serious study.

Time-resolved scanning-tunneling microscopy (STM) reveals, e.g., that monolayer-high Cu islands on thick Cu(111) films ripen ~3-4 orders of magnitude faster when S, a common impurity, is adsorbed. To understand how S acts, I ask what Cu₃S₃ clusters form more readily on Cu(111) than a Cu adatom, and diffuse easily. A systematic ab-initio search reveals that the smallest such cluster is ad-Cu₃S₃ (see Fig. 1). Its formation energy is ~0.5 eV lower than a Cu adatom's, and, corresponding to tight internal bonding, its diffusion barrier is ≤0.35 eV.

Figure 1. Cu₃S₃ ad-clusters on Cu(111), in the supercell indicated by the dotted rectangle. The inset cluster is displaced by the distance between fcc and hcp hollows, in the direction indicated by the arrow. As a result, the S-atoms that cover it are on (111)-microfacets, rather than the (100)-microfacets of the undisplaced clusters. This change of S-adsorption geometry is the main source of the 0.35 eV Cu₃S₃ diffusion barrier.

This means that S can act as a "skyhook," weakening the bonds of a Cu adatom cluster to the substrate and promoting its transport. Such an effect has been proposed for H on metals (M), through formation of HM dimers, but how divalent S might act as a "skyhook" has not been known till now.
Because close-packing means better coordinated first-layer atoms, self-adsorption costs more energy on closer-packed surfaces. Cu/Cu(111) obeys this rule. The present Density Functional Theory (DFT) calculations, based on the Generalized Gradient Approximation (GGA), say that 0.79 eV is needed to form a Cu adatom on Cu(111). The same logic that predicts this large $E_{\text{form}}(\text{ad-Cu})$ suggests that the self-diffusion barrier on Cu(111), $E_{\text{diff}}(\text{ad-Cu})$, should be small. The present finding, $E_{\text{diff}}(\text{ad-Cu}) = 57 \text{ meV}$, again agrees.

These results constrain ideas of how S promotes Cu-transport at 300K. E.g., since little can be gained by lowering a barrier close to $2k_BT (\approx 51.7 \text{ meV})$, S must act by increasing the concentration of diffusing adspecies. However, S does not act by reducing the barrier to dissociating Cu atoms from island edges onto terraces. On geometric grounds, this barrier must be close to $E_{\text{form}}(\text{ad-Cu}) + E_{\text{diff}}(\text{ad-Cu}) = 0.85 \text{ eV}$ (expt. $= 0.78 \pm 0.04 \text{ eV}$), i.e., again only $\approx 57 \text{ meV}$ larger than the minimum needed to produce an ad-Cu on a terrace.

S impurities must therefore promote island-ripening by forming tightly-bound, and thus plentiful and mobile, Cu$_n$S$_m$ ad-species. This raises a general question: What complex with a divalent impurity can enhance metal adatom transport? For S/ Cu(111), I show that ad-Cu$_2$S$_3$ is a good candidate.

Methods

Results reported here were obtained with the VASP total-energy code, its ultrasoft pseudopotentials (USP’s), and the Perdew-Wang ’91 GGA. I compute adsorption energies using 6- to 8-layer slabs to represent Cu(111), fixing the lower three slab-layer atoms at bulk relative positions and relaxing the rest till forces are <0.03 eV/Å. I set the slab lattice parameter to 3.64 Å, the bulk GGA value for a 60-k sample of the irreducible 1/48th of the Brillouin Zone (BZ) (exp’t. = 3.61 Å). To accelerate electronic relaxation, I use Methfessel and Paxton’s Fermi-level smearing method (width = 0.3 eV). USP’s yield converged total energies with modest basis size. Here, with a 17.2 Ry plane-wave cutoff total energies should be accurate to $\approx 10-20 \text{ meV}$. I confirm this expectation by repeating key calculations with the cutoff increased 25% to 21.5 Ry. At the same time, I also increase the width of the vacuum region from 3 to 5 times the bulk (111)-layer spacing, allowing cancellation of unphysical dipole fields introduced because only upper slab surfaces are relaxed.

The abundance of ad-Cu$_n$S$_m$ is determined by its chemical potential. It equals the chemical potential of ad-Cu$_n$ less that gained by m ad-S’s attaching to form a decorated cluster. I compute this gain by reference to the isolated ad-S chemical potential, $\mu(\text{ad-S}) = E_B(\text{ad-S}) - k_BT \ln \theta_S$. Here $E_B(\text{ad-S})$ is the ad-S binding energy and $k_BT \ln \theta_S$ accounts for the entropy loss per S, at ad-S concentration θ_S.

To obtain the formation-energy component of \(\mu(\text{ad-Cu}_n) \), I consider Cu(111) slabs, \(L \) layers thick, with \(N \) atoms per supercell in each layer. Imagine removing a layer from \(n \) such slabs and distributing their Cu atoms as clusters of \(n \) ad-Cu's, one to a supercell, on \(N \) slabs, each \(L-1 \) layers thick. The original slabs thus lose one “bulk” layer each, for sufficiently large \(L \), and each of the \(N \), \((L-1) \)-layer slabs gains an \(n \)-cluster per cell. For large \(L \) and \(N \), this costs \(N \times \varepsilon_{\text{form}}(n\text{-cluster}) \). Thus,

\[
\varepsilon_{\text{form}}(n\text{-cluster}) = \varepsilon_{\text{ad}}(N,L-1) - \varepsilon_{\text{cln}}(N,L-1) - n \left[\varepsilon_{\text{slab}}(N,L) - \varepsilon_{\text{slab}}(N,L-1) \right]/N, \tag{1}
\]

where \(\varepsilon_{\text{ad}}(N,L-1) \) and \(\varepsilon_{\text{cln}}(N,L-1) \) are the energies/supercell of an \(L-1 \) layer slab with one ad-Cu on it, per supercell, or clean. In Eq. 1, the last term is the energy needed to remove “bulk” Cu-atoms, while \(\varepsilon_{\text{ad}}(N,L-1) - \varepsilon_{\text{cln}}(N,L-1) \) is what they gain by adsorbing as \(n \)-clusters on slabs. With all contributions to Eq. 1 computed using the same supercell and BZ sample, error cancellation should be good.14

Results

Cu adatoms - Values of \(\varepsilon_{\text{form}}(\text{ad-Cu}) \) and \(\varepsilon_{\text{diff}}(\text{ad-Cu}) \) (see Table 1) are derived from total energies of 12 atom/layer, supercells -- large enough that inter-adatom interactions should be small. Based on convergence studies of Cu step- and kink-formation,15 I sample the surface BZ with a 6\times6 grid of k-vectors, equally spaced in the x- and in the y-directions.

Table 1: Cu adatom formation and diffusion barrier energies on L-layer Cu(111) slabs.

<table>
<thead>
<tr>
<th>(L)</th>
<th>adatom site</th>
<th>(\varepsilon_{\text{form}})</th>
<th>(\varepsilon_{\text{diff}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>fcc</td>
<td>0.80eV</td>
<td>58meV</td>
</tr>
<tr>
<td>6</td>
<td>hcp</td>
<td>0.81eV</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>fcc</td>
<td>0.78eV</td>
<td>58meV</td>
</tr>
<tr>
<td>8</td>
<td>fcc</td>
<td>0.79eV</td>
<td>57meV</td>
</tr>
</tbody>
</table>

To place bounds on quantum-size effects (QSE), I evaluate \(\varepsilon_{\text{form}}(\text{ad-Cu}) \) and \(\varepsilon_{\text{diff}}(\text{ad-Cu}) \) for 6-, 7- and 8-layer films. To avoid confusing basis-convergence error with QSE, I use the high plane-wave cutoff of 21.5 Ry. The results show QSE of \(\sim\)10 meV, and also that formation and diffusion energetics are well-converged on a 6-layer (111) slab. With the lower plane-wave cutoff, 17.2 Ry, \(\varepsilon_{\text{diff}}(\text{ad-Cu}) \) is 53, 36 and 52 meV for 6, 7 and 8 layer slabs. The apparent QSE is a non-convergence artifact.
Cu adatoms prefer fcc to hcp 3-fold sites on the 6-layer slab, but only by 7 meV (cf. Table 1). Correspondingly, the ad-Cu diffusion barrier lies almost equidistant from the 3-fold hollows at a twofold bridge. To an excellent approximation, $E_{\text{diff}}(\text{ad-Cu})$ is thus the difference in energies for an ad-Cu in an fcc hollow and at the symmetric bridge. The computed sum, $E_{\text{form}}(\text{ad-Cu}) + E_{\text{diff}}(\text{ad-Cu}) = 0.85$ eV, compares well with the value, 0.78 ± 0.04 eV, obtained from STM observations of Cu island decay rates. Effective Medium Theory calculations by Stoltze yield 0.71 eV and 53 meV for $E_{\text{form}}(\text{ad-Cu})$ and $E_{\text{diff}}(\text{ad-Cu})$, in relatively good agreement with the best ab-initio results, 0.79 eV and 57 meV.

Cu-S ad-dimers - If ad-CuS is the plentiful species that accounts for S-enhanced Cu transport, at a minimum ad-Cu and ad-S must attract each other. But they do not. A S adatom loses 1.08 eV binding energy in approaching the ad-Cu closely, and forming a Cu-S dimer with the S beside the Cu (cf. Table 2) costs 1.87 eV. Presumably because the S cannot conveniently form two bonds, repulsion of the same magnitude also inhibits formation of an ad-CuS with the Cu-end down. But even in the S-end down configuration, where S and Cu valence requirements can be satisfied, the dimer formation energy (with the CuS in an fcc hollow) is 1.26 eV, compared to $E_{\text{form}}(\text{ad-Cu})=0.79$ eV. Thus, the Cu-S adcluster responsible for enhanced Cu-island decay contains more than one Cu atom.

Clean and S-decorated Cu dimers - One expects Cu’s adsorbed on Cu(111) to attract, and indeed (Table 3) Cu-Cu attraction lowers $E_{\text{form}}(\text{ad-Cu}_2)$ by 0.27 eV. But does attaching S atoms to such a dimer reduce its E_{form} by another 0.53 eV, to make S-decorated Cu-dimers more plentiful than Cu monomers? At least for the most obvious S-decorations of Cu addimers, the answer is no (cf. Table 2). Placing a single S on the side of the dimer, where it is 4-coordinated (the “A-type” side), lowers the formation energy by 0.04 eV. Adding another, on the other side of the dimer lowers it 0.19 eV more, not enough to compensate the cost of the second ad-Cu.

Other geometries, e.g., Cu’s decorating a S-addimer, or S’s and Cu’s alternating to form a flat tetramer, seem unfavorable. The former requires S’s to be nearest neighbors even while S2 dissociates on Cu(111). The latter is unlikely because, as noted above, an ad-S repels an adjacent ad-Cu. The search for a low energy Cu-S complex thus moves to still larger clusters.
Table 2: Clean- and S-decorated-cluster formation energies, E_{form}, on a 6-layer, Cu(111) slab. N_S and N_{Cu} are the numbers of S and Cu adatoms in each cluster. For Cu dimers and trimers I indicate the face that the S atoms decorate. The “B” cases correspond to Cu’s in hcp hollows. In all other cases the Cu’s occupy fcc sites. When the dipole correction (see text) is included, the vacuum width used is ~5 bulk Cu(111) layer spacings. Otherwise it is ~3 of them. Supercell and PW cutoff are self-explanatory. Values of E_{form} in bold face are “best” values for the various cluster types. For the Cu monomer plus one S adatom, the three E_{form} values are for S down, Cu down and S-beside-Cu configurations.

<table>
<thead>
<tr>
<th>N_S</th>
<th>N_{Cu}</th>
<th>face</th>
<th>dipole corr.</th>
<th>supercell</th>
<th>PW cutoff</th>
<th>E_{form}(eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>no</td>
<td>$3 \times 2\sqrt{3}$</td>
<td>17.2</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>yes</td>
<td>$3 \times 2\sqrt{3}$</td>
<td>21.5</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>no</td>
<td>$3 \times 2\sqrt{3}$</td>
<td>17.2</td>
<td>1.26, 1.87, 1.87</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>A</td>
<td>no</td>
<td>$3 \times 2\sqrt{3}$</td>
<td>17.2</td>
<td>1.29</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>no</td>
<td>$3 \times 2\sqrt{3}$</td>
<td>17.2</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>A</td>
<td>no</td>
<td>$4 \times 2\sqrt{3}$</td>
<td>17.2</td>
<td>1.66</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>A</td>
<td>no</td>
<td>$4 \times 2\sqrt{3}$</td>
<td>17.2</td>
<td>0.27</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>B</td>
<td>yes</td>
<td>$4 \times 2\sqrt{3}$</td>
<td>17.2</td>
<td>0.62</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>A</td>
<td>yes</td>
<td>$4 \times 2\sqrt{3}$</td>
<td>21.5</td>
<td>1.69</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>A</td>
<td>yes</td>
<td>$4 \times 2\sqrt{3}$</td>
<td>21.5</td>
<td>0.28</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>B</td>
<td>yes</td>
<td>$4 \times 2\sqrt{3}$</td>
<td>21.5</td>
<td>0.62</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>yes</td>
<td>$4 \times 2\sqrt{3}$</td>
<td>21.5</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>no</td>
<td>$4 \times 2\sqrt{3}$</td>
<td>17.2</td>
<td>1.09</td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Pure Cu cluster formation energies on 6-layer Cu(111)

<table>
<thead>
<tr>
<th>cluster</th>
<th>supercell</th>
<th>$E_{\text{form}}(\text{ad-Cu}_n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>monomer</td>
<td>$3 \times 2\sqrt{3}$</td>
<td>0.80 eV</td>
</tr>
<tr>
<td>dimer</td>
<td>$3 \times 2\sqrt{3}$</td>
<td>1.33 eV</td>
</tr>
<tr>
<td>A-trimer</td>
<td>$3 \times 2\sqrt{3}$</td>
<td>1.68 eV</td>
</tr>
<tr>
<td>A-trimer</td>
<td>$4 \times 2\sqrt{3}$</td>
<td>1.66 eV</td>
</tr>
<tr>
<td>B-trimer</td>
<td>$3 \times 2\sqrt{3}$</td>
<td>1.66 eV</td>
</tr>
</tbody>
</table>

Clean and S-decorated Cu trimers - S-decorated trimers (cf. Fig. 1) are big enough that using supercells to compute their formation energies is a concern. To quantify the interaction of periodically repeated clusters, I compute $E_{\text{form}}(\text{ad-Cu}_3)$ and $E_{\text{form}}(\text{ad-Cu}_3\text{S}_3)$ in both and supercells. To minimize BZ sampling error, I obtain $E_{\text{form}}(\text{ad-Cu}_3\text{S}_3)$ in each cell using a value of $E_{\text{B}}(\text{ad-S})$ computed in the same cell. The results show a small (0.02 eV) reduction in computed formation energy for the pure trimer in the bigger cell, but a considerable one (0.13 eV) for the ad-Cu$_3$S$_3$. Accordingly, the conclusions I offer here regarding ad-Cu$_3$S$_3$ formation are all based on calculations in the cell.

Per adatom, forming Cu ad-trimers should cost less than dimers, because each ad-Cu has two ad-Cu neighbors, not just one. Counting bonds, with a Cu-Cu bond strength of 0.27 eV (see above), one expects $E_{\text{form}}(\text{ad-Cu}_3)=1.59$ eV, i.e., about triple the monomer formation energy, 2.4 eV, minus 3x0.27 eV.

Direct calculations confirm this logic. The energy needed to form a trimer, with the three Cu adatoms in neighboring fcc hollows bounded by (100)- or “A-type” microfacets, is ~1.7 eV. If the trimer is rotated 60°, so that its sides are (111)- or “B-type” microfacets, its E_{form} is 0.02 meV less (cf. Table 3).

Though bond-counting predicts $E_{\text{form}}(\text{ad-Cu}_3)$ rather well, a similar approach greatly underestimates how much S-decoration reduces it. Rather than by 0.1 to 0.2 eV per added S-atom, as S+Cu-dimer results would suggest, decorating a Cu trimer with three S atoms reduces the formation energy of the complex by 0.47 eV/S-atom, for a trimer bounded by A-type microfacets. **Forming S-decorated Cu trimers thus costs only 0.28 eV, much less than Cu monomers!**
In Fig. 2, for insight, I compare d-band local densities of states (d-LDOS’s) of a Cu atom in an ad-Cu$_3$S$_3$, a nearby, uncovered surface-layer Cu and a third-layer (“bulk”) Cu atom. Note that the d-LDOS of the trimer-Cu lies well below the uncovered surface Cu atom’s (so that its centroid = that of the “bulk” Cu d-LDOS). This implies that d-electron energies on the trimer are lowered as charge polarizes from trimer-Cu’s to S’s. d-LDOS widths on the trimer- and uncovered-surface-Cu are about the same. Thus, the effective coordination of trimer Cu’s is “healed” to the level of a surface plane Cu’s.

Diffusion of S-decorated Cu trimers - Given that creating a Cu$_3$S$_3$ ad-complex costs just 0.28 eV, and the related fact that S-decoration lifts the Cu adatoms ~0.14 Å higher above the nearest surface Cu’s, the cluster diffusion barrier should be low. A plausible diffusion path involves moving each Cu from its initial hollow, say an fcc site, (along the arrow in Fig. 1) over a neighboring bridge to an adjacent hcp hollow, the three S atoms following more or less rigidly. A lower bound for the barrier along this path is the energy difference between the initial and final configurations of the decorated trimer, or (see Fig. 1) between S-decorated trimers with A- vs. B-type sides.
This bound is significant, because S atoms have an affinity for Cu's arranged in a square. In the present case, the affinity amounts to an energetic preference of ~0.33 eV for an A-sided trimer. It remains to learn if the B-trimer represents a transition geometry or a metastable state, and if the latter, whether the minimum barrier is much bigger than 0.33 eV.

Applying Jónsson's Nudged Elastic Band (NEB) method with two replicas of the S-decorated trimer along the path between A-trimer in fcc- and B-trimer in hcp-hollows, I find a transition state close to the B-trimer geometry and a barrier of 0.35 eV. Thus \(E_{\text{form}}(\text{Cu}_3\text{S}_3) + E_{\text{diff}}(\text{Cu}_3\text{S}_3) \approx 0.63 \text{ eV} \), which is 0.22 eV lower than the similar sum for a Cu adatom.

Assuming "diffusion-limited" Cu-island ripening, the decay-rate scales with the concentration of Cu-carrying adspecies times their diffusion constant. This product is proportional to \(D_0(\text{ad-Cu}) \exp\left(-\left[E_{\text{form}}(\text{ad-Cu}) + E_{\text{diff}}(\text{ad-Cu})\right]/k_BT\right) \), for Cu-adatom transport, and to \(D_0(\text{Cu}_3\text{S}_3) \theta_S^3 \exp\left(-\left[E_{\text{form}}(\text{Cu}_3\text{S}_3) + E_{\text{diff}}(\text{Cu}_3\text{S}_3)\right]/k_BT\right) \), for Cu_3S_3 clusters, where the \(D_0 \)'s are diffusion prefactors. The S-induced speedup is proportional to the latter divided by the former. So the predicted Cu_3S_3-mediated decay rate \(\approx 15000 \ theta_S^3 \times D_0(\text{Cu}_3\text{S}_3)/D_0(\text{ad-Cu}) \) that for clean Cu(111) (with a factor three included, since each cluster contains three Cu atoms).

This result makes it plausible that Cu_3S_3 clusters account for the speedup seen in Ref. 2. Whether they really do depends on the \(D_0 \)'s and other uncertainties in the calculations, notably, the size of the supercell. That \(k_BT \) is near the accuracy of DFT results is, of course, a perennial issue in DFT total-energy studies of 300K phenomena.

Clean and S-decorated Cu tetramers - The advantages of additional Cu-Cu bonds and S-decoration persist beyond Cu-trimers. To form ad-Cu_4S_4, e.g., requires only ~0.49 eV. However, since barriers to concerted diffusion of Cu_nS_n clusters likely rise with \(n \), Cu-transport via S-decorated tetramers, pentamers, etc. should be less facile than via Cu_3S_3, another subject for further study.

Observation of Cu-S ad-clusters - Quench experiments that directly reveal Cu_3S_3 on terraces would obviously be desirable. A suggestive result in this direction is that STM of a low-T "honeycomb phase" of S/Cu(111), exhibits one surface protrusion per deposited S, separated by ~4 Å. I find an S-S separation of 4.4 Å for ad-Cu_3S_3.
Acknowledgments

I am grateful to N. C. Bartelt and B. S. Swartzentruber for many helpful discussions. VASP was developed at the Technical University of Vienna, Austria.

References

7 Ad-CuSn may also underlie the S/Cu(111) phases reported by E. Wahlström, et al., Phys. Rev. B60, 10699(1999).
11

17 Starting the A trimer with Cu's in hcp hollows should make little difference.

21 The Cu's of the ad-Cu4S4 form a parallelogram with two Cu's roughly in threefold hollows and two in bridge sites. A fifth S atop ad-Cu4S4 is unhelpful, with E_{form(ad-Cu4S5)} = 1.09 eV.

22E. Wahlström et al., op. cit.