DISTILLATION COLUMN FLOODING PREDICTOR

INNOVATIVE TECHNOLOGY PREDICTS AND AVOIDS LIQUID AND JET FLOODING IN THE PETROLEUM REFINING PROCESS

Petroleum refiners use advanced process tools to prevent flooding of distillation columns at refineries. Typically, these controls are used in conjunction with multivariable predictive-control technologies that are either licensed through a vendor or developed in-house. These conventional control strategies are commonly used to predict the column’s approach to flood by monitoring the column delta pressure; however, they allow damage and lost productivity because they are based on raw data.

A new control technology provides a more accurate estimation of distillation-column flooding. The distillation column flooding predictor is a pattern-recognition system that identifies patterns of transient tower instabilities, which have been discovered to precede tray flooding. This non-intrusive technology processes signal data obtained from existing column instrumentation. Once the pattern is identified, it is modeled and coded into the plant’s distributed control system. The control system is programmed to briefly unload the tower each time the pattern appears by momentarily reducing temperature input to the tower.

APPLICATIONS
Within the refining industry, proprietary versions of the technology have been applied to fluid catalytic cracker (FCC) units, Sats Gas Absorber Columns, FCC main Fractionators, Stripper Columns, and H2S Scrubber Columns. This concept is potentially applicable in other areas of pattern-intensive diagnostics, such as cardiac telemetry units and blood glucose monitoring devices, anywhere the assessment of raw data is primarily dependent on interpretation of data sets-patterns.
Project Description

Goal: Field test, revalidate, and obtain public data on the performance and capabilities of the distillation column flooding predictor to facilitate market penetration.

The distillation column flooding predictor is a patented, pattern-recognition technology that predicts liquid and jet flooding in the petroleum-refining process. The system identifies patterns of transient tower instabilities, which have been discovered to precede tray flooding. This closed-loop system duplicates the thinking of an expert operator or engineer in tower operation and can detect a pre-flood condition that occurs 5 to 60 minutes before the actual flood event.

Current predictive-control techniques often rely on tower delta-pressure to indicate an approach to flood. However, many distillation processes experience day to day fluctuations in these feed variables, which limits the accuracy of this predictive-control method to predict a flooding event.

In contrast, the distillation column flooding predictor accurately predicts a flood event, temporarily relaxes the severity, and avoids actual flood conditions. This allows for more stable long-term operation, resulting in greater efficiency and throughput increases of up to 2 to 5 percent. In addition, fewer flooding events will reduce equipment damage that results from such events.

2ndpoint, Inc., is developing and acquiring public data for this new technology with the help of a grant funded by the Inventions and Innovation Program in the Department of Energy’s Office of Industrial Technologies.

Progress and Milestones

- Independently establish performance data.
- Develop training and technical manuals and appropriate software.
- Develop marketing plan and accompanying tools.
- Identify and pursue opportunities for licensing or joint-venture strategies.
- The invention is patented under U.S. patent 5,784,538.
- As a first step towards commercialization, the inventor is currently seeking an incubator site or pilot plant to allow him to compile independent performance data for marketing and technical information.

Economics and Commercial Potential

Although financial, environmental, and legal considerations make it unlikely that new refineries will be built in the United States, expansion at existing refineries will likely increase total U.S. refining capacity in the long run.

Looking at industry statistics, industry representatives are inclined to agree that the distillation column flooding predictor, which increases efficiency and column throughput, is worth exploring.

INDUSTRY OF THE FUTURE—PETROLEUM

Petroleum is one of nine energy- and waste-intensive industries that is participating with the U.S. Department of Energy’s (DOE) Office of Industrial Technologies’ Industries of the Future initiative. Using an industry-defined vision of the petroleum industry in the year 2020, the industry and DOE are using this strategy to build collaborations to develop and deploy technologies crucial to the industry’s future.

OIT Petroleum Industry Team Leader: Jim Quinn (202) 586-5725.