Schemes and Optimization of Gas Flowing into the Ion Source and the Neutralizer of the DIII-D Neutral Beam Systems

PDF Version Also Available for Download.

Description

Performance comparisons of a DIII-D neutral beam ion source operated with two different schemes of supplying neutral gas to the arc chamber were performed. Superior performance was achieved when gas was puffed into both the arc chamber and the neutralizer with the gas flows optimized as compared to supplying gas through the neutralizer alone. To form a neutral beam, ions extracted from the arc chamber and accelerated are passed through a neutralizing cell of gas. Neutral gas is commonly puffed into the neutralizing cell to supplement the residual neutral gas from the arc chamber to obtain maximum neutralization efficiency. However, ... continued below

Physical Description

4 p.

Creation Information

Hong, R.M. & Chiu, H.K. November 1, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • General Atomic Company
    Publisher Info: General Atomics, San Diego, CA (United States)
    Place of Publication: San Diego, California

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Performance comparisons of a DIII-D neutral beam ion source operated with two different schemes of supplying neutral gas to the arc chamber were performed. Superior performance was achieved when gas was puffed into both the arc chamber and the neutralizer with the gas flows optimized as compared to supplying gas through the neutralizer alone. To form a neutral beam, ions extracted from the arc chamber and accelerated are passed through a neutralizing cell of gas. Neutral gas is commonly puffed into the neutralizing cell to supplement the residual neutral gas from the arc chamber to obtain maximum neutralization efficiency. However, maximizing neutralization efficiency does not necessarily provide the maximum available neutral beam power, since high levels of neutral gas can increase beam loss through collisions and cause larger beam divergence. Excessive gas diffused from the neutralizer into the accelerator region also increases the number of energetic particles (ions and secondary electrons from the accelerator grid surfaces) deposited on the accelerator grids, increasing the possibility of overheating. We have operated an ion source with a constant optimal gas flow directly into the arc chamber while gas flow into the neutralizer was varied. Neutral beam power available for injecting into plasmas was obtained based on the measured data of beam energy, beam current, beam transmission, beam divergence, and neutralization efficiency for various neutralizer gas flow rates. We will present the results of performance comparison with the two gas puffing schemes, and show steps of obtaining the maximum available beam power and determining the optimum neutralizer gas flow rate.

Physical Description

4 p.

Notes

INIS; OSTI as DE00766695

Medium: P; Size: 4 pages

Source

  • 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, NM (US), 10/25/1999--10/29/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: GA-A23254
  • Grant Number: AC03-99ER54463
  • Office of Scientific & Technical Information Report Number: 766695
  • Archival Resource Key: ark:/67531/metadc715365

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 1999

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • April 10, 2017, 8:09 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hong, R.M. & Chiu, H.K. Schemes and Optimization of Gas Flowing into the Ion Source and the Neutralizer of the DIII-D Neutral Beam Systems, article, November 1, 1999; San Diego, California. (https://digital.library.unt.edu/ark:/67531/metadc715365/: accessed May 20, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.