On the embrittlement of Zircaloy-4 under RIA-relevant conditions.

PDF Version Also Available for Download.

Description

The extended use of Zircaloy cladding in light water reactors degrades its mechanical properties by a combination of irradiation embrittlement, coolant-side oxidation, hydrogen pickup, and hydride formation. The hydrides are usually concentrated in the form of a dense layer or rim near the cooler outer surface of the cladding. Utilizing plane-strain ring-stretch tests to approximate the loading path in a reactivity-initiated accident (RIA) transient, we examined the influence of a hydride rim on the fracture behavior of unirradiated Zircaloy-4 cladding at room temperature and 300 C. Failure is sensitive to hydride-rim thickness such that cladding tubes with a hydride-rim thickness ... continued below

Physical Description

31 pages

Creation Information

Daum, R.S.; Majumdar, S.; Billone, M.C.; Bates, D.W.; Koss, D.A. & Motta, A.T. December 19, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 24 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The extended use of Zircaloy cladding in light water reactors degrades its mechanical properties by a combination of irradiation embrittlement, coolant-side oxidation, hydrogen pickup, and hydride formation. The hydrides are usually concentrated in the form of a dense layer or rim near the cooler outer surface of the cladding. Utilizing plane-strain ring-stretch tests to approximate the loading path in a reactivity-initiated accident (RIA) transient, we examined the influence of a hydride rim on the fracture behavior of unirradiated Zircaloy-4 cladding at room temperature and 300 C. Failure is sensitive to hydride-rim thickness such that cladding tubes with a hydride-rim thickness >100 {micro}m ({approx}700 wppm total hydrogen) exhibit brittle behavior, while those with a thickness <90 {micro}m ({approx}600 wppm) remain ductile. The mechanism of failure is identified as strain-induced crack initiation within the hydride rim and failure within the uncracked ligament due to either a shear instability or damage-induced fracture. We also report some preliminary results of the uniaxial tensile behavior of low-Sn Zircaloy-4 cladding tubes in a cold-worked, stress-relieved condition in the transverse (hoop) direction at strain rates of 0.001/s and 0.2/s and temperatures of 26-400 C.

Physical Description

31 pages

Source

  • 13th International Symposium on Zirconium in the Nuclear Industry, Annecy (FR), 06/10/2001--06/14/2001

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ET/CP-104844
  • Grant Number: W-31-109-ENG-38
  • Office of Scientific & Technical Information Report Number: 790246
  • Archival Resource Key: ark:/67531/metadc715524

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 19, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • March 23, 2016, 10:54 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 24

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Daum, R.S.; Majumdar, S.; Billone, M.C.; Bates, D.W.; Koss, D.A. & Motta, A.T. On the embrittlement of Zircaloy-4 under RIA-relevant conditions., article, December 19, 2001; Illinois. (digital.library.unt.edu/ark:/67531/metadc715524/: accessed October 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.