# UNIVERSITY OF CALIFORNLA 

Radiation Laboratory Berkeley, California
Contract No. W-7405-eng-48

## SCATTERING OF ZERO-ENERGY NEUTRONS BY A SPHEROIDAL SQUARE WELL

Jack L. Uretsky
December 17, 1956

Printed for the U.S. Atomic Energy Commiasion

# -2. <br> UCRL-3623 <br> SCATTERING OF ZERO-ENERGY NEUTRONS BY A SPHERODDAL SQUARE WEL.L 

Jack L. Uretaky
Phyaics Department, Massachusetts Inatitute of Technology and
Massachusetto Inetitute of Technology Digital Computer Lab $\dagger$
December 17, 1956

## ABSTRACT

Scattering eross sections have been computed for zero-energy neutrons incident upon a square well of epheroidal aymmetry, depth 42 Mev , and volume equal to that of a sphere of radius $1.45 \times 10^{-13} \mathrm{~A}^{1 / 3} \mathrm{~cm}$. For amall distortions, the resonance that, in the spherical case, occurs near mase number 150 at first ohifto olowly in the direction of higher mases numbers and then aplite. When the ratio of the interfocal distance to the major axis of the spherold is 0.4 , one finds resonances at mass numbers of 135 and 160 . The effect of including absorption to eatimated by assuming thet each resonance has the same shape 28 it would for a opherical well. The net effect upon the cross section is to give a very broad peaking over the rare sarth region, with a maximum near maes number 170.

* This paper is based upon part of the author's Ph. D. Thesie (Mass. Inst. of Tech. . 1956) which was oupported by the Cfice of Naval Research.

1 Preaent addrese, University of Calffornia, Radiation Laboratory, Berkeley, California. The author desires to express his appreciation to the A. E.C. for supporting the terminal portion of this project.

UCRL-3623

# SCATTERUNG OF ZERO-ENERGY NEUTRONS BY A SFHEROIDAL SQUARE WELL <br> Jack L. Uretaky <br> Physics Department, Masaachusetts Institute of Technology and <br> Massachusetts Institute of Technology Digital Computer Lab. 

December 17, 1756

In its original form the optical model of the scattering of low-energy neutrons by nuclei ${ }^{1}$ was based upon the assumption that the neutrona were scattered by a apherical *quarerwell potential which contained a small ( $-3 \%$ ) imaginary part. It was found that such a potential gave a reasonable account of the variation of the scattering cross sections with mass number over much of the periodic table However, a rather narked dieagreement between theory and experiment was found in the prodicted location and shape of the $4 S$ resonance. In particular, the curve of $\mp{ }_{\mathrm{n}} / \overline{\mathrm{D}}$ in the vicinity of this resonance was found to be too high and too narrow (see Fig. 7 of Reforence 1). The agreement was only slightly improved by increasing the imaginary part of the scattering potential from $3 \%$ to $5 \%$ of the well depth.

Feshbsch, Porter, and Weisakopf observed that the region of the poriodic table in which the disagreement occurs $(155 \leq A \leq 200)$ is just the region that is characterised by the presence of very distorted nuclei. They opeculated that if the scattering potential of the optical mudel were allowed to take on a nonspherical shape in this region of elemente the $4 S$ resonance might take on a more deairable character.

This paper deals with calculations performed in order to estimate the effect of including variations of nuclear ahape with mase number in the optical model. The calculations were carried out for zero-energy neutrons ocattered by a real square well of apheroidal symmetry. The value of $\mathrm{n}_{\mathrm{n}} \mathrm{D}$ was then estimated by assuming that each resonance of the spheroldal potential had the same shape as a complex sphertcal square-well resonance. ${ }^{2}$
${ }^{1}$ Feshbach, Porter, and Welsokopf, Phyo. Rev, 96, 448 (1954). .
21 am indebted to Profeasor F. Villare for auggdating this approximation.

We assume that a scattered neutron sees a potential that is conatant over a prolato apheroidal region of volume vand eccentricity © , and vaniohes evesy. where elee. For a nucleus of mase number A we take

$$
v=\frac{4}{3}=R^{3} \cdot \frac{4 \pi}{3}\left[1.45 \times 10^{-13}\right]^{3} \mathrm{~A} \mathrm{~cm} .
$$

The depth of the potential to 42 Mev . If we define the ecceatricity of the opherold as the ratio of the focal dietance to the leagth of the major axie we find that, up to terme in $\bullet^{4}$, the scattoring croes section for a mero-energy neutron is just

$$
\sigma_{0}=\Delta=R^{2}|1-\Gamma|^{2} .
$$

Hore $\int$ is a complicated function which, in the limit of apherical oymmetry, becomes tan KR /KR, where $K$ to the wave number of the neutron when it io inalde the nuclear boundary. Figure 1 shows the variation of with mases number, in the vielalty of the $4 S$ resonance, for differeat values of the eccentricity.

One observes from Fig. 1 that the effect of increasing eccentricity is firat to shift the resonance point in the difrection of increasing mase numbere and thea to oplit the aingle resonance into a pair. Calculationa for diotortione larger than those shown seem to Indicate that additional oplitinge will occur at the larger diatortions.

It should be cloar that the oplitting of resonances does provide a posesible mechaniem for bringing the optical model into closer accord with experiment. This would come about because the inclualion of an Imaginary term in the scattering potential would be expected to "emear" the two peake of the companion pair of a apllt reeonance Into each other, thus providing for a very broad peaking over the antire resonance region.

One cen put this lagt otatement fato a more quantitative form by assuming that each resonance of the distorted potential has the same shape as a spherical square-well resonance at the same mase number. In detail, we suppose that the crose section in the vicinity of a oplit resonance may be written

$$
\begin{aligned}
& 0=4 \nabla R^{2}\left|1-\tan X 8_{1} / \mathrm{Xb}_{1}-\tan \mathrm{Xb}_{2} / \mathrm{Xb}_{2}\right|^{2}, \\
& \mathrm{X}^{2} \equiv\left(2 \mathrm{~m} / \mathrm{m}^{2}\right) \mathrm{V}_{0} \mathrm{R}^{2}(1+15) .
\end{aligned}
$$

3 J.L. Uretoky, Fh. D. Theais, Mass. Inst. of Tech. . 1956 (unpublishad). It is shown here that $=0.55$ would be a better cholce; however, the calculation of $\Gamma^{\prime}$ wee not considered rellable for,$>0.4$. It is coneldered that the appradmations used here suffice to give a qualitative indication of the effect of distortion.

In the last expression $\mathrm{V}_{0}$ it the depth of the potential well, which is taken to be 42 Mev . The constante $\mathrm{S}_{1}$ and $\mathrm{S}_{2}$ are chosen to make the tangent functiona infiaite (in the limit of vanishing $\$$ ) at the resonance pointe of the spheroldal well. If we assumed that an eccentricity of 9,4 is a reasonable average in the rare earth region, ${ }^{3}$ we would choose the $b^{\prime}$ 's to match the top curve of Fig. 1. When this has been done, It is a simple matter to calculate - $/ \mathrm{D}$ in order to obtain the curves of Fige, 2 and 3.

As the IIgures indicate. the calculation was carried out for two differeat values of 5 , and the resulte are compared with the corresponding resulte for the opherical equare well. In each case a "tranaition line" has been sketched to remind us that we must take into account a smooth variation from apherical to apheroidal shape in the vicinity of mase number 150 ,

In $\mathrm{Fig}, 2$ we note that for a $\}$ of 0.03 the "emiearing" effect from the resonance at mass number 135 is negligible. It follows that the main effect of the distortion is to provide a slight shift in the position of the resonance. It seems clear that there is little improvement in the theory for this case.

The situation is quite different when 5 is increased to 0.06 . There is now a marked "emearing" effect, which is apparent in the asymmetry of the resonance at mass number 165 (solid curve of Fig. 3). The inclusion of a "transition line" joining the curves corresponding to distorted and undiatorted acattorese leade one to the prediction of a double peak in the resultant curve of, $\bar{\Gamma} / \bar{J}$. It appears that this prediction is qualitatively fulfilled by the experimental data. ${ }^{4}$ One might remark that a detailed quantitativegreement should not be expected, both because of the nature of the model and because of the approximations that have been incorporated into the calculation.

It seems reasonable to conclude that low-energy neutron scattering from the rare earth elemento io describable in terme of an optical model, provided that Aletortions in nuclear shape are taken into account. The parametere describing the scattering potential are just those which give a good fit at lower mase numbers, except that the imaginary part of the potential should be increased by a factor of approximately two.

4 The experimental data are taken from Carter, Harvey. Hughes, and Pilcher, Phyo. Rev. 96, 114 (1954) (circlea); and Schwarte, Pilcher, Hughes and Zimmerman, Bull. Amer. Phys. Soc., Series II, 1, 347 (1956) (trianglea). I am indebted to Dr. Nork MeVoy for bringing the latter data to my attention.

1 with to thank Profeesor Victor Welsakopf, who auggessed the problem, Profeasors Phillip M. Morse, Herman Feahbech, Felix Villare, and David Peaslee, and Dr, Werren Heckrotte for interesting discusoions. The computational work could not have been accompliahed without the tavaluable asaistance of Dr. F.J. Corbato and the ataff of the MIT Whirlwind computer.

## APPENDIX

 he $m$, as defined by Morse and $H$. Feohbech. 5,2 The boundary of the scatterer is at $f_{0}$, end the interfocal dietance is 2 d . The dimensionlese wave -number parametere are defined by

$$
\begin{array}{ll}
H^{2}=\kappa^{2} d^{2} . & \xi<\xi_{0} . \\
h^{2}=k^{2} d^{2}-0, & \xi>\xi_{0} .
\end{array}
$$

Where k and K are, respectively, the wave numbers inside and outoide the scatterar.
The wave function outoide the scatterer io expanded in apheroldal harmonice and, in the limit of sero energy, is

$$
\Psi_{0}=\sum_{i=0} P_{e}(\eta)\left\{n_{i} h e_{0,}(0, \xi)+\delta_{0 i}\right\} \text {. }
$$

white inside the spheroid we have

$$
\bar{\psi}_{i}=\sum_{\lambda=0}^{\infty} A_{\lambda} s_{0 \lambda}(H, \eta) j_{0 \lambda}(H, \xi) \text {. }
$$

Application of the usual continulty conditions loade to the infinite set of equatione

$$
\begin{array}{r}
i_{i=0} A_{i} d,(H \mid O \ell)\left\{j \rho_{0 \ell}\left(H, \xi_{0}\right)-\left[Q_{\lambda}\left(\xi_{0}\right) / \frac{\theta}{\partial \xi_{0}} a_{\lambda}\left(\xi_{0}\right)\right]\right. \\
\left.\frac{\theta}{\theta \xi_{0}} j e_{0 R}\left(h_{i} \xi_{0}\right)\right\}=\delta_{0 R} . \tag{1}
\end{array}
$$

The important otep in the derivation of tho last equation is the observation that we have

$$
h^{h i m_{0}} h_{0 t}(h, t) \sim_{h}{ }^{-t-1} Q_{f}(\xi) \text {. }
$$

whore $Q_{R}(\xi)$ io the irregular Legendire function. The primed oummation eymbol in Eqo. (1) indicates that only even values of $\mathbb{\ell}$ are to be included.

By considering the asymptotic form of the spheroidal functions ${ }^{5}$ one can easily show that the scattering crose section ia, in the zero-energy IImit, Just

$$
\begin{aligned}
\sigma_{0} & =4 \pi d^{2} \quad a_{0}\left(\xi_{0}\right)^{2} 1 \cdot 2 \\
& \approx 4 \nabla R^{2} \quad 1 \cdot{ }^{2}+O\left(a^{4}\right)
\end{aligned}
$$

where we define

$$
={ }_{l=0} A, d_{0}(H \quad O R) j e_{0 \ell}\left(H, \xi_{0}\right) .
$$

It follows that the crose section is determined once Eqa. (1) have been solved for the $A_{\lambda}$.

The solutions were approximated by conoldering the finite set of equatione obtained from Eqs. (1) by restricting $l, \lambda$ to the range

$$
0 \leq i, \lambda \leq 20
$$

The MIT Whiriwind computer was used to generate the matrix elements, solve the equations, and compute the value of $\Gamma$. It was found that this range of,$+ \lambda$ was sufficient for good convergence for vaiues of lese than about 0.4 .

[^0]
## FIGURE CAPTIONS

Fig. 1. The resonance parameter $\lceil$ vs nuclear mass number for various prolate distortions. The vertical line shows the position of the $4 S$ resonance of a real square well.
-Fig. 2. The reduced width at 1 ev versue nuclear mase number for a opherical and a prolate scatterer, each with $3 \%$ imaginary part, $V_{0}=42 \mathrm{Mev}, \mathrm{r}_{0}=1.45$. The transition line is included as a rough guess at the nature of the curve if distortion were allowed to vary amoothly with maes number.

Fig. 3. Same as Fig. 2 except that the potential is given $6 \%$ Imaginary part.






[^0]:    5 P. M. Moree and H. Feohbech, Methods of Theoretical Phyoice (MeGraw-Hill). New York, 1953), p. 1576.

