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INTERACTIONS AND LIFETIMES OF K MESONS
Edwin Laurence Hoff
Radiation Laboratory 

Univers ity  of California 
Berkeley .  California
November 27, 1956 

ABSTRACT

The l ifet imes of K* (not including 7 *) and K ’ meaons from the 
B eva t ro r  have been m easu red  by use  of a nuclear emulsion technique 
The va lues  found are  tv * = 1.01 ?? x 10’8 sec and

♦ 0  1 6  o * v • L I
tK* C -0 25 x *0 ' 8 iec  equivalence of these  l ifet imes  (within
the s ta t is t ica l  e r ro r s )  supports  the hypothesis that the K* and K* mesons  
a re  ch a rg e  conjugates of each other.

A study of in te rac t ions  in flight of K" m eso n s  has yielded a 
mean  f r e e  path in nuclear emuls ion  of * 21 cm, which is con* 
s i s ten t  with a geometric c r o s s  section The produc ts  of the 21 in te r 
act ions  in flight observed include charged « m esons ,  charged £  hyperons,  
and an exc ited  fragment.  No inelastically sca t te red  K ’ meaons were 
found. All the interact ions w ere  consistent with the conservation of 
" s t r a n g e n e s s " .  Elastic sca t te r in g  of K* mesons  is  d iscussed .

The interactions of K‘ mesons  at r e s t  In nuc lear  emulsion a r e  
d i s cu s sed  in the light of the da ta  thus far published. F rom  the w-meson 
and the E-h^peron energy sp e c t r a  it is concluded that  near ly  all the 
in te rac t ions  may be accounted for by s ingle-nucleon capture  of K* 
m esons  by the p rocesses  allowed by the conservation  of s t rangeness ,  
and that  most of these p r i m a r y  reactions yield E hyperons  ra ther  than 

hyperons A small  percen tage  of the in te ract ions  may be due to 
cap tu re  by two nucleons.  It i s  shown that if charge  independence is 
assum ed ,  the frequencies of charged w mesons and charged Z hyperons 
a r e  accounted for. and that  in the cases  in which E hyperons a r e  p r o 
duced the T * 1 isotopic spin state contributes apprec iab ly  though it is  
not n e c e s s a r i l y  dominant.
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INTERACTIONS AND LIFETIMES O r  K I O K O M  

£  INTRODUCTION

The discovery of V p a r t i c l e s  in 1947 in cloud chamber cosmic  
r sy  studies* end the d iscove ry  cf the r  meson in 1949 in nuclear e m u l 
sion p l a t e s  exposed to h igh-a lt i tude  cosmic rays^  have opened a new 
era  in fundamental  p a r t ic le  r e s e a r c h  Since then so many new p a r t i c le s  
have been  found that it  has  been necessa ry  to c las s i fy  them phenomenol
ogically.  * A part ic le  of m a s s  between that of a e meson and a nucleon 
is ca l led  a K meson, while one with a m ass  between that of a nucleon 
and a deuteron  is called a hyperon. The K m esons  a re  further c l a s s i 
fied accord ing  to their  decay products .  The following types of decay of 
K m esons  have been o bse rved :4

♦r K* -  /  ♦
,4 u.f ♦ 0 . 0f * K ■* w 4 t  ♦ t

. > 4  0
S * K t  ♦ t

K \fell
K f  4  v

K *
*Vi

K *  -  /  4 *° 4 (»)

< 1
Kf - e f 4 ( ?) f  (? )

• ° K °  «• w* 4 v *

(K° -  *° 4 e°)

t " K "  -♦ w" ♦ » 4 w4

( K ‘  •* f * ♦  f ®  4  w ° )

s 2 K "  -• w “ ♦ ***

s *
( K '  -  p '  4 y )

(K" *S p ”  4  f ®  4  v )

S 3 K *  ■* e* 4 (? )  4 (?)
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(The  rife ay modes in p a ren th ese s  have not actually  been identified but 
a r e  expected by charge  eym m etry  )

The question immedia te ly  i r t t e s  whether this g rea t  a r r a y  of 
decay types is due to s e v e ra l  modes of decay of a single varie ty of par* 
t i d e s  or  to the decay of two or  m ore  different types  of pa r t ic les .  Anal
yse*  of the angle and energy  correla tion of the decay products of r * and 

mesons  by the method of Dalit** have sugges ted  thst  there  a re  at 
leaa t  two types of K* m esons ,  differing f rom  each  other by either  spin 
o r  pa r i ty  or both. T h ese  ana lyses  suggest (hat the ▼ meson has  a  spin 
of 0 o r  2 and odd par i ty ,  whereas  if the Kf , meson has an even spin it 
mus t  have even pari ty  If this were true  one would expect that som e of 
the other p roper t ie s  of the pa r t ic les  would a lso  differ. Recent a cc u ra te  
m a s s  m easu rem en ts  of K* pa r t ic les  have shown that  their  m a s s e s  a r e  
the sam e within about two electron m asses  for the more abundant modes 
of decay and that the m a s s e s  agree within exper im en ta l  e r r o r  in all  
c a s e s .  * Measurem ents  of the K meson m a s s  a r e  in agreement  with 
that  found for K* m eso n s  within the exper im en ta l  e r r o r  of a few e lec t ro n  
m a s s e s .  Lifetime m e asu re m e n t s  and observa t ions  of the in te rac t ions  
of K mesons  may lead to fur ther  information on this point.

Hyperons of t h r e e  different m sss  g ro u p s  have been found. The 
approxim ate  muses (In e lec tron  m as t  units) and the decay modes  a r e  as  
follows 8

Mats  in Mr P a r t i c l e

2181 .0 , - A -  p ♦ w

2127

—  n #* w®

V  ♦*(l ♦ w

2298 to 2132 ( r ° -  A 0 ♦ y )

2141 x ’-. n e w *

2382 I  -  A° ♦ - •

To explain why these new " s t ran g e"  p a r t ic le s ,  l e. , K m esons  
and hyperons,  have a  long l ifetime 10* sec)  and yet a r e  produced 
in g rea t  abundxnce in h igh-energy  in te rac t ions  between nucleons and
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between pions end nucleon#, tt has been p roposed  that they a r e  produced
9

only m association with one another Th.«t ta, more  than one of theae 
( pa r t i c l r#  muat be produced at the Mm* t im e .  This  Idea hue become

genera l ly  accepted because  no direct  evidence against  tt hae been found
f and two strange part  i d e a  are  frequently seen  to be produced in the t a m e
0

nuc lea r  reaction F r o m  the correla tion of p a r t ic le  types produced at
the i n f r a c t i o n s  of h igh-energy  protons and piona with m at te r ,  a scheme

10haa been suggested in which a new quantum number  la Introduced.
Any particle that may take part  in a fa i t  r e ac t io n  ia aai igned a smal l  
integral number S. a s  folio*#

K*. K°

K \  K0 ; / $ .  l \  I®. I * .

1 ° .  I *
♦ 0p, n; e , e , e

(It ia to be noticed that  two type# of neu t ra l  K mesons and a neu tra l  
hyperon have been in t roduced . ) Then it ia proposed that in fas t  reaction# 

I0*“ * sect,  such a s  production of s t range  pa r t ic les  o r  th e i r  i n t e r a c 
tions  with nuclei the total S muat be conse rved .  For Blow reac t ions  

K f 10 aec) such as  the decay of p a r t i c l e s ,  the selection ru le  i s  AS * l 
All case# of a s so c ia ted  production of theae  par t ic les  that have been ob
served follow these  proposed rules.  Investigation of in te rac t ions  of 
theae par ttc lea  with nuclei  will provide a fu r ther  teat.

This p a p e r  i s  a report  on m e asu re m e n ts  of the l i fe t im es  of K 
and K~ mesons  and in teract ions In flight of K '  mesons produced by the 
Bevatron and de tec tec  by the nuclear emuls ion  “ stack" technique.  There 
la a lso included s  m o r e  general d iscuss ion  of the Interactions  of K~ 
mesons  with nuclei .

S • ♦ ! 

S -  -I 

S • - l  

S * 0

ot
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I! MEAN LIFETIM ES O F K MESONS

A General Experiment*! Methodt

Relatively intense beams of a r t i f ic ia lly  produced c h a rg ed  K 
mesons  have r ecen t ly  become available  ** They have made possible 
the study o( K* and K mesons under  controlled conditions In this < 
per iment  s  copper  t a rg e t  in the west Ungent  tank of the Bevatron  was 
bombarded with t  J * Bevpro tons  P a r t i c l e s  produced at 9 0°  to the in 
cident proton beam  direct ion were to<uscd by a magnetic quadrupole 
sys tem consis t ing  of three  q u a d r u p l e s  with an aper tu re  of I  i rehes  
The part ic les  then passed through an analysing magnet (with «i>proprut< 
shielding) which se lec ted  par t ic les  of a given momentum and cut down 

extraneous background tracks  Stacks  of Ilford Q *> nuc lea r  emulsion 
were placed at the focus of the pa r t ic le  br.tn> The total d i s tan ce  of 

travel from the t a rg e t  to the d e tec to r  was on the o rder  of ) m e te r s  in 
all exposures .  Each of the stacks contained from 50 to I 10 pe l l ic les  •>( 
emulsion 4 by 7 o r  d by 4 inches and 600 p thu k they  were oriented 
•o that the p a r t i c le  t racks  were p a ra l le l  to the emulsion l a y e r s  and were 
in the d irec tion of the long dimension of the stack Tht only major d i f 
ference between the K* and K meson  exposures  was that the cu r ren ts  
were re v e r se d  in the focusing and analysing magnets (A smal l  com* 
pentation was applied in the ana lyse r  magnet current to make  up for 
the difference between the two u i m  due to the st ray magnet ic  field from 
the Bevatron ) A d iagram of the exper im en ta l  a r rangem en t  Is shown in 

Fig I
After p rocess ing  by a modif ied Bristol" development,  the plates 

were Inspected with h igh-resolut ion microscopes  by sn "along the track" 
scanning technique (As there  a re  some differences in thi a r rangem en ts  
and techniques used in different p a r t s  of the exper iment,  th re e  are d i s 
cussed under the part icula r sections  in which they apply I

B K*- Meson Mean Lifetime

A m e a s u re m e n t  of the mean  l ifetime of K* m esons  has  been
I ■

ca r r ied  out by making use of their  decay in (light in n u c lea r  emulsion 
Emulsion s tacks  were  exposed m the  K* meson beam a s  d e sc r ib ed  in

% \ i tl4
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Section 11-A Exposures  were made with two different momentum- 
acceptance bands,  positive p a r t i c le s  of 190 to 450 Mev/'c and of MS to 
560 Mev/c.  The part ic les  t r a v e 'e d  a distance of l  7 m from the target 
to the de tec to r  In auch an exposure  the protons, K* m esons ,  and * 
mesons (all  of the same momentum) have different r a n g e s  in the emul
sion stack,  increasing in that o r d e r  The protons stop within a few 
m i l l im ete rs  of where they enter the edge of the plate The length of 
the plates  Is such that the K* m esons  travel several  c en t im e te r s  from 
the edge of en t rance  and stop a  few centimete rs  before  reaching the far 
edge of the  p la te  The range of the v mesons is so g rea t  that they leave 
the far end of the stack, and th e r e  i t  no apprec'table change tn the grain 
density of the ir  tracks  The w m eso n s  a re  close to n.mi-j u n i  grain 
density and a re  therefore very  useful for calibration purposes

The scanning technique used is as follows In the region of 
the plate jus t  beyond where the pro long slop, t racks  s r e  chosen on the 
basis  of g ra in  density.  K-par t ic le  t racks  have about twice the mintmun 
grain densi ty .  Tracks  between 1 8  and l t imes min imum gram density 
are  picked and followed through the st ick  (They a r e  followed with the 
aid of a g r id  system contact-pr in ted  on the bottom aids  of ta< h emulsion 
l a y  r * ' )  Near ly  all t racks  s e lec ted  in this way tu rn  out to be K p a r t t c l s s  
or r  m esons ,  except for a * ont an m a t io n  of about I* C i t t l l f  by stray 
protons,  t  mesons  sca ttered into the stack, and prongs of s ta r s  formed 
in the emuls ion.

A K* meson, afte r en te r ing  the stark, may do any of three 
things. It may decay in flight, in te ract  in flight with a nucleus of th« 
emuls ion,  or come to the end of Its range and de rsy  at res t .  For iurn- 
t i l icatlon,  the m a sse s  of the p a r t u  that decayed or in teracted in 
flight have  been measured  by the mult ip le-scat ter tng and grain-count 
technique Par t ic les  coming to r e s t  have been identified by the p resence  
or absence  of decay products and by their ranges Of the events due to 
K* p a r t i c l e s  in flight. 19 have been found in whnh  th e re  l i  « tingle out ■ 
going track, ot grain density l e s s  than that of the tm otning K* meson,.
If any of these  events wsre  due to interactions with emuls ion nuclei in 
flight, one would expect to find some s t a r s  with a l ightly ionising track 
coming out together with one o r  more  black evaporation prongs No

- 9 -
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such s ta r s  w ere  observed . Also, none of the interactions in flight so 
far seen give off a v is ib le  L meson. It th e re fo re  seem s reasonab le  to 

' identify all events of th is  type as the decay of K* mesons in flight/
The m ean lifetim e is obtained f ro m  W, the number of decays 

I in flight observed, and T 8 Z t,, the total p roper slowing-down tim e of
I  *

all the K mesons followed (where t. is the slowing.down tim e of each

meson followed from  where it is picked up to where it decays o r  in te r-
acts  in flight, o r  co m es  to re s t  in the em ulsion). The m ean life tim e Is

Excluding the track  length due to i  mesons, a total of 31.6
m e te rs  of K* m eson track  length has been followed. The corresponding
total proper slowing-down time was calcu la ted  by use of the ta b le s  of 

14 -8B arkas and Young, and yvas found to be 19 -2 x 10 sec . The m ass  
of the K* m eson was taken as equal to tha t of the t * meson for th is  ca l-  
culation. Since decays  in flight near the end of a track  may not be read* 
ily identified, the p ro p e r  time spent in the la s t  2 mm before stopping 
has not been included. From  the 19 decays in flight observed  we find 
a mean lifetime for K* mesons of

The e r r o r  given is  the  s ta tis tica l s tanda rd  deviation combined with a
10% uncertainty in the length of track  scanned.

In the co u rse  of the experim en t 2 .0  m e te rs  of r*  meson track
was followed, which corresponds to a total proper slowing.down time
of 1.2 x 10’ ® sec. One decay in flight of a r*  meson has  been observed.

-  8This suggests an upper limit of 6. 7 x 10 sec and a lower l im it of 
• 8 ■f0.36 x 10 sec for the t -m eson m ean lifetim e. These l im its  a r e

confidence l im its  for 68% probability (see  Appendix 1).
This w as the  f i r s t  m easurem en t of the K* mean l ife tim e  in

which a r t if ic ia lly  produced K m esons w ere  used. Since It was completed
m ore  accura te  m easu rem en ts  have been perform ed, making use  of 

w
counting techniques. The resu lt  of th is  experim ent is in ag reem en t with 

these more recen t m easu rem en ts .  (R esu lts  a re  d iscussed  m o re  fully 
in Section If-D.)

,10
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C. K"-M eson Mean Lifetime

A m ean  life tim e for K* m elon*  h a t  been de te rm ined  by the 
method used for the K* m elon  life tim e which was d i ic u t s e d  in the p r e 
ceding lection. ^  Stacks of em uliion  w ere  expoied to the K*-m eson 
beam. P a r t ic le s  having momenta ol from  285 to 415 M ev/c w ere in
cident on the em ulsion  stacks in the v a r io u s  exposures used for th is  
experim ent. The d is tance  traveled  by the p a r t ic le s  f ro m  the  ta rg e t  to 
the em ulsion w as about 3 m e te rs  in a ll  c a se s .  In these  ex p o su re s  the 
ranges of the K~ m esons  a r e  such tha t they stop in the s tack  while the 
v '  mesons of the sam e  momentum p a s s  on through the s tack .

The p la te s  were scanned fo r  K~ in teractions  in flight and at 
r e s t ,  and for decay s  in flight. T rac k s  of grain density ap p ro p r ia te  to 
K~ p a r t ic le s  of the  selected  momentum w ere  found near the edge of the 
plate w here they en tered  and were followed until they decayed  in flight, 
in teracted  in flight, o r  cam e to r e s t  in the emulsion. All t r a c k s  that 
did not come to r e s t  were  identified by a m ass  m easu rem en t using the 
m u ltip le -sca tte r ing  and grain-count technique. An event was In terpreted  
as a  decay in flight if there was only one outgoing prong and if the prong 
had a grain density  le s s  than that of the incoming K* p a r t ic le .  (No 
event with an a sso c ia te d  "blob" was found that o therw ise  would have been 
called a decay in f l ig h t .) An event so  in te rp re ted  could a lso  possibly  be 
an in teraction in flight of a K* m eson and a  nucleus with a  lightly  ionising 

v~ meson em erg ing . In K* in te rac t io n s  at r e s t  in em ulsion  le s s  than 
3% of all the s t a r s  w ere  found to be of th is  nature (8 out of 325). As 
the nucleus would be expected to be in a  m ore  highly excited  state  after 
in teractions in flight than afte r  in te rac t io n s  at re s t ,  the p roportion  of 
s ta r s  with a single pion and with no o ther assoc iated  t r a c k s  o r  "blobs" 
would be even sm a l le r .  It is  e s t im a te d  that certain ly  le s s  than 15% of 
the events we have taken to be decays in flight may have been in teractions 
in flight. (T his  co rresponds  to 3% of the observed in te rac t io n s  in f l ig h t .) 
No decay in flight of a r ’ meson was seen.

TAs be fo re ,  the mean life tim e is  T g . * ^ , w here  N is the number 
of decays in flight observed, and T - £  tj is the sum of the  p ro p e r  slow- 
ing-down t im e s  fo r  each K* track  f ro m  where it is f i r s t  picked up to
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w here It decays o r  in te ra c ts  in fligh t, o r  (If the p a rtic le  con ies to re s t)

to 2 mm from  the end of its  tra c k . The la s t  2 mm of a  stopping tra c k  is
not included b e ca u se  a  decay in fligh t would he d ifficu lt to  identify in
th is  reg ion . In the  19.2 m e te rs  of tra c k  followed, 13 decay s  in  flight
w ere found. The corresponding  to ta l p ro p er slowing-down tim e is  

-812.4 x 10 s e c . This yields a K -m eso n  m ean life tim e

tK- 1 0 95 -o! 2S * 10’ 8 ,e c  •

The e r r o r  quoted is  from  the confidence lim its  fo r 68% p robab ility  on 
13 events ( s e e  Appendix 1); o th e r e r r o r s  a re  negligible in com parison .
The tab les  fro m  B arkas and Y o u n g ^  w ere used to ca lcu la te  T.

D. D iscussion  of K-M eson L ifetim e M easurem ents

In the  introduction it is  m entioned  that there  m ay be two or 
m ore  types of K m esons. In p a r tic u la r  it h as been  su g g ested  tha t the 
r*  m eson and the 9* m eson a re  not the  sam e kind of p a r t ic le .  If this 
is  so it is  to be expected that th e ir  m ean lives may be m ark ed ly  d ifferen t. 
Mean lives in rad ioactive  decay  a r e  w ell known to be e x trem e ly  steep 
functions of the  energy  involved in the decay and of the p a r tic u la r  mode 
of decay. In th is  experim en t, if  p a r tic le s  co rrespond ing  to  two o r m ore 
d ifferen t m ean  lives a re  involved, the life tim es th a t have been m easured  
a re  a v e rag e s  of the type

w here Oj is  th e  frac tio n  of the p a r t ic le s  entering the s ta c k  asso c ia ted

with a m ean life tim e of r r  If th e re  w ere p a rtic le s  w ith a  lifetim e of 
-8 10. 3 x 10 sue o r  le s s  they would be strong ly  d isc r im in a ted  against in 

these m e asu rem en ts  because ot the possib ility  of th e ir  decay  in the tim e 
of flight betw een  the ta rg e t and th e  em ulsion stack . In the m easurem ent 

of ?£+» le s s  than  3% of such p a r t ic le s  leaving the ta rg e t  would a rr iv e  a t 
the d e tec to r, while in the m e asu re m e n t of r ^ .  le s s  than 1% of am k-gay- 
t id e s  would a r r iv e .

■ i~
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l t  is  of in te re s t to co m p are  these  re su lts  with life tim es  for K* 
m esons d e te rm in ed  by o ther m ethods. Techniques u sin g  co u n ters , cloud 
cham bers, and n u c lea r em u lsions have been used to m e a su re  m ean lives 
of K* m esons orig inating  in cosm ic  ra y s , in the B evatron , and in the 
C osm otron. ^ ( E v i d e n c e  fro m  experim en ts  ind ica ting  the existence 
of a  m uch s h o r te r  lifetim e is  d isc u sse d  in the next p a ra g ra p h .) The 
m ethods and re s u lts  a re  su m m a rised  in Table l. F o r  p u rp o se s  of 
c o m p ariso n 'F ig . 2 shows the r e s u l t s  g raph ically . The data  from  all 
m easu rem en ts  of the K* m ean life tim e  using a rtif ic ia lly  produced m esons 
a re  in ag reem en t, except th a t th e  value from  H a rr is ,  O re a r ,  and Taylor 
for a m ix tu re  of K* m esons a p p ea rs  to  be slightly  low. R e n n t  accura te  
m easu rem en ts  of the lifetim e of a r tif ic ia lly  produced r*  m e. ins a re  in 
ag reem en t, w ithin the exp erim en ta l e r r o r s ,  with the  life tim es  found 
fo r v a rio u s  o th e r "p u re"  decay m odes shown h e re . C rus sard  et al. ^ 
have found tha t K* m esons w ith  a  probab le  tim e of fligh t of * 5  x 10* 
sec have e sse n tia lly  the sam e p ro p o rtio n s  of the v a rio u s  K m odes of 
decay as  do K* m esons from  th e  B evatron  m eson b e a m ,^ ’2* which 
have a tim e  of flight of * 10*® sec  p r io r  to detection . Also Widgoff e t 
al. and B isw as et al. ? have shown that these decay  m ode ra tio s  a re  
not changed significantly  by n u c le a r  sca tte rin g  of the K* m esons. Thus 
th e re  is  no evidence from  the life tim e  m easu rem en ts  tha t the  t* and 
0* m esons have d ifferent m ean  liv es . The c o sm ic -ra y  m easu rem en ts  
by the P rin ce to n  group (M esse tti and Keuffel, and Robinson) a re  con
s is ten tly  low er than the m ore  accu ra te  of the m easu rem en ts  m ade on 
a r tif ic ia lly  produced K* m esons. 1 ^  The sign ificance  of th is  is  not 
apparen t.

The K~ m eson life tim e  found in th is  ex p e rim en t ag re es  with 
a ll the K* life tim e  m easu rem en ts  w ithin the quoted e r r o r .  The equality 
of the life tim e s  together with the equality  of the m a s s e s  of the K* and 
K’ m eso n s  (within experim en tal e r ro r )  lends s tro n g  support to the c u r 
re n t a ssum ption  that these p a r t ic le s  a re  charge con jugates of each o th e r.

All the m easu rem en ts  considered  thus f a r  excep t those by
C ru ssa rd  e t al. have delay tim e s  between c rea tio n  and detection that

-9 6a re  m uch la rg e r  than 10 se c . T herefo re  K p a r t ic le s  of sh o rte r  l ife 
tim e would no t be detected  in  th ese  experim en ts. C loud-cham ber c o sm ic - 
ray  m e asu re m e n ts  at P rin ce to n  have yielded a life tim e  for both It and

u
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F ig .  2. Mean l i f e t im e s  of K and K m esons  re p o r te d  by v a r io u s  
e x p e r im e n te rs .  (T h e  t im e  is  p lo tted  on a lo g a r i th m ic  s c a le . )  
R e ferences a rc  g ive n  in Table 1.

15



- 16-

K m esons that is m uch sh o rte r  than those we have ju s t co n sid e red . ^
They obtain = 5 .2  ^ j ‘ ^ x 10**® sec and  8 4. 2 ^  j ‘ ® x 10"*® sec.
The e r r o r s  a re  confidence lim its  for 50% probab ility . In s im ila r  m e a s 
u rem en ts  T rillin g  and Leighton have found evidence for sh o rt- liv e d  

negative V p a r tic le s  (w hich m ay or m ay no t be K p a rtic le s)  b u t n o t fo r 
positive  V p a r tic le s . 28 T heir re su lt is  T y -  8 1 .3  ± 0 .6  x 10* *® sec .
F r e t te r ,  F r ie se n , and L agarrique  a lso  o b serv e  no sh o rt-liv ed  com po-

29nent for positive K m esons. They find a  m ean  life 
Tj£+ = 6 .7  I®  j  x 10‘ 9 sec.

There is  a  p o ssib ility  that the t a rd  6 m esons have qu ite  d if
fe re n t life tim es bu t th a t the life tim es m e a su re d  a re  not iden tified  with 
the  c o rre c t p a r tic le . O re a r  and Lee have suggested  that one of th ese  
two types of m esons is  h eav ie r than the o th er and that in addition to its  
no rm al decay m ode (o r  m odes) it has a  s izab le  branching ra tio  fo r d e 
cay  into a y -ra y  and the  o ther of the two ty p es. *® If th is  then again  
im m ediately  decays w ith a much s h o r te r  life tim e  we see ev en ts  th a t 
have the decay p ro d u c ts  of the second type, but the apparen t life tim e  
of these events is  th a t of the f i r s t  type, A sea rc h  for the y ray  (o r  y 
ray s) from  the p ro c e ss

r* -  0+ ♦ y (*y)

has been c a r r ie d  out by A lvarea e t al. They rep o rt that su ch  y ray s  
of energy g re a te r  than 0. 5 Mev a re  ab sen t. As was m entioned b efo re , 
it has  been suggested  on the b asis  of a n g le -  and e n e rg y -co rre la tio n  
m easurem ents of the decay products th a t the spin and p a rity  ass ig n m en t 
uf the t* m eson is  0 ( - ) .  An experim ent by O sher and M oyer a t the 

Bevatron (in which y ray s  a ris in g  from  po in ts d isplaced fro m  the  ta rg e t a re  
detected) supports  the proposal that 9® m eso n s decay by the p ro c e ss  
9® «* *® ♦ v® as  w ell a s  by 9° -• ♦ tr". T h is decay into two iden tical
bosons re q u ire s  tha t the 9 m eson m ust have even spin and th u s  even 
p a rity . Both the 0 (- )  to 0 (+) and the 0 ( - )  to  2 (+) tra n s itio n s  re q u ire  
m ass  d ifferences of 2 to 3 Mev to  p ro ceed  rap id ly . The conclusion  is, 
then, that the p ro c e ss  r  9 ♦ y (+y) d oes not occur fa s t enough (if a t 
a ll) to explain the life tim e  d ilem m a. A lso  i t  is  to be expected  tha t some 
of the p a rtic le s  o f sh o rt lifetim e would be produced d irec tly  from  the

x ( j
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ta rg e t, 1 0  tha t m e asu re m e n ts  capable of de tec ting  very  sh o rt life tim es  
m ay throw  som e lig h t on the p rob lem . The c o sm ic -r ty  evidence on 
charged  K p a r t ic le s  of very  sho rt life tim e , which was c o n sid e red  in the 
preceding p a ra g rap h , is  too in co n sisten t to  offer much help a t p re sen t. 

Another p roposal is  th a t of W einstein, who suggests th a t the two types 
of p a rtic le s  m ay be converted into each  o th e r by in teraction  w ith the 
atom ic e lec tr ic  and  m agnetic  fie lds in p ass in g  through m a tte r . Thus 
the  sam e p ro p o rtio n  of each of the two ty p es  of K m esons would be 
p re sen t so long a s  the K p a rtic le s  a re  p a ss in g  through o r a t r e s t  in 
m a tte r , and th e re fo re  the sam e av e rag e  life tim e  would a lw ays be m e a s 
u red . To te s t  th is  idea  it would be n e c e s s a ry  to c a r ry  out life tim e  
m easu rem en ts  in  a  vacuum . If the r  m eson  has spin and p a r ity  0 (-) 
and the 6*  m eso n  h a s  spin and p a rity  0 (4) o r  2 (+), the couplings with 
the atom ic e le c tr ic  and  m agnetic fie ld s  a r e  too weak to accoun t fo r the 
equivalence of the  life tim es  by th is  m echan ism . ** Lee and Yang have
considered  the p o ss ib ility  that p a r ity  m ay  not be conserved  in w eak

*34 +  +in te rac tions such a s  m eson decay. In th is  case  the r  and 0 m esons 

m ay be ju s t two d iffe ren t decay m odes of the sam e p a r tic le , w hich then 
m ust of course  have a  single m ass value and a single life tim e . E x p e ri
m ents a re  su g g ested  in which the lack  of p a r ity  conservation  would re -  
su it in the o b se rv a tio n  of certa in  types of a sy m m etries  in the  angular 
d is tribu tions of th e  decay  products of s tra n g e  p a rtic le s . T h e re  a re  as 
yet no published experim en tal r e s u lts  th a t te s t  th is p o ssib ility .
Schwinger h a s  c o n sid e red  a  dynam ical th eo ry  of strange p a r t ic le s  which 
p red ic ts  the e x is ten c e  of pa irs  of p a r t ic le s  that a re  e ig e n s ta te s  of the 
p arity  re flec tion  o pera to r**  (as has been suggested by Lee and Y ang*V  
Such e ig en sta tes  c o n s is t of equal m ix tu re s  of the two s ta te s  w ith definite 
pa rity . If then th e  dom inant decay m ode (K «• |i ♦ v) p re s e rv e s  p a rity  
reflec tion  sy m m etry , the p a r tic le s  w ill exhibit life tim es th a t do not 
d iffer g rea tly  even  if the m inor m odes of docay a re  c h a ra c te r is e d  by 
s ta te s  of defin ite  p a rity . (Since each  of th e  m inor decay m odes com es 
from  a state  of d e fin ite  parity  these s ta te s  rep re sen t p a r t ic le s  of slightly 
different m a s s . ) T hese  m inor m odes of decay will cause  only a r e la 
tively sm all sh o rten ing  of the life tim e  of each of the p a r tic le s  of definite 
p a rity . F o rm u la s  a re  given for decay-m ode ra tio s  as functions of tim e

• ■ t  !* •
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and of the life tim e  of the two p a rtic le*  o f definite p a rity . T h is  schem e 
may be te sted  by m easu rem en t of th e  decay-m ode ra tio*  fo r  K* meson* 
that have tra v e le d  a la rg e  num ber o f m ean lifetim e* a f te r  production, 
o r by very  a c c u ra te  m easurem ent*  of the  r  -  and 6 -m eso n  m ean life 

tim es.
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Ul. INTERACTIONS IN FLIGHT OF K" MESONS 

A. P ro ced u re  and R esults

An investigation  of the in te ra c tio n s  of K* m asons in  flight in 
nuclear em ulsion  h as been c a r r ie d  out. 57 The ex p erim en ta l d e ta ils , 
including the ex p o su res  and the scann ing  technique, a re  d e sc rib e d  in 
Sections II*A and UhC of th is re p o r t .  The p la tes w ere scanned  by an 
"along the t r a c k "  technique, and a ll In te rac tions in fligh t w ere  identified 
by g ra in  count and m u ltip le -sc a tte r in g  m easu rem en ts. (D ecays in flight 
w ere e lim in a ted  by th e ir  iden tifica tion  a s  described  in Section II-C .)
The K’ m eso n s  on entering the em u ls io n s  have m om enta betw een 280 
and 35$ M ev /c . B ecause th e ir  ra n g e s  a re  le s s  than the length  of the 
em ulsion s tack , In teractions a re  re c o rd e d  from  these m om enta  a ll the 
way down to ae ro  m omentum. F o r  p rac tica l pu rposes, s in ce  it is  d if
ficult to d e te rm in e  whether an even t tha t occurs at a re s id u a l range of 
2 mm o r le s s  i s  an  event in flight o r  a t r e s t ,  there  is an experim en tal 
low er bound of 16 Mev for the energy  of the K m esons causing  the 
events accep ted . (In calcu lation  of the m ean free path , of co u rse , the 
la s t  2 mm of the tra c k s  of K p a r t ic le s  that come to r e s t  in the emulsion 
m ust be excluded  from  the total path length fo llow ed .) T able  11 shows 
the am ount of tra c k  scanned in v a r io u s  energy  In te rv a ls .

A to ta l of 21 in te rac tio n s  in flight due to K* m eso n s have been 
found and an a ly sed . The p roducts of th ese  in te rac tions include v m esons, 
Lyperons, and an excited frag m en t, in addition to the u su a l heavy evap
oration tra c k s  and h ig h er-en erg y  p ro tons No s ta r  w as seen  in which 
a K~ m eson  em erged  along with o th e r products or in which a K* meson 
was in e la s tic a lly  sca tte red . A lso no e las tic  s c a tte rs  a t angles g rea te r 
than 40° w e re  found. (It is  to be  noted that in n u c lea r em ulsion  it is 
often im p o ssib le  to tell w hether a p a r tic le  has undergone an e lastic  
sca tte rin g  o r  h a s  lost a sm all am ount of energy upon being sca ttered . 
T herefo re  som e inelastic  s c a tte r in g s  with sm all en e rg y  lo s s  a re  nearly  
always inc luded  among " e la s tic "  s c a t t e r s . ) In 2 .8  m  of tra c k  inspected 
for 20° to 40° s c a tte rs  six  such  even ts  w ere found. S ca tte rin g  in this 
angular reg io n  m ay be accounted for by d iffraction  and Coulom b effects. 
Table 111 co n ta in s  a m ore d e ta iled  desc rip tio n  of each  of the in teraction !

IV
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T able  II

Length of t ra c k  scanned  In energy  in te rv a ls

E nergy  in terval T rack  length
(Mev) (m e te rs )

16 - 30 0. 52
30 - 40 0. 51
40 - 50 0.62
50 - 60 0.73
60 - 70 0.81
70 -  80 0.83
80 - 90 0.60
90 - 100 0 .24

100 - 110 0 04

Total 4 .90
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Detailed description of K* interactions in flight

Energy of K Prong 
at interaction No. 

(Me*)

l. 85 a 5

Range

180 (A
440 p

Plon rest energy 
Binding energy

Total

Energy Identity
of 

Prong 
(Mev)

5
9

55
140

16

225 Mev

of
Prong

(P)
(P)
w

Comments
— fctsa&s

&9&S m s ®I f e i i *

I

2 . 87S 5 1 1.8 mm 20 (p>
2 >15.9 mm > 68 <pi
3 370 p 8 <p)
4 28. 8 mm 42
5 110 p 4 <p>
6 230 p 6 <p>
7 75 p 3 <p )

Pion rest ensrgy 140
Binding energy 48

Total >139 Mev

Ends. Gives 1-prong a star,
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E n erg y  of K 
a t in te rac tio n  

(M ev)

Prong
No.

Range E nergy
of

Prong
(Mcv)

Identity
of

Prong

Com m ents iis
mmk

77 a 6 1 62 p
2 1 .5 mm 

Binding en erg y

Total

2 . 6

18
16

(P)
(P)

wm
■!' mmm.

36 Mev

70 t 6 1 716 p
Binding energ y

Total

12
8 Nrw " A  I

43 *  7 

71 *  6

20 Mev 

D isappearance in flight. Short e lec tro n  track  a sso c ia ted .

1 11 ft 0 .8 CP)
2 110 p 3 .7 (p)
3 60 p 2 .7 <p)
4 38 p UM (p)

Binding energy  

Total

32

41 Mev

"
?



Table 111 (c o n t.)

E nergy  of K Prong Range E nergy Identity
a t in teraction No. of of

<Mev) PTong
(Mev)

Prong

7. 72 a  6 1 . . . 2100 (»)
2 480 p 9 (p>

Pion r e s t  energy 140
Binding energy 8

Total 257 Mev

8. 6 9 *  6 l 22 mm 84 (p >
2 29 mm 96 (p)

Binding energy 16

Total 196 Mev

6 l 18 mm > 88 E
2 80 p 1.2 (P>
3 12 p 0 .9 (P)
4 450 p 8. 5 (P)
5 1250 p 15 5 (P>

D ifference betw een £  re s t 
energy and p ro ton  re s t energy 251

Binding energy 40

Total >405 Mev

Com m ents

E nergy  by grain count.

S h o rt reco il a sso c ia ted .

D ecays in flight into pion



E nergy of K P ro n g Range
a t in teraction No.

(Mev)

10. 24 a  10 1 59 H
2

3 55 K
4 17 1*

Binding energy
Total

11. 45 a  7 1 26 p

2 7.7 mm

3 •  •  •

Binding energy
Total

12. 41 a  7 1 » »
2 1. 3 mm
3
4

P io n  re s t  energy 
D ifference betw een £  re s t  
energy sad  p ro to n  re s t  energy 

Binding energy 
f Total

Table 111 (co n t.)

E nergy
of

Prong
(Mev)

Identity
of

Prong

C om m ents

r '

2 (P)
1.8 IP)
1.9 (P)
1.0 (P)

32
39  Me*

5 Excited H as two dark  p rongs
frag m en t (a) 35 p

45 u»
(b) 50 ,i

102 (P> E nergy and iden tity  by m ultiple
24 sca tte rin g  and g ra in  count

irriin
0.7 iP)

14 (P)
3.6 t * Decaye by £ f  -• p  ♦ e ° .

7 3 a li V Energy by g ra in  count.
140

251
24

508 Mcv



T a b l e  III  ( c o n t . )

E n e r g y  o f  K  
a t  i n t e r a c t i o n  

( M e v )

P r o n g  R a n g e
N o .

E n e r g y
of

P r o n g
( M e v )

I d e n t i t y  C o m m e n t *
o f

P r o n g

13. 39 ±  7 D i s a p p e a r a n c e  in  f l i g h t .
/

14. 27  ±  10 1 180 )i 5 ( p i
2 130 ml * 4 ( ? )
3 800 12 (P )

4  1080 14 (P )
B i n d i n g  e n e r g y 32

T o t a l 67 M ev

1 5 .  63 * 6 1 2 7  m m 94 ( p )

'  2 50 (i 1 . 7 (P )
B i n d i n g  e n e r g y  

T o t a l

24

120 M e v

T w o  a h o r t  " r e c o i l * *  t r a c k s  
a a i o c i a t e d .

16. D i a a p p e a r a n c e  i n  f l i g h t .

17.
•

D i s a p p e a r a n c e  i n  f l i g h t .

*





In o rd e r  t» find d c  <M into fac tio n s  ta  (u«ht i f  mH*»« »( K 
R tM «  t t g c l  w »i« M t» v « 4  |1% « t u t  I  mm  <tf ail K l t« e l«  i t
t t r l M N ,  « i  **pU*n*d p n v iM t iy  |A t» o  t i«  f ir s t  * m m  of »f*«t 
i« «  mM k « «  i ti 'M iw  ih« p a rtic le  («»«ukg »«tci u
event could  not H iU f  W  ider. tilte d  as a X p a rtic le  « u « r r io g
la tk« f i r s t  I m m  •< * t r i c i ,  »( m t i t ,  have not b « tc  < « iR U i ) f h is  
lead* I t  »  m r**  ( r t«  paih for X ' m esons »« to e  lo t  r  em u lsion  of

1 ^ .  * i )  cm  *

which i t  to  bo com pared to the g eom etrica l rrean l i f t  path i t  nuclear 
em ulsion ft!

■ m  * it cm ,

l This geo m etrica l m t t t  free  path is * feigned on the b a s ts  of « nuclear 
rad ius it * l i t  I0*f^  A y  < »  for i l l  the constituent*  of the rm u liio *  )

R D iscussion  of X’ -Meson In ter net t o o t y  F ligh t <»»i C o m p an io n  with 
JK  »h lt ton  In te rac tions Ift FUglll

The most strik ing  d iffe ren ce  between the .n te r actions of K* 
m esons in flight and those of K* m e tone • I* tha t o m e ton* , hyper on • 
and r a n te d  fragm ent*  frequen tly  Appear among the p roduct*  in the fo rm er, 
where** In the  U tte r  they do not appear All the K *-m eson  in teraction* 
o b fc iv ed  m ay be in te rp re ted  *• «U *tic or ine lastic  sca tte rin g , o r a* 
charge -exchange sca tte rin g  of the incident X m eson by n nucleus 
The*# re a c tio n s . If assum ed to be due to one nucleon in the  nucleus, 
co rre sp o n d  to  Reactions l through 1 of Section IV. In c o n tra s t, the 
K *-m eson in te rac tions frequently  exhibit so U rg e  * r is ib le  energy 
re leas#  th a t the absorption of the X" m eson is re q u ired  to account for 
all the en erg y  seen. The o c cu rren c e  of « m esons and hyperons among 
the p ro d u c ts  of K* in te rac tio n s  is  ev ;d*act for the ab so rp tio n  type of j 
re ac tio n s , ouch as ths sing le-nucleon  Reactions 7 through I I  of Section 

IV (in  which n 9 meson is produced together with a  A  o r  Z hyperon), 
which a p p ea r to he resp o n sib le  fo r most of the s ta r s  caused  by K* m esons 
interacU nf, a t re s t. (As Is poin ted  out in the d iscu ss io n  in Section IV of 
s ta r s  due to K‘ m esons cap tu red  at r s s t ,  re ac tio n s* -su ch  as  those with



t« «  « i  im i r t  B w i m i *  « r *  no t n c U 4 « < t )  t fc U  c t» n ir« it  ** I l litv w » f 

o( K 4a d  K* m ia o « «  i f .  * f  v<N»ri» ju r t  what i t  I t  Im  4 tfc«

( M t t f v t l i o t  o( the * t t f  a n g e n rs r ru n  b<rr i t  n t n  th *e *  » r

t c U tw i  I th rou g h  I !  4#* )« « t th » *«  M  I  K m»»M« w ith  « *>4gl.e 

w h u h  •  re  « U » « t4  by A i t  i t t M n r t t t t t  re u u irc m e a t r t t l N i t  ,

«»4 the « t r A B | tM « l  » iK *n .»  * r *  d s rtu re e d  14 n t r »  4 t U i l  ut V v  tuwv |V  I  

T h a t tbe ( t t i t p t  o f ( t f l i m t h t n  o f s tra n g e n e ss , t k u h  •« »  4 fr iM » 4  

fro m  o t ^ r i m t i t u  on tho p ro d u c tio n  o f s tru n g *  p t r l u i t t  ha* pro4«<«4 

• r l r r t i o n  r t f i t  fo r  th r  i M t r t r h M i  o f K w 4  K m r i t M  w h u h  or#  t a t  

i M f l r m H  by th r  e x p e r im e n ta l 4 t U k|

It i t  in te re s tin g  to  n o t*  tha t non# of th r  i l  in te rs ,  tu rn * mi f l ig h t 

of K m eson#  that o r  have o bse rve d  could  h r in te rp re te d  a» tn r la r t tc  

K m to o n  s c a tte r in g . o r to  t l t t t u  s c a tte r in g  o f i  K wwwmi th rough  on 

angle g re a te r  than 40*. ( R la t t u  s c a lte r in g  th ro u g h  a ng le * lo o t  than to ' 

m ay h r  4 u r  to  C oulom b and d if f r a c t io n  t c i t h f i n g  J F ro m  t b u  o b s e rv * -  

l io n  on u ^ p r r  l im i t  of t n iy  h r  got fo r  th r  r a t io  o f th r  n u m h rr  o f m * 

e la s tic  f l a t t e r *  to  t h r  to ta l w im b c r  of re a c tio n s  ( n t r p t  v U t t u  s c a tte r -  

tog th ro u g h  an angle of 40 ' o r  to * * )  || T h t*  I t  th r  C iw f lh u t r  l im i t  fo r  

44% p ro b a b il i ty  (See Appendm  1 ) There  re a c tio n  a o f K m e ro o t ,  to 

ge the r w ith  char ge-exchange a c a lte r in g  (R e a c tio n *  <4) th rou g h  ( t )  o f 

S ection  IV -A ), a re  a llow ed  by the •e le c tio n  ru le *  d e r iv e d  f ro i o u 

t e r  v a i l  on of s tra n g e n e s s  We m ay make an e s tim a te  o f an upper l im i t  

fo r  the fre qu e ncy  of tn e la e tu  c h a rg e -e a ch a n g * n a t t e r in g ,  if we aeaum o 

tha t the  a c a tte r ln g  i*  due to  ta te ra c tio n  w ith  a t in g le  nuc leon , and a lao  

im pose  c h a rg e  independence fo r  th e re  R e rc tto n r  (4 ) th rou g h  f t )  F o r  

s im p l ic i t y ,  the n u m b e r* o f p ro to n *  and o f n e u tro n *  in  the n u c le a r a r t  

i l l u m e d  to  be equal Then, w ith  th r  w o r r t  p o s s ib le  c a re  o f in te r fe re n c e  

betw een th r  p ro d u c t! f ro m  the  a in g lr t  and t r ip le t  is o to p ic  sp in  n a te s  

taken in to  account, the ra t io  o f  charge-exchange  to  n on -ch a rg e -e xch a ng e  

•c a t te r ln g  m u tt  h r  le ts  than  l  to  I F ro m  th t r  we f in d  tha t in e la s tic  

ch a rge -e xch an g e  s c a tte r in g  shou ld  occur In l e f t  than  11% o f K in te r 

a c tio n s  w ith  n u c le i in n u c le a r e m u ls io n *  The l im i t  g ive n  la aga in  the 

co n fid e nce  l im i t  fo r  S$% p ro b a b il i ty



T ilt mean free  for K meetwas ini n u c le a r  rn v u iiiw  found
4*»  th is  *aif« rim t«( i g m i  «rt<k those found In M m U tr tR f tr tm ta t*  “

*Th* «#- r« * « itf  nr* in T*W« IV C tw lto u t i  n il the r* fo t< «  • •
may find a m ore a u o r a U  m ean  I w t  path for 1C m *««i«  in nuclear 
em eiateeu

i »  0 \ \  * cm

It in eq u a l. within tilt  lU u tf t l t  al * r m ,  to the mean foot
p a th fV ^  * II  cm . i«« Section IIS 1 ). This I t  to be com pared with the 
m ean fr«« path for K* m aao n i in nuclear cm u liio n , '*  which U

Sc* * ** * ** cm

Th* d iffe ren ce  in the K * nd K mean free  paths i t  not e u rp ria -
ing, fo r . • •  «« have »*»n. tho  m c i i a a i  involved in tho two cnnon nr#  
not tftit sam e

A vtttnn f r t t  path of 47 * ^  cm  ««» found fo r “ e la s tic '' s c a tte r  •
lug of K m elon* In n n c ltn r  em ulsion  through ang les of 10° to 40°. F o r

t  IS"elastic** sca tte ring  of K m t to n t  in the tam o  angular in terval the
m ean fo o tp a th  i t  IM> * c m . The s ta tis tic s  of th o o t re su lts  a r t  v e ry
poor* how ever, th# K ' m ean  f re e  path for such sca tte rin g  ap p ears  to be
sh o rte r  than that for K m esons. This id to be enpected  if the sc a tte r*  
ing in th is  angular in te rva l Is la rge ly  doe to a d iffrac tio n  effect, because
the to ta l K -m eson m ean fre*  path Is about \ f \  th a t fo r K m esons 
S im ple calcu lations on d iffrac tio n  from  a black d ish  show this effect to 
be of reasonab le  sis# , A m o re  enact calcu lation  should be made with 
tho a id  of an optical m odel consisting  of s "black*' sphere (of rad iu s 
equal to  the geom etric  ra d iu s  of (he nucleus) su rrounded  by a Coulomb 
potential

The num ber of K In terac tions In flight observed  Is much too 
•m a ll to  reach  any co nclusions from  the freq u en c ies  of the vartoue ty p es  
of p ro d u c ts . (Much of the  d iscu ssio n  of Section IV could be applied to 
in te ra c tio n s  in fligh t.) F u r th e r  work on th is p ro b lem , leading to a  m uch 
la rg e r  s ta tis tic a l sam ple, should yield m ore inform ation  concerning the 
reac tio n *  involved and w ould, of co u rse , in c re a se  g rea tly  the accu racy  
of th e  m easu red  quan tities  re p o rted  herein .

o
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U (  <*9 te««k4«r a mo4«t (or the u ilo io r tto o  of a C*
n«»MA *f f eot o t t l  A»»un r Ih il Ilk* K me ion

* i m | i «  fcw ifM  in Hi* nucleus Reaction* (?) through ( 11) a re
0

th to  aI(o* * 4. pro4«K lfl| A •  »t r*oA lo y c th r i with A A  o r Z  hyper on
(ffOAcUM (4) i« e ith e r («rhi44c« by <MAkd«r*litMii of co n serv a tio n  of
energy o r IA su p p ressed  owing to III* vary sm all energy t r i m #  levoleed )
th ro . 4M «rM A| a maalmum F e rm i energy for th t  nut Iron  of i f  Met
««4 allowing M rr for Ihe « d u h « tu  rem oval of a nucleon from  the
(M ctN l, »e may <e*t uUt* mioiniAW  and mioimiMin energy  U tin ts  for
the produced ( M f l td r i  In the cane in which a £  hypeton  to produced
thU ieada lo * b road  poah In the pion spectrum  between the lim it* of
I I  and 141 M rv, and an upper lim it (or the 1  energy of 4% Mev If, 

a
instead, a A h y p ers*  t t  produced, the pion energy ia betw een 110 and 
I t l  Me» and the * $  upper energy  lltm l ia TO Mev Of c o u rse  aom* r  
it *• i* of low er energy a re  tw be eape t ted bee auee of poaeibk* inter •
Ac 11 on with o th e r  nucleons before they  have left the nucleus This ia 
especially  tru e  fo r tboae produced together with a |T ?  hyperon , since 
plots# of thee* en erg ies  have rm  eedtngly  high C roat to r t io u s  for s ca tte r-  
mg from s u e l» M t The ioweat " I h h r  orbit'* of a K m eaon around t  
heavy nucleus to well in tide the nuc leus Blatt tod  B utler have c a rrie d  
out calculation* that auggeat that if K* meson* a re  c ap tu red  in a tim e 
on the o rd e r  of 10’ *' *«■« fg n u c lea r m a tte r  then moat of the <*pturr« 
a t rea l in heavy nuclei take p lace from  the £p end l *  s ta te* , since the 

e lectrom agnetic  transition  from  an np state  to the la  AUte (** 10’ tec)
ia  much lra »  probab le  than d irec t n u c lea r capture from  the £p state

*  2 1 . ' - e k h . '  ■ m
(* 10 ■ a r c | .  Thus since the cap tu re  of a K m eson ia  fa s t (in
Set (tun 111 A we have shown that K m esons in flight have approxim ate ly 

geom etric c r o s s  sections with nuclei}, it Uk*« place from  higher Bohr 
o rb its  (n ;* ') o r ,  ia  o ther w ords, n ea r the surface of the nucleus It 
la e stim ated  roughly that about on# * half of the produc ed * m esons will 
be cap tured  in the nucleus before em erg ing  (if we a ssu m e  that those 
going tow ard the  nucleus are  ra p tu re d  and those going aw ay escape).
Then we espe t t that most of the • m eson* that com e out w ill not harp 
in teracted  and th e re fo re  will re ta in  th e ir  original en erg ies  The ex 
perim ental d a ts  from  K* m esons cap tu red  at re s t in n u c lea r emulsion



Appear to f i t  th i s  p ic tu re  r a t h e r  well  ^  Mo f t  of the observed  **
ntvic'Ai c o m in g  f rom  these  s t a r  • a r e  within the ene rg y  r an g e  that <or-  
r eap o n d t  IO th e  production o( £  h y p e ro n s  giving a v e ry  pronounced 

peak in t ln« reg io n  of the v> m e so n  s p e c t ru m  T h e re  » r #  a l#g  charged 
p lan t  that  a p p e a r  to Have e n e r g i e s  which would Appear to  be a s soc ia ted  
with / ?  p roduc t ion ,  however,  the e n e r g i e s  of t  m r a o n s  a r e  hard  to 

m e a s u r e  in n u c l e a r  em uls ion  in t h i s  r e g u n ,  no tha t  it i s  not possib le 

I to eo tabn t tk  t  defin i te  peak- The  e n e r g i e s  of the c h a r g e d  £ hype roo t  
a r e  n e a r ly  al l  below the ca lcu la ted  maximum The tew c a t e s  exceeding 
this mamtmirrt can be a t t r ibu ted  to a two-nucleon c a p t u r e  of the K 

; me ton  in su ch  a reac t ion a t

I '  M  ♦ p  -• ♦ p 141

tn al l  c a s e  a  the  var ious  p ro d u c t s  aim! combinations of p ro d u c t s  observed  

in the s t a r s  fo rm e d  by K me son •  a t  r e s t  seem to be com pa t ib le  with a 
com bina t ion  of the a s sum ed  p r i m a r y  r e a c t i o n s ( i  e . R eac t ions  (?) 
through ( D l l  with a small  con t r ibu t ion  from the r e a c t io n s  of th«- type 

r e p r e s e n t e d  by f 14). It may be e s t im a te d  from the pion and hyperon 
energy  s p e c t r a  that pe rh ap s  l e s s  than 10V of all the s t a r s  may be due 

to r e a c t i o n s  involving two nuc leons ,  and about r»$4» a r e  due to a single- 
nucleon c a p t u r e  yielding a •  m e s o n  and a I  hyperon.  while the r e m a i n 

ing p r o p o r t i o n  of about £$% o r  l e a s  is  due to a s ingle nucleon  capture
0

resu lt ing  m a w  meson and a A  hyperon  Recent  r e s u l t *  on the i n t e r 

ac t ions  of K m e so n s  with p ro to n s  in a hydrogen bubble c h a m b e r  by 
Albares  et *1. c nf irm the p r e d o m i n a n c e  of the r e a c t i o n s  la which £  

hyperon*  a r e  produced  over  those  »n which A° h y p r r o n s  a r e  produced °
I 0

A  hyperon# s e e n  coming front  K s t a r s  in nuclei may be due ei ther  to 
p r im a r y  p roduc t ion  of a pion and a A  o r  to the in t e r a c t io n  of an o r i g 
inally p r o d u c e d  £  hyperon with a nuc leon in the nuc leus  accord ing  to a 
reac t ion sue h a s

♦  ' '  0  "A
£  ♦ n -  A  ♦ P

The ex c i ted  f r a g m e n ts  that a r e  f requen t ly  observed  m ay  a l so  be due to
a0A  Hyperon* f rom  either s o u rc e .  H igh -ene rgy  y r a y s  a s s o c i a t e d  with 

K -meson cap ture  may » Otl•  Jr om the decay of p roduced  ŵ  mesons  o r



The l«M«r is  an e lectrom agnetic  interaction which r u i t u r v t i  th* tvambrr

these high energy y  r a y t  should alt h«v« their points of o rig in  very near 
to th* «l«r from  which they com* Additional y ray* may com* from

Now tot as consider the *(f*ct of th# assum ption of charg* in 
dependence on th*s* reactions f o r  sm .pin  tty aaaum* that th* numbers

within the group o( reactions resu lting  in the sam e type of p a r t ic le s  but 
with d ifferen t charges , end may be used  to calculste ch arg e  ra tios  of 
produced p a r t ic le s  within that group The reactions a r e  flividnl mt< 
groups by horlsonta l lines. Th# ra t io s  between groups depend, of course , 
on the as yet unknown strengths and types of in te rac tions  involved for 
each group T sb ls  V gives the p robab ili t ies  for pure  T * 0 and T * l 
isotopic apin s ta te s  and for s m ix ture  of the two The re s u l ts  fur a 
mixture contain an In te rferencs  te rm  and therefore  depend on a phase 
angle a s  well as  on the singlet and tr ip le t  in teraction am plitudes.

We have seen that Reactions (7) through ( l \ )  a r e  reaponstblo 
for nearly  a ll  the in teractions of K* mesons at r e s t  F o r  Reactions 
(7) and (ft), in which a plon and a A° hyperon a re  produced, the only 
iaotoplc spin s ta te  (hat can take p a r t  is  the T * l s ta te .  Assuming an 
squat num ber of protons snd neutrons to take part in the in teractions 
gives a ra tio  of »* to s °  mesons of w*/*^ * 2. No w* m esons  are  formed 
in these reac tions . In Reactions (9) through ( I I ) .  in which a pion and 
a £ hyperon re su l t ,  both the isotopic spin s ta tes  T • 0 and T • I may 
contribute. H ers  we find a ra tio  of charged  piona to n eu tra l  plbns 
* \ /* °  • l .  This la independent of the Isotopic spin s ta te  or mixture of 
iaotoplc spin s ta te s  through which the reactions go. and is not afuictcd 
by their in te rfe rence . We th e re fo re  have an over-a ll  ra t io  of charged 
to neu;ral ptone of l ,  which m eans that Z / 3 of the piona initia lly  formed



Tablo V

Probabi l i t ies  of various react ion* duo to a K meson and a  nucleon (A, 
D. C. D a r t  react ion amplitude* Subscripts 0 and 1 r e f e r  to the T * 0 
and T * I Isotopic apin at a tea )

Reaction Pure 
T * 0

Pure  
T * 1

Mixture

K* ♦ p ■•K* ♦ p • • •
Ai

K4 ♦ n -*K* ♦ n l / « * 0 1 / 4  A* 1 / 4  Aq ♦ 1 /4  A^ • | / 2 A 0 A , c o . * a

-*K° ♦ p 1 / 4 * 3 1 / 4 1 / 4  Aq ♦ l / 4 A j  ♦ 1 / 2  AqA j c o t  4 a

K % p - K ‘ *p i / « * o l / 4 B * 1 / 4 b J * 1 / 4 B ‘ - 1 / 2 B 0 B , co .  4 g

4 n i / « » o i / 4  » i l / 4  Bq ♦ l / 4  B"j ♦ l / i B u B ( c o t  *D

K ' t n - K ’ t s

K~ ♦ p *• a** ♦ / ? •. m m m l / i  C | 1/2  C j

K" ♦ n -• t '  ♦ A° . . .
c i c i

K~ ♦ p -  /  ♦ E  ' > A ° o 1 / 4  D j l / 6 D ^ l / 4 D ^ - t / 4 l D 0D , c o . 4 D

0 0 ■* t  ♦ x

*s» OQ<wm

‘ A  Do

- •e*4  E 4 ‘ A  Do l / 4 D j 1 / 6  Dq ♦ 1 / 4  D j » l / ^ S  Dq D |  c o t  4 ^

K‘ 4 n -* e° 4 E~ . . . 1 / 2  Df 1 /2  D*

• * » * e E ° . . . 1 / 2  o \ 1/2  d  ;
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*rc- charged . If. as be fo re , we assum e that 90% of the i t t r i  a r s  due to
these reac tio n s  (Including ell s t a r s  which havt « m esons)  end that SO*
of the ptons a re  absorbed befo re  leaving the nucleus in which they were
formed, tt is  apparent that about l f  \  x 0. 9 * 0. 5 * 0. 30 of alt the s ta r s
a re  e sp ec ted  to emit visible e m esons  in nuclear em ulsion  This Is in

49fortuitously good ag reem ent with the experimental re su l t  of 30 * 1%. 
considering  the roughness of the co rrec t io n  used (or pion absorption.

Returning again to the  reac tio n s  in which E hyperons a re  p r o 
duced, let us consider the ra t io  of « to » ’ mesons. We find

. . *1 . •J_d3L*COi±4_j£ . (A)
1  «■ t S f t c o i * ,  9 /2

where a  is the ra tio  of the T » 0 reaction  amplitude to the T * 1 reaction 
amplitude, and 4  i t  the phase angle between the outgoing v~ mesons in 
the T • 0 and T ■ 1 s tates . It is  seen  then that if the  reac tion  takes place 
purely through the T • 0 s ta te  then we have e +/e "  * 1, while if it takes 
place pure ly  through the T * 1 s ta te  we have i  / e ’ * 1/3. However, 
owing to the in terference  te r m s ,  if m ixtures a re  allowed th is  ratio may 
have any value from  w*/w* " 0 to t * / t "  * 3. If  we now combine the 
re su lts  f ro m  the reactions  producing hyperons with those in which 
E hyperons a r e  produced, we get a ratio

w here y  is  the ra tio  of s ta r s  in which the in itial re a c tio n  produced a 
hyperon and a v m eson to those  in which the in itia l re a c tio n  reau lte  in a 
E hyperon and a « m eson and is  given by Equation (A). This ra tio  
should be changed very little  by in te rac tion  of c h arg ed  pions as they com e 
out of the n uc leus, because (fro m  charge-independence considerations) 
the sam e proportion  of each should  be absorbed  o r charge-exchange 
sca tte red . C harge-exchange rea c tio n s  of m esons b e fo re  leaving the 
nucleus in which they w ere fo rm ed  would tend to a ffect the ra tio  in such 
a way tha t i t  would be c lo se r to 1. S im ilarly , we m ay a lso  find the e x 
pected charg e  ra tio s  for the E hyperons produced in  th e  single-nucleon 
cap tu re  of K* m esons. Tlie ra tio  for the num ber of ch arg ed  E hyperons
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to n eu tra l  X hyperons i t  E*/E® ■ 2. and i t  independent of the isotopic 
•pin t U t e t  involved. II we a t i u m t  a t  before  tha t b$% of the t t a r e  a r e  
due to a tingle nucleon K cap tu re  which re s u l t s  in a X hyperon, and 
that 50% of these hyperons a r e  absorbed within the  nucleus where the 
reac tio n  occurs ,  we find that 2 /1  x 0 .65  * 0. 5 « 0 22 of the s ta r s  should 
have charged  X hyperons em erg in g  with an energy  that is  consistent 
with a single-nucleon reac tion  The experim ental re su lt  is somewhat 
clouded by the (act that X* hyperons coming to r e s t  tn nuclear em ulsion 
a re  often not recognised. The cap tures  of X* hyperons by nuclei a r e  
thought to be due mainly to the p rocess  X’ ♦ p ♦ n, since th is  is
the only single-nucleon fa s t  reac tion  that is  allowed by the s trangeness  
schem e (except for ch arg e  exchange, which if not forbidden by energy 
conse rva tion , is  ce r ta in ly  su p p ressed  by p h a se -sp ac e  limitations).
Since thq products of this reaction  a re  both n eu tra l  and the ir  combined 
kinetic  energy  (neglecting the binding energy of the  proton in the nucleus) 
is  only about 8) Mev, a la rg e  proportion of the s t a r s  produced have no 
v is ib le  p rongs. Since X~ hyperons coming from  K* meson capture at 
r e s t  a r e  of ra th e r  low energy , those stopping with no visible prongs a re  
not e a s i ly  distinguished from  protons in nuc lear  em ulsion  and thus a r e  
not included in the num ber of charged hyperons rep o r ted .  The p roportion  
of K~ s t a r s  in em ulsion having distinguishable v is ib le  hyperons em erg ing  
is  found by experim ent to be 0. 14 k  0 .02 . Using the experim ental 

ra t io  of X*/X* (u n co rrec ted  fo r  the sero-prong X ' s t a r s ) , ** and a s s u m 
ing that the number of X* hyperons reported  should be increased  by a 
fac tor of 2 to 2 -1 /2  (2 .25  is  used here), ' we find the co rrec ted  e x 
p e r im en ta l  resu lt  for the p ropor tion  of all K * -cap tu re  s ta r s  that have 
v is ib le  (i.  e . , charged) hyperons  coming out is  0 .21  a  0. 3. (The e r r o r  
quoted i s  the s ta t is tica l e r r o r  only, and is  not to be taken too se r io u s ly ,  
because  the s i i e  of the c o rre c t io n  just d iscussed  is  not at all well 
e s ta b l ish e d .)  This is  again in fortuitously good ag reem en t with the 
p red ic ted  value of 0 .22 , conside ring  the roughness  of the co rrec t ions  
used. The agreem ent between the experim ental num bers  and the p r e 
d ic ted  n u m b ers  of both ch a rg ed  pions and charged  hyperons from  K ’
• t a r s  lends  support to the m odel used as  well as  to the  s trangeness  
schem e, and furnishes evidence to support charge  independence in the 
in te rac t ions  of s trange p a r t ic le s .

}
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Wc may a lto  com pute the ra tio  of p o sitiv e  to negative X hyperons 
expected  from  sing le -nucleon  K* capture,

\  co> i  + V 2 (C)
X- a* - 4S"a cos ♦ ♦  9 /2  ’

w h ere  e  is  the ra tio  of e lng le t to tr ip le t reac tio n  am plitudes and 4  !• the 
ph ase  angle between the outgoing plons in th ese  two isotopic spin s ta te s .  
T h is  ra tio  should not be changed by absorp tion  and charge-exchange 
sca tte rin g  of the ch arg ed  X 's , but the effect of charge-exchange s c a t t e r 
ing of the  X^ hyperons would be to bring the ra tio  c lo se r to 1. Since 
m any of the X hyperons a r e  of ra th e r low en erg y , there  may a lso  be 
som e suppression  of p o s itiv e  X 's and enhancem ent of negative X 's due 
to the Coulomb effect.

The experim en tal re su lts  on these p a r tic le -c h a rg e  ra tio s  a r e  
b ased  on ra ther poor s ta t is t ic s  and contain a num ber of possib le b ia se s . 
The « m esons whose c h a rg e s  have been iden tified  a re  those which stopped 
in the em ulsion stack s . T his im m ediately c a u se s  a  b ias tow ard v m esons 
of low energy. We th e re fo re  assum e that a ll the  pions whose c h a rg e s  
have been observed  w e re  produced in a sso c ia tio n  with X hyperons.
N e a rly  all the X hyperons produced by one-nucleon  K* cap tu re  would 
have en erg ies  such tha t they would stop w ith in  an  em ulsion stack. Thus 
th e re  is little  energy  b ia s  th e ir  selec tion . B ias might be caused  by 
the  fact that the charge s igns of hyperons th a t decay in flight often 
canno t be determ ined . H ow ever, since the m ean life tim es of X* and 
Z* hyperons d iffer by a fac to r of 2, (the Z* having the sh o rte r life tim e). ^  
i t  is  probable that n e a r ly  a ll  the decays in fligh t a re  due to X* hyperons.
A c o rre c tio n  m ade on th is  b a sis  should cau se  no serious e r r o r  even 
though an appreciab le  num ber of the X h y p erons do decay in flight. 
N egative  X hyperons a r e  d isc rim in a ted  ag a in s t because they often com e 
to  r e s t  in the em ulsion  and in te rac t w ithout causing  v isib le  p rongs o r  
" b lo b s ."  (T his w as d isc u sse d  in som e d e ta il p rev io u sly .) T h e re fo re  
a  c o rre c tio n  fac to r of 2 - i / 4  is  used (a s  b e fo re ) fo r the num ber of X* 
hy p ero n s. Also, in o rd e r  to elim inate the influence of the Coulomb 
e ffe c t on the charge ra t io s ,  we do not count hyperons and pions of le s s  
than  10 Mev. The data from  Webb et a l. (obtained  from  "alo g the tra ck "

, 19
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■canning), a fte r th e se  adjustm ents a re  m ade, yield the following charge 

ra tio s :

*i * 4 * o.3o t j ; a .

Solving Equations (A) and (C) for a and A* w* find

l  J [J r  *E * E 4 *1 '  ‘ 
* *7 ------TTTv ------

I - t ,

V T T ^ T T T T ^ r i

Putting in the above va lues for and E, we m ay obtain an upper lim it

0 £ a  < 2. 5

for n:r

(T h is  Is the confidence lim it for a p robab ility  of 0 .8 4 .)  The value of 4 
cannot be d e te rm in ed  a t a ll, because of th e  v e ry  lim ited  s ta t is t ic s .  It 
is  plain that the m o s t tha t can be said  fro m  these  data is that the  T > 1 
s ta te  does con tribu te  to the reac tio n s  w h e rea s  the T * 0 s ta te  m ay  or 
m ay not

S im ilar co n sid e ra tio n s  have been  m ade Independently b̂ r 
K oshiba, who su g g es ts  tha t the T * 1 s ta te  is  the dom inant one. A 
collection  of data fro m  nuclear em ulsion  ex p erim en ts  obtained by both 
"along the tra ck "  and " a re a "  scanning techniques was d iscu ssed . The 
I *  hyperons ob serv ed  w ere co rre c ted  by a fac to r of 3. 1 to m ake up 
for the Z~p events th a t a re  not reco rd ed , and E decays in fligh t w ere 
not counted because th e ir  charge signs w e re  not known. It is  now known 
th a t nearly  all the decay s  in flight a re  due to E* hyperons, s in e s  they 
have a much s h o r te r  life tim e  than the E hyperons. Taking th is  into 
account, 1 have re -a n a ly se d  the data  c o n sid e red  by Koshiba. When 
h is factor of 3. 1 is  used  to c o rre c t the ob serv ed  num ber of E* hyperons, 
the following lim it (confidence lim it for a  p robab ility  of 0 .8 4 ) is  obtained:

’,0
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0 $  »  < 0.21  .

11 Instead a correction factor of 2-1/4 ia used for tha E* hyparona the 
limit ia

0 f « < 0 . 7 5  .

It ia apparent that tha raault ia highly dependant on tha value aeeumed 
for tha poorly known correction factor for X* hyparona. Also, since 
thaaa data include many hyparona of 10 Mev or leaa. tha result ia biased 
in favor of negatively charged hyparona (and thus in favor of the T • 1 
state) by tha Coulomb affect. It is d ea r that from tha nuclear-emulsion 
data on pion and hyperon charge ratios that have bean published up to 
this time, we may conclude only that at least an appreciable part of tha 
K'-meson captures that produce £ hyparona goaa through the T * 1 
state. The hydrogen bubble chamber data include examples of tha re 
action X* ♦ p -  Since this reaction takes place only in tha
T ■ 0 state it is evident that this state must also contribute to the re 
actions. Obviously many more data are needed to draw any more def
inite conclusions.
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APPENDIX

A problem often met  in counting exper iment*  i t  that of sett ing 
l imits  of e r r o r  on s quantity whose value i t  e s t im ated  from a small 

* number of counts. Sometimes one even wishes to set a l imit  w.th no 
counts at al l.  The usual l im i ts  of e r r o r  used in counting exper iments  
a r e  given by the standard deviation; however, this ha a l i tt le meaning 
for sm al l  num bers .  A more  general  (and commonly used) method for 
sett ing l im i ts  of e r r o r  is that  of confidence l im it s  (Another c o m 
monly u sed  method is that of fiducial l imits, but tn p ro b lem s  such as 
this, involving only one p a r a m e te r ,  both methode give the same r e s u l t s . ) 
The m eaning  of confidence l imi t  far confidence coefficient q is as follows. 
Each t ime an experiment is  pe r fo rm ed  we may se t  an upper confidence 
limit , l i  the  experiment ie repea ted  a large num ber  of t im e t ,  in a p r o 
portion q of thoee t imes the l imit  estimate  falle above the actual value 
of the quanti ty being m easu red .  (This is not the s a m e  as  saying that 
the probabil i ty  that the actual  value liee below the confidence limit 
found f ro m  a part icula r one of the  exper iments  is  q. for the actual 
value is  on e i ther  one t ide  o r  the  o ther of a p a r t i c u la r  l imi t . )  A lower 
confidence l imi t  may be defined in a similar way

The quantity of in te rea t  in a counting exper im en t  Is ueually 
the mean  number of counts P expected The probabili ty  of getting 
exaetty q counte in a eingie pe r fo rm ance  of the exper im ent  is given by 
the genera l  te rm  of the Poiseon ser ies :

♦ <% P) • « ' P <for4  ■ I. 2. ) .

Unfortunately,  because the re su l t  of a single such exper iment ie always 
a d i s c r e t e  integral number ,  r a th e r  than one of a continuum pf numbers  
no comple te ly  sati sfactory solution of the problem exiate  If pa i rs  of 
confidence l imit s  are  ass igned  corresponding to each  possible e x p e r i 
mental  re su l t  q, the indices  of the confidence l im i ts  must be changing 
functions of P, the quanti ty we a r e  measuring,  while what we would 
like is  confidence l imits  with one index of constant value.  As a p r a c 
tical solution Table VI gives confidence l imits that  a r e  a s  close to the 
m e a s u re d  estimate of P  as  possib le ,  with the condition that the confidence

.
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coefficient of each conJi4*m r l imit  l» always equal to or g rea ter  than 
O . M l l  no mottor what the value of P Thu* If on experiment t* per • 
fo rm ed  « Urge  number of H m t l  and ea«h t ime  the  confidence Until* 
a re  found from Ihla t«bl», the limit* entloe* th# ac tuai value of th« 
quantity being measured  in m ore  than I • l  ( I - 0 .  *411) * O.MU* of the 
( 4 i r « t  and the** are lh* * lo*e*|  limit* that up all fulfill fht* condition for 
any value of P w h a tso ev e r , These l imits a r e  i tw * y i  at i*a«t a* con* 
•e rva t lv#  aa the s tandard  deviation wh«n n la la rge  ( f o r  n * 0 there  
la, of cour t* ,  only an upper  l imit ,  and it la for q * 0 M i l  ) The 
s tanda rd  deviation, which ta usually ua*d to aat l im i t !  In caa«« where 
l a rg e  samples  ar# involved, givea l imits (if the d isc re te  Poisson di*» 
ir ibutton It  replaced by a contlnuou* Qauaaian distribution) that a re  
)u»t the confident* l imit* for th* *am* confidence coefficient a* haa 
b*en u t e d  here  (I . e. , q * 0.1411).

'  %s
The value* for the tin.it* were found f rom  the table by Molma. 

P a r t  i  of this table give* values  for

The upper  l imit of P  for a par ticu la r  exper imenta l  reault q la the value 
of a  in thia table for < * q ♦ I and a probabil i ty of 0.1411 (a and c a r e  
symbol* in Molina* • table) The lower limit of P  for a par ticu la r  n I I  
the  value of a for t * q and a probability of I * 0 4411 • 0. !%•?. (It 
i* to be  noted that aa q become* Urge  the d if ference  between the tower 
l im i t  and the mean approaches  fq ,  while the d if ference  between the 
mean  and upper l imit approaches  1 ♦ fW This te a consequence of the 
difficult!** riietuaaed previously ) A s imila r  t rea tm en t  may be need 
for re su l t s  that a r e  expected to follow a binomial d i s t r i b u t io n ^  For  
example ,  the e r r o r *  of par t ic le  charge ra tios  may be treated In this

m a r in e
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