Uniform semiclassical approximation in quantum statistical mechanics

C. A. A. de Carvalho, R. M. Cavalcanti, E. S. Fraga, and S. E. Jorás

1 Instituto de Física, Universidade Federal do Rio de Janeiro,
Caixa Postal 68528, Rio de Janeiro, RJ 21945-970, Brazil
2 Instituto de Física, Universidade de São Paulo,
Caixa Postal 66318, São Paulo, SP 05315-970, Brazil
3 Nuclear Theory Group, Physics Department, Brookhaven National Laboratory,
Upton, NY 11973-5000, U.S.A.
4 High Energy Theory Group, Physics Department, Brown University,
Providence, RI 02912, U.S.A.

Abstract

We present a simple method to deal with caustics in the semiclassical approximation to the partition function of a one-dimensional quantum system. The procedure, which makes use of complex trajectories, is applied to the quartic double-well potential.

1 Introduction

It is well known [1] that the partition function for a particle of mass m interacting with a potential $V(x)$ and a thermal reservoir at temperature T can be written as a path integral ($\beta = 1/k_B T$):

$$Z(\beta) = \int dx_0 \langle x_0 | e^{-\beta H} | x_0 \rangle,$$

$$\langle x_0 | e^{-\beta H} | x_0 \rangle = \int_{x(0)=x_0}^{x(\beta h)=x_0} [Dx(\tau)] e^{-S[x]/\hbar},$$

$$S[x] = \int_0^{\beta h} d\tau \left[\frac{1}{2} m \dot{x}^2 + V(x) \right].$$

*Work supported by CNPq, FAPESP, FUDJ/UFRJ and the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.
The semiclassical approximation to the density matrix element (2) is given by\(^1\)

\[
\langle x_0 | e^{-\beta H} | x_0 \rangle \approx \sum_{k=1}^{N} e^{-S(x_k^c)/\hbar} \Delta_k^{-1/2},
\]

where \(x_k^c(\tau)\) is a classical trajectory [i.e., it is a solution to the Euler-Lagrange equation, \(m\ddot{x} = V'(x)\), subject to the boundary conditions \(x(0) = x(\beta \hbar) = x_0\) that minimizes\(^2\) (globally or locally) the action \(S[x]\), and \(\Delta_k\) is the determinant of the fluctuation operator \(\tilde{F}[x_k^c]\). (A derivation of this result will be sketched in Section 2.)

In Ref. [2] we have examined, for the sake of simplicity, potentials for which there is only one classical trajectory satisfying the above boundary conditions. In general, however, the number \(N\) of such solutions depends on \(x_0\) and \(\beta\). A problem then occurs when we cross a caustic [the frontier between two regions of the \((x_0, \beta)\)-plane characterized by different values of \(N\): the r.h.s. of (4) diverges\(^3\)]. This divergence, however, is unphysical, being an artifact of the semiclassical approximation. The purpose of this work is to present a simple extension of the semiclassical approximation which circumvents this problem.\(^4\) (Due to limitations of space, here we shall only sketch the method. Details will be given elsewhere.)

2 Improved semiclassical approximation

In order to show how one can improve the semiclassical approximation so as to eliminate the unphysical divergences at the caustics, it is convenient to recall how (4) is derived. Briefly, one has to: (i) expand the action around a minimum \(x_c(\tau)\): \(S[x_c + \eta] = S[x_c] + S_2 + \delta S\), where \(S_2 = \frac{1}{2} \int_0^{\beta \hbar} d\tau \eta'(\tau) \tilde{F}[x_c(\tau)] \eta(\tau)\) and \(\delta S = O(\eta^0)\); (ii) throw away \(\delta S\); (iii) express \(\eta(\tau)\) in terms of the orthonormal modes of \(\tilde{F}\), i.e., \(\eta(\tau) = \sum_{j\neq 0} \alpha_j \varphi_j(\tau)\), where \(\tilde{F}\varphi_j(\tau) = \lambda_j \varphi_j(\tau)\), \(\varphi_j(0) = \varphi_j(\beta \hbar) = 0\); then \(S_2 = \frac{1}{2} \sum_{j=0}^{\infty} \lambda_j a_j^2\) and \([Dx(\tau)] = \prod_{j=0}^{\infty} da_j/\sqrt{2\pi}a_j\). The path integral in (2) now become a product of Gaussian integrals. Performing the integrations one arrives at the "usual" semiclassical approximation to the density matrix element:

\[
\langle x_0 | e^{-\beta H} | x_0 \rangle \approx e^{-S[x_c]/\hbar} \Delta^{-1/2},
\]

where \(\Delta = \prod_{j=0}^{\infty} \lambda_j = \det \tilde{F}\). If there are \(N\) minima, one has to add together their contributions, thus obtaining (4).

When we cross a caustic, a classical trajectory \(x_c(\tau)\) is created or annihilated. Precisely at this point, the lowest eigenvalue of \(\tilde{F}[x_c]\) vanishes, thus making the integral \(\int_{-\infty}^{\infty} da_0 \exp(-\lambda_0 a_0^2/2\hbar)\) diverge. This problem can be remedied by

\(^1\)Each term in the sum on the r.h.s. of (4) is in fact the first term of a series. See Ref. [2].

\(^2\)The Euclidean nature of the path integral allows one to discard saddle-points.

\(^3\)Ankerhold et al. [4] have discussed the caustics problem near the top of a potential barrier.

\(^4\)The present work shows how to deal with the problem everywhere.
retaining fluctuations beyond quadratic in the subspace spanned by ϕ_0 (the eigenmode of \tilde{F} associated with λ_0). As a result of this procedure, we obtain an improved approximation to the density matrix element (2):

$$\langle x_0|e^{-\beta \tilde{H}}|x_0\rangle \approx e^{-S[x_{\text{gm}}]/\hbar} \Delta^{-1/2} \mathcal{F}(x_0, \beta),$$

where $x_{\text{gm}}(\tau)$ is the global minimum of $S[x]$ and

$$\mathcal{F}(x_0, \beta) \equiv \sqrt{\frac{\lambda_0}{2\pi \hbar}} \int_{-\infty}^{\infty} da_0 \ e^{-V(a_0)/\hbar},$$

with

$$V(a_0) = \frac{1}{2} \lambda_0 a_0^2 + \sum_{m=3}^{M} \left(\int_0^{\beta \hbar} d\tau \ V^{(m)}[x_{\text{gm}}(\tau)] \varphi_0^m(\tau) \right) \frac{a_0^n}{n!}.$$

A couple of remarks are in order here: (i) we take for M [Eq. (8)] the smallest even integer such that the coefficient of a_0^n in $V(a_0)$ is positive for all values of x_0 and β; this suffices to make the integral in (7) finite even when λ_0 vanishes; (ii) the factor $\lambda_0^{-1/2}$ in \mathcal{F} cancels the factor $\lambda_0^{-1/2}$ contained in $\Delta^{-1/2}$; combined with (i), this shows that the improved approximation to $\langle x_0|e^{-\beta \tilde{H}}|x_0\rangle$, Eq. (6), is finite at the caustics; (iii) there is a one-to-one correspondence between the minima of $S[x]$ and the minima of $V(a_0)$; therefore, it is not necessary to explicitly add their contributions as in (4), for they are already contained in \mathcal{F}.

Although the procedure outlined above teaches us how to cross the caustics, it is not very convenient: in order to obtain the coefficients of $V(a_0)$ one has to find λ_0 and $\varphi_0(\tau)$. This, in general, is not an easy task, and makes the whole procedure very cumbersome. Instead, we shall present an alternative way of obtaining those coefficients, which is based on remark (iii) above.

Let us assume that $M = 4$ in Eq. (8); this is the case for the quartic double-well potential, to be discussed in the next section. Then the “effective action” $A(a_0) \equiv S[x_{\text{gm}}] + V(a_0)$ for the “critical” mode φ_0 is a fourth degree polynomial in a_0. Let us assume it has three (real) extrema: a global minimum at $a_0 = 0$, a local maximum at $u > 0$, and a local minimum at $v > u$. This allows us to write such a polynomial as:

$$A(a_0) = S[x_{\text{gm}}] + \alpha \left[\frac{1}{2} uv a_0^2 - \frac{1}{3} (u + v) a_0^3 + \frac{1}{4} a_0^4 \right].$$

In order to relate the parameters in $A(a_0)$ to calculable quantities, we impose that $A(v) = S[x_{\text{lm}}]$ and $A(u) = S[x_{sp}]$, where $x_{\text{lm}}(\tau)$ and $x_{sp}(\tau)$ are the local minimum and the lowest saddle-point of $S[x]$, respectively. This yields

$$\frac{S[x_{\text{lm}}] - S[x_{\text{gm}}]}{S[x_{sp}] - S[x_{\text{gm}}]} = \frac{A(v) - A(0)}{A(u) - A(0)} = \frac{\xi^2(2 - \xi)}{2\xi - 1},$$

where $\xi \equiv u/v$. Another combination of parameters which becomes determined is $\mu \equiv \alpha v^4$:

$$S[x_{sp}] - S[x_{\text{gm}}] = A(u) - A(0) = \frac{\mu}{12} (2\xi - 1).$$

4The procedure adopted here resembles the treatment of caustics in optics [5] and in quantum mechanics [6], suitably modified to take into account the Euclidean nature of the path integral in (2).

5One can easily check that $A'(0) = A'(u) = A'(v) = 0$.

3
In terms of the calculable parameters ξ and μ, we can rewrite $A(a_0)$ as $A(a_0) = S[x_{\text{ext}}] + \mathcal{V}_3(a_0, u)$, where $\mathcal{V}_3(z) = \mu \left[\frac{1}{2} \xi z^2 - \frac{1}{3} (1 + \xi) z^3 + \frac{1}{4} z^4 \right]$. There still remains one parameter to be determined, namely u. Fortunately, F does not depend on it. Indeed, identifying $\mathcal{V}_3(a_0, u)$ with $\mathcal{V}(a_0)$ yields $\lambda_0 = \mu \xi / u^2$, which allows us to rewrite (7) solely in terms of ξ and μ:

$$F = \sqrt{\frac{\mu \xi}{2\pi \hbar u^2}} \int_{-\infty}^{\infty} d\alpha_0 e^{-\mathcal{V}_3(a_0, u)/\hbar} = \sqrt{\frac{\mu \xi}{2\pi \hbar}} \int_{-\infty}^{\infty} dx e^{-\mathcal{V}_3(z)/\hbar}. \quad (11)$$

The discussion above can be easily adapted to the case in which $A(a_0)$ has only one extremum. In this case, $A'(a_0)$ has one real ($a_0 = 0$) and two complex conjugate roots (u and u^*), the latter corresponding to the complex trajectories $x_{\text{ct}}(\tau)$ and $x_{\text{ct}}^*(\tau)$. Accordingly, one has $A(a_0) = S[x_{\text{ct}}] + \mathcal{V}_1(a_0/|u|)$, where $\mathcal{V}_1(z) = \chi \left[\frac{1}{2} z^2 - \frac{1}{3} (\cos \phi) z^3 + \frac{1}{4} z^4 \right]$, with $\chi \equiv \alpha |u|^4$ and $\phi \equiv \arg(u)$. Identifying $A(a_0)$ with $S[x_{\text{ct}}]$ then yields

$$S[x_{\text{ct}}] - S[x_{\text{ext}}] = A(w) - A(0) = \frac{\alpha w^3}{12} (2w^* - w) = \frac{X}{12} \left(2e^{2i\phi} - e^{4i\phi} \right), \quad (12)$$

from which we can obtain χ and ϕ. Finally, identifying $\mathcal{V}_1(a_0/|u|)$ with $\mathcal{V}(a_0)$ leads to $\lambda_0 = \chi/|u|^2$, so that

$$F = \sqrt{\frac{X}{2\pi \hbar |u|^2}} \int_{-\infty}^{\infty} d\alpha_0 e^{-\mathcal{V}_1(a_0/|u|)/\hbar} = \sqrt{\frac{\pi}{2\pi \hbar}} \int_{-\infty}^{\infty} dz e^{-\mathcal{V}_1(z)/\hbar}. \quad (13)$$

3 Application: the quartic double-well potential

Let us consider the quartic double-well potential, $V(x) = \frac{\lambda}{4} (x^2 - a^2)^2$, $\lambda > 0$. In order to simplify notation, we replace x and r by $q \equiv x/a$ and $\theta \equiv \omega r$, respectively, where $\omega \equiv (\lambda a^2 / m)^{1/2}$. In the new variables, the equation of motion reads $\ddot{q} = U'(q)$, where $U(q) = 1/2 (q^2 - 1)^2$. Closed trajectories have the form

$$q_c(\theta) = q_c cd(u, k), \quad (14)$$

where cd is one of the Jacobian elliptic functions [7], $u \equiv \sqrt{1 - q_c^2/2} (\theta - \Theta/2)$, $\Theta \equiv \beta \omega$, and $k \equiv \sqrt{q_c^2/(2 - q_c^2)}$. The turning point q_t is fixed by the boundary condition $q(0) = q_0$. The classical action can be written as $S[q_c] = (h/g) I[q_c]$, where $g \equiv h \lambda / m^2 a^2$ and

$$I[q_c] = \Theta U(q_c) + 2 \sgn(q_t - q_0) \int_{q_0}^{q_t} \sqrt{2 [U'(q) - U(q_1)]} dq_1. \quad (15)$$

Finally, the determinant of the fluctuation operator is given by [2]

$$\Delta = 4 \pi g \sgn(q_0 - q_t) \sqrt{2 \left[U'(q_0) - U'(q_t) \right]} \left. \left(\frac{\partial q_0}{\partial q_t} \right) \right|_{\Theta}. \quad (16)$$

Using these ingredients one can compute both the usual and the improved semiclassical approximations to $(q_0 | e^{-\beta H} | q_0)$, Eqs. (4) and (6), respectively. The results are compared in Fig. 1.
Figure 1: $\rho \equiv \langle q_0 | e^{-\beta H} | q_0 \rangle$ vs. q_0 for $\Theta = 5.0$ and $g = 0.3$. The dashed line is obtained using the usual semiclassical approximation [Eq. (4)]; the solid line is the result of the approximation discussed in Section 2. The equation $q_c(0) = q_0$ (which determines the turning point q_t) has three real solutions for $q_0 < q_0 = 0.33219 \ldots$; as we cross the caustic, two of them (the one associated with a local minimum and a saddle-point of the action) coalesce — thus causing the divergence in the usual semiclassical approximation — and reemerge at the other side as a pair of complex conjugate solutions.

References

