RF Characteristics
of GaAs/InGaAsN/GaAs P-n-P Double Heterojunction Bipolar Transistors

A. G. Baca,* P. C. Chang,* N. Y. Li,** H. Q. Hou,** C. Monier,*** J. Laroche,*** F. Q8 Ren,*** and S. J. Pearton***

*Sandia National Laboratories, P. O. Box 5800, MS-0603, Albuquerque, NM 87185-0603
** Emcore Corporation, Albuquerque, NM 87123
***University of Florida, Gainesville, FL 32611

Abstract-- We have demonstrated a P-n-P GaAs/InGaAsN/GaAs double heterojunction bipolar transistor (DHBT). The device has a low turn-on voltage (V_{CEO}) that is 0.27 V lower than in a comparable P-n-p AIGaAs/GaAs HBT. The device shows near-ideal DC characteristics with a current gain ($eta$) greater than 45. The high-speed performance of the device are comparable to a similar P-n-p AIGaAs/GaAs HBT, with f_{max} and f_T values are both approximately 12 GHz. This device may be suitable for low-power complementary HBT circuit applications, while the aluminum-free emitter structure eliminates issues typically associated with AIGaAs.

I. INTRODUCTION

The trend in portable electronics is to extend the battery lifetime without sacrificing the performance. One approach toward this goal is to reduce the operating voltages without compromising power added efficiency, making devices with lower turn-on voltages more desirable. For heterojunction bipolar transistors (HBTs), a lower bandgap (E_g) base reduces the turn-on voltage (V_{CEO}), and leads to greater efficiency at low-bias conditions. HBTs with InGaAs bases lattice matched to InP substrates offer one possibility that has not been adopted by commercial foundries due to substrate cost concern over breakage, and possibly lack of 6” wafers. InGaAsN lattice matched to GaAs is a new material that has received a lot of attention lately [1-5]. Incorporating small amount of In and N would result in a significantly reduced E_g compared to GaAs, making it very suitable for low-power HBT applications. Recently we demonstrated both N-p-N and P-n-p InGaAsN HBTs [4-5]. The latter device used an AIGaAs emitter while the former used an InGaP emitter. Both the N-p-N and P-n-P InGaAsN HBTs show V_{CEO} values that are significantly lower than in the corresponding GaAs-based HBTs, showing the potential of InGaAsN based HBTs for low power applications.

The N-p-N HBT is of potential interest for wireless applications. The application of P-n-P HBTs would be in complementary applications, which have so far proven more difficult to realize in GaAs manufacturing than for the Si counterpart. Nevertheless, complementary GaAs-based HBTs should some day provide the same advantages to wireless technology as complementary bipolar BJTs do for analog applications today [6]. Apart from these practical applications, development of the P-n-P HBT with InGaAsN base material allows for some novel new devices due to the unique band alignments present with this material. In this work, we present a new P-n-P InGaAsN DHBT with a GaAs emitter. The Al-free design will simplify or eliminate many of the issues typically associated with AIGaAs.

II. THEORY

InGaAsN is a new material with unique band bowing properties [1] that has shown promise in optoelectronic applications [2-3]. The E_g of GaAs is reduced as In is incorporated, while a compressive strain develops. On the other hand, by adding N into GaAs, a tensile strain develops, while the E_g is further reduced. By incorporating the proper amount of In and N into GaAs simultaneously, InGaAsN that is lattice matched to GaAs can be obtained. The E_C of the---

Figure 1: The effect on the band alignment of incorporating In and N into GaAs.

III. EXPERIMENTAL PROCEDURE

Specimen design is the key to any mechanical test method, and that is presented in the next section along with information on the material tested. That is followed by a description of the latest version of test techniques and procedures. The results of the measurements of Young’s modulus and strength of the three materials comprise the heart of the paper, and that section is followed by concluding remarks.

SPECIMENS AND MATERIALS

An outline drawing of the tensile specimens is shown in Figure 1; these four specimens would be a portion of a one-centimeter square die.

Figure 1. Drawing of the four tensile specimens.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
The top end is fastened to the silicon wafer, and the rest of the specimen is released by etching away an underlying layer. The test section is the straight portion, which fairs into the ends with a large radius of curvature. The grip end, which contains etch holes, is anchored at four corners to prevent damage as the die is handled. Those anchors are cut prior to testing. The nominal dimensions of the test sections of the specimens were 6 or 20 \(\mu \text{m} \) wide and 250 or 1000 \(\mu \text{m} \) long.

Polysilicon specimens were obtained from MCNC (now Cronos) on the MUMPs 25 run of July 1998. Specimens prepared by a similar process came from Standard MEMS Inc. In both cases, tensile specimens that were 1.5 \(\mu \text{m} \), 2.0 \(\mu \text{m} \), and 3.5 \(\mu \text{m} \) thick were supplied — the latter being a two-layer combination. Sandia National Laboratories provided two-layer specimens that were 2.5 \(\mu \text{m} \) thick.

TEST PROCEDURES

Tensile test techniques and procedures have been developed at Johns Hopkins University, which are applicable to thin-film materials. Strength is relatively easy to measure, but Young’s modulus is more difficult to determine. Strain can be measured directly on the specimen by laser interferometry if the specimen is wide enough (20 microns or wider), but for smaller specimens Young’s modulus must be determined from force-displacement records. Details of the test methods are given in [5] with a short description presented here.

![Test system schematic](image)

Figure 2. Schematic of the test system.

Figure 2 is a schematic of the test system. The die carrying the specimens is glued to a holder, which is then mounted to a five-axis piezoelectric stage. That stage is used to align each specimen relative to the electrostatic probe so that the specimen will be pulled straight along its tensile axis. That alignment is determined visually with a stereo microscope looking perpendicular to the specimen and a low-power telemicroscope looking from the side. The probe, a silicon strip with an insulating nitride layer, is mounted into the 100-gram (0.98 N) load cell, which is attached to a uniaxial piezoelectric stage. Overall displacement of the system is measured with a capacitance-based probe. After the specimen is gripped by the electrostatic probe (at ~ 150 volts), the uniaxial stage is activated and the force and displacement recorded by a laboratory computer.

A representative record is shown in Figure 3 for a relatively large 3.5 by 20 by 1000 \(\mu \text{m} \) specimen. Smaller specimens often show an initial curve in the force-displacement plot; in those cases only the upper linear region is used for modulus determination.

![Force-displacement plot](image)

Figure 3. Force-displacement plot from a Cronos specimen 3.5 \(\mu \text{m} \) thick, 20 \(\mu \text{m} \) wide, and 1000 \(\mu \text{m} \) long. The specimen shows linear behavior until it breaks; the force reading after breaking is shown.

The test system is a series of linear springs consisting of the load cell, the straight tensile section, and the two grip ends. This is explained in [5], and the equation describing the system is

\[
1/S = (1/E) \times (L/A + \beta w/A) + 1/k_l
\]

where \(S \) is the slope of the force-displacement plot; \(E \) is of course Young’s modulus; \(L, A, \) and \(w \) are the length, area, and width of the straight tensile section; \(\beta \) is a factor accounting for the grip-end shapes [5]; and \(k_l \) is the stiffness of the load cell.

The quantity \(D = (L/A + \beta w/A) \) describes the geometry and size of a specimen and can be regarded as the independent variable for a set of specimens of different sizes as tested here. A plot of \(1/S \) versus \(D \) will show points lying on a straight line if the size of the specimen does not affect the value of Young’s modulus. The inverse of the slope of such a plot yields the Young’s modulus of the material and the intercept gives the inverse of the stiffness of the load cell. Figure 4 shows such a plot for all four sets of materials. From this kind of plot, one can determine a ‘global’ modulus of the material from its slope and the load cell stiffness from its intercept. Further, the fact that the data points tend to lie along a straight line indicates that the measurements are independent of the specimen size.
RESULTS

For each of the four materials (counting two for SMI), the stiffness of the load cell was taken from Figure 4 and used to compute the Young’s modulus of each specimen. The stiffness of the system should be the same (indeed they nearly are at 8.64, 8.88, 8.49, and 8.64 x \(10^{-3}\) N/\(\mu\)m), but there are slight differences for each of the mounted dies. Those modulus values are averaged and plotted in Figure 5; the number of individual specimens tested is shown.

Figure 4. Inverse stiffness versus dimension factor for polysilicon specimens from three different sources. The specimens with the largest dimension factor are 1.5 \(\mu\)m thick, 3.3 \(\mu\)m wide, and 1000 \(\mu\)m long. The ones with the smallest dimension factor are 3.5 \(\mu\)m thick, 15.7 \(\mu\)m wide, and 250 \(\mu\)m long.

Figure 5. Average values ± one standard deviation of Young’s modulus for the four materials.
The average values in Figure 5 are essentially the same as obtained from the slopes in Figure 4, but this shows the scatter in the results. The figure shows little difference in the modulus values, but Student ‘t’ tests show that there are differences between both the SMI materials and between them and the Cronos or Sandia materials at near the 100% confidence level.

However, the strengths are different as Figure 6 shows. The Sandia material is considerably stronger; in fact, it is so strong that many specimens could not be broken in the smooth test section.

Figure 6. Average values ± one standard deviation of strengths for the four materials.

DISCUSSION

These results show polysilicon behaves as a typical structural material. Young’s modulus is basically a constant, and the strength can be different depending upon the manufacturing process. From a materials science viewpoint, this makes sense. Young’s modulus depends upon inter-atomic forces, but strength depends on larger microstructural factors.

The modulus values are indeed different as Figure 5 shows, but the largest variation is between the two SMI materials and that is a difference of 7.6%. In designing a new MEMS device, one would questions whether it is feasible to know the final dimensions and boundary conditions to a greater precision.

Strength is another story; there is almost a factor of two difference. This difference is enough to be important in the design and manufacture of MEMS.

This is the first direct comparison of mechanical properties of polysilicon from different manufacturers and perhaps raises more questions than it answers. Mechanical test methods are developing to the point where comparisons of properties can be made with some confidence. The questions of why these strength differences occur and (perhaps more important) how materials can be processed to achieve desired properties can now be addressed in future research.
ACKNOWLEDGMENTS

Effort sponsored by the Defense Advanced Research Projects Agency (DARPA) and Air Force Research Laboratory, Air Force Materiel Command, USAF, under agreement number F30602-99-2-0553. The U. S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon. D.A. LaVan was supported by Sandia; Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. The authors appreciate the efforts of Raji Mali and Nevenka Liakopoulos in providing the specimens from SMI.

REFERENCES

