Production of Hydrogen by Superadiabatic Decomposition of Hydrogen Sulfide - Final Technical Report for the Period June 1, 1999 - September 30, 2000

PDF Version Also Available for Download.

Description

The objective of this program is to develop an economical process for hydrogen production, with no additional carbon dioxide emission, through the thermal decomposition of hydrogen sulfide (H{sub 2}S) in H{sub 2}S-rich waste streams to high-purity hydrogen and elemental sulfur. The novel feature of the process being developed is the superadiabatic combustion (SAC) of part of the H{sub 2}S in the waste stream to provide the thermal energy required for the decomposition reaction such that no additional energy is required. The program is divided into two phases. In Phase 1, detailed thermochemical and kinetic modeling of the SAC reactor with ... continued below

Physical Description

Medium: P; Size: 155 pages

Creation Information

Slimane, Rachid B.; Lau, Francis S. & Abbasian, Javad October 1, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 28 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The objective of this program is to develop an economical process for hydrogen production, with no additional carbon dioxide emission, through the thermal decomposition of hydrogen sulfide (H{sub 2}S) in H{sub 2}S-rich waste streams to high-purity hydrogen and elemental sulfur. The novel feature of the process being developed is the superadiabatic combustion (SAC) of part of the H{sub 2}S in the waste stream to provide the thermal energy required for the decomposition reaction such that no additional energy is required. The program is divided into two phases. In Phase 1, detailed thermochemical and kinetic modeling of the SAC reactor with H{sub 2}S-rich fuel gas and air/enriched air feeds is undertaken to evaluate the effects of operating conditions on exit gas products and conversion efficiency, and to identify key process parameters. Preliminary modeling results are used as a basis to conduct a thorough evaluation of SAC process design options, including reactor configuration, operating conditions, and productivity-product separation schemes, with respect to potential product yields, thermal efficiency, capital and operating costs, and reliability, ultimately leading to the preparation of a design package and cost estimate for a bench-scale reactor testing system to be assembled and tested in Phase 2 of the program. A detailed parametric testing plan was also developed for process design optimization and model verification in Phase 2. During Phase 2 of this program, IGT, UIC, and industry advisors UOP and BP Amoco will validate the SAC concept through construction of the bench-scale unit and parametric testing. The computer model developed in Phase 1 will be updated with the experimental data and used in future scale-up efforts. The process design will be refined and the cost estimate updated. Market survey and assessment will continue so that a commercial demonstration project can be identified.

Physical Description

Medium: P; Size: 155 pages

Notes

OSTI as DE00771057

Source

  • Other Information: PBD: 1 Oct 2000

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/GO/10450-F
  • Grant Number: FC36-99GO10450
  • DOI: 10.2172/771057 | External Link
  • Office of Scientific & Technical Information Report Number: 771057
  • Archival Resource Key: ark:/67531/metadc715387

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 2000

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • June 13, 2016, 3:51 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 28

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Slimane, Rachid B.; Lau, Francis S. & Abbasian, Javad. Production of Hydrogen by Superadiabatic Decomposition of Hydrogen Sulfide - Final Technical Report for the Period June 1, 1999 - September 30, 2000, report, October 1, 2000; United States. (https://digital.library.unt.edu/ark:/67531/metadc715387/: accessed April 18, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.