A METHOD OF SOLVING THE TWO-END-POINT PROBLEM FOR SECOND-ORDER DIFFERENTIAL EQUATIONS

James E. Faulkner

October 1956
A Method of Solving the Two-End-Point Problem for Second-Order Differential Equations

James E. Faulkner
University of California Radiation Laboratory
Livermore, California

Consider the following differential equation

\[\frac{d^2y}{dx^2} - \alpha^2 y = f(x) \]

subject to the boundary conditions that \(y(0) \) and \(y(X) \) are given. The values of \(x \) are assumed to be in the range

\[0 \leq x \leq X \]

Let this range be divided into \(N \) equal intervals of length \(\Delta x \) and let

\[y(n \Delta x) = y_n \]
\[f(n \Delta x) = f_n \]

The differential equation (1) goes over into the following difference equation.

\[\Delta x^{-2} (y_{n+1} - 2y_n + y_{n-1}) - \alpha^2 y_n = f_n \]

subject to the boundary conditions that \(y_0 \) and \(y_N \) are given.

Equation (4) may be solved by letting \(i = \frac{1}{2} \).

Work performed under the auspices of U.S. Atomic Energy Commission.
(5) \[y = Au + w \]

where \(w \) is an arbitrary solution of equation (4) subject only to the condition that \(w_0 = y_0 \) and \(u \) is a solution of the homogeneous equation

\[
\Delta x^2 (u_{n+1} - 2u_n + u_{n-1}) - a^2 u_n = 0
\]

The constant \(A \) is determined from the equation

\[
y_N = A u_N + w_N
\]

One problem which may arise can be seen by examining the differential form of equation (6)

\[
d^2u/dx^2 - a^2 u = 0
\]

The solution of equation (8) subject to the boundary condition that \(u(0) = 0 \) is

\[
u = B \sinhx
\]

where \(B \) is an arbitrary constant. Thus the difference, \(y - w \), can grow exponentially which implies a loss of accuracy in the final solution. In other words, both \(u \) and \(w \) can be large compared to \(y \) so that \(y \) is found by taking the difference of two numbers close to each other resulting in a loss of significant figures.

This loss of accuracy may be remedied in the following manner: Suppose that

\[
\begin{align*}
(10a) & \quad |w_n^j - f_n| \leq \beta & n < j \\
(10b) & \quad |w_n^j - f_n| > \beta & n = j
\end{align*}
\]
where \(w^1 \) is a solution of equation (4) subject to the condition that \(w^0_o = \gamma_o \) and \(\beta \) is a predetermined constant depending on the accuracy desired. Define the constant \(A^{i+1} \) from the equation

\[
(11) \quad f_j = A^{i+1} u_j + w^j
\]

A new solution, \(w^{i+1} \), to equation (4) may now be found.

\[
(12a) \quad w^{i+1}_n = A^{i+1} u_n + w^i_n \\
(12b) \quad w^{i+1}_n = (2 + \alpha^2 \Delta x^2) w^{i+1}_{n-1} - w^{i+1}_{n-2} + \Delta x^2 f_n
\]

\(w^{i+1} \) is generated recursively according to equation (12b) until condition (10b) is satisfied for some larger value of \(j \) or until \(n = N \) at which time \(w^{i+2} \) is obtained from \(w^{i+1} \) in the same manner in which \(w^{i+1} \) was obtained from \(w^i \).

The point of the method is to keep \(w \) the same order of magnitude as \(y \). As outlined here, it assumes that \(y \) and \(f \) are the same order of magnitude.

The method has been tested on an IBM 650 with the aid of Robert Pexton. In the cases examined, \(N = 30 \) and \(\beta = 10, 10^2, 10^3, \) and \(10^4 \). \(y \) and \(f \) were of order of magnitude unity. Eight significant figures were carried. The results were satisfactory although four figures were lost for the largest value of \(\beta \).

Reference