UNIVERSITY OF CALITORNLA
Radiation Laboratory Berkeley, California
Contract No. W -7405-eng-48

ANOULAR DISTRIBUTIONS OF CHARGED PARTICLES FROM 31-Mev PROTONS ON CARBON

Ceorge J. Hecht
(Theats)

- April 21, 1955

Printed for the U. S. Atomic Energy Commisalon
-2 .
ANGULAR DISTRIBUTIONS OF CHARGED PARTICLES FROM 31 -Mev PROTONS ON CARBON
Contente
Abatract 3
Introduction
A. Scattering Processes. 4
B. Angular Diatributions 6

1. Inelaatic pattering 6
2. Elastic scattering 7
C. The Production of Deuterons 8
Experimental Methode
A. Beam Definition 9
B. Scattering Chamber 9
C. Targets. 11
D. Detectors and Electronics 11
3. Seintillation counter and pulse-helght analyser . . Il
4. Differential range telescope and equipment 12
E. Beam Monitor 14
Reduction of Data
A. Calibration of Pulse Height ve Energy 15
B. Range-Energy Dependence 15
C. Kinematice 15
D. Differential Crose Section 19
E. Errors 20
Resulte and Conclusions
A. Pulse-Helght and Range Spectra. 22
B. Angular Diatributions 27
5. Elactic Scattering 27
6. Inelaatic Scatteriag 29
7. Deuterons 32
Acknowledgments 35
References 36

angular distributions or charged particles FROM 31-Mev PROTONS ON CARBON
 George J, Hecht

Radiation Laboratory University of California Berkeley, California

April 21, 1955

ABSTRACT

Angular distributions of several groups of charged particlea resulting from the bombardment of carbon with $31-\mathrm{Mev}$ protons have been obtained.

The angular distribution of elastically scattered protons is in good agreement whth the prediction of the Born approximation at forward angles. Diffraction effecte are compared with the results at lower energles and show thit the angles for which they occur are not atrictly proportional to $\frac{\pi}{R}$ over the energy range 10 to 31 Mev .

The angular distributions of two inelastic proton groups from the reaction

$$
p+c^{12} \rightarrow p^{1}+c^{120}
$$

leaving $C^{12 *}$ with $4,43 \mathrm{Mev}$ and $9,60 \mathrm{Mev}$ excitation, have been analysed In accordance with the theory of Austern, Butler, and McManus. The theory apparently is inadequate for the $\mathbf{4 . 4 3 - M e v}$ level, in which both total angular momentum and parity for initial and final statea are known. The shape of the angular distribution of the acattered protons correspondIng to the $9.60-\mathrm{Mev}$ level agrees with the theory and leada to an asaignment of $J^{\prime}=0^{\circ}, 1^{*}$, or 2^{*}.

A deuteron group from the reaction

$$
p+c^{12}+d+c^{11}
$$

has been identified and the angular diatribution has been compared with the atripping theory of S. T. Butler by means of the principle of detailed balancing. The agreement found indicates that the ground state of C^{11} If characterised by $\mathrm{J}=3 / 2^{*}$.

ANGULAR DISTRIBUTIONS OF CHARGED PARTICLES FROM 31-Mev PROTONS ON CARBON

 George J. Hecht

 George J. Hecht
 Radiation Laboratory Univeralty of Callfornta Berkaley, Callfornia
 April 21, 1955
 INTRODUCTION

A. Scattering Procenses

The scattering of high-energy protons has been used since about 1940 to investigate the energy structure of nuclel and to provide at least qualitative coucepte of the nature of nuclear forces. The experimente fall into two general claseificationaz resonance scattering and inelastle scattering. The energy relationahips in the two processee are shown in Fig. 1. The original syatem $z^{A}+p$ consiating of target nucleus and Incident proton has a rest energy E_{o} ikinetic energy E_{p} of the syotem is plotted vertically above this reference and corresponds to the excitathon E_{c} of the compound nueleus. It the compound nueleus emita a proton of energy E_{p}^{\prime} less than E_{p} and goes to the syatem $z^{A}+p^{\prime}$ (inslastic seattering), the difference in energy in the center -of-masa syatem between Σ_{p}^{\prime} and Σ_{p} is the excitation of the target nucleus. Thus, observation of the energy apoctrum of inelastically scattered protons reveale the excited levels of the target nucleus. If kinetic energy is conserved then the syotem returns to $\mathbf{z}^{\mathrm{A}}+\mathrm{p}$. Thus if E_{p} Hies near a level of the nucleus $(2+1)^{n+1}$, the cross section for the elastle procese might show a peak an the tneident energy E_{p} io varied through this region (resonance scattering). It is seen that in resonance scattorIng the binding energy E_{B} of the proton to the compound nucleus determines the lowest observable amount of excitation above the ground atate of the nueleus $(z+1)^{\Lambda+1}$, while in inelaatic scattering all excitations of the target nucleus z^{A} up to E_{p} are avallable.

Fis, 1. Enerty-level diagram

B. Angular Distributiona

Early experiments, waing either method, were concerned primarily with revealing the presence of excited levela and determining their energies and energy densitles, whereas more recent experiments are concerned with the angular distributions of the scattered particles. The angular distribution yielde information about the opine and parities of the levele involved.

1. Inelantic Scattering

In the inelastic scattering process, two general mechanioms are recognized. The first postulaten the formation of the compound nucleus, which lasto long enough for the incident proton to share ite energy with all the nucleons. ${ }^{1}$ A proton will be emilted when the energy imparted to it by successive collialons becomes great enough for it to escape the nuclear well and penetrate the Coulomb barrier. The level denalty of excited states of the target nucleus increases with energy and atomic weight so that for heavy elementa, the energy spectrum of emitted protons is continuous and exhibite the Maxwell-like distribution of a statiatical syotem at a characteristic temperature. ${ }^{2}$ Applying conservation of parity ana cotal angular momentum as well as of a component of angular momentum yelds the angular diatribution of the acattered protons. Theory ${ }^{3,4}$ atates that it is aymmetrical about 90° in the center-of-mase ayatem in cases where the level density is high enough to Juatily taking a statiotical average and assuming that interfereace terms between outgoing waves of dilferent parity cancel out.

The second mechanism assumes that the incident proton staye in the vieinity of the nucleus for a time of the order of its tranait time across the nuclear diameter. The interaction is viewed as a nucleonnucleon acattering ovent taking place in the peripheral region of the nueleus and reaulting in an angular diatribution that is peaked at forward scattering anglea. This process is favored at higher incident energies where the absorption length ${ }^{5}$ in nuclear matter is longer. Rhoderick ${ }^{6}$ first observed such a nonsymmetric diatribution for the inelastic scatterIng of 4.7-Mev protons from magnealum. Later experiments on carbon and magnesium $7,0,9$ with protons of from 1 to 10 Mev and on ber yllium and carbon at $31 \mathrm{Mev}^{10}$ confirm the character of the diatribution.

$$
-7
$$

Experiments on the heavy elements lead, gold, tantalum, and tin ${ }^{11}$ at 31 Mev also revealed anisotropies in the angular distribution as well as showing that the energy distribution of the inelastic protons was almost flat rather than Maxwellian.

A theory for such peripheral scattering, proposed by Austern, Butler, and McManus, ${ }^{12}$ relates the observed cross sections to the minimum allowable change in angular momentum of the proton (in f unito of f). They give

$$
\frac{d v}{d \omega}-\left[j_{g}\left(\left|\vec{k}_{f}-\vec{k}_{i}\right| 2\right)\right]^{2},
$$

where k_{1} and k_{f} are the wave numbers in the center-of-mass syatem before and after scattering, a is the radius of the peripheral shell of the nucleus, and j_{ℓ} is the zegular apherical Bessel function of order $\mathbf{\&}$. Since this theory is based on the impulse approximation, a good fit with experiment can be expected only at small forward scattering angles. If the theory is valld, it provides a fairly powerful method of determining the total angular momentum and parity of excited levela when the corresponding quantities are known for the ground state. Finke ${ }^{13}$ found fits with tills theory for the excited levels of beryllium. In this case the probablity of peripheral scattering is enhanced, since there is a very loosely bound nucleon circulating about a closed core of nucleons (aparticle model). ${ }^{14}$ The tightly bound atructure of carbon, on the other hand, might be expected to euppress peripheral interactions and provide a more stringent test of the theory.

2. Elastic Scattering

The famillar Fraunhofer diffraction pattern of an opaque disk is a good approximation to the predictions of the optical model of the nucleus 15,5 when applied to cases in which nuclear interaction far exceede Coulomb scattering. For carbon, the ratio of total to Ruther ford scattering approaches 30 . The Born approximation applied to the wave functions representing incoming and outgeing protons produces easentially the same diffraction pattern. Consequently, the actaal observed diatribution would not be expected to agree with this theory at large acattering angles, where the Born approximation does not hold.

Cohen ${ }^{16}$ has found many diffraction maxima and minima in elastic angular distribations at 22 Mev . From the optical analogue, one expecto diffraction effecte to be proportional to $\frac{\pi}{R}$ where $*$ is the wave length In the center of mases and R the nuclear radius. Cohen finds this $1 / R$ dependence to hold for elements from berylium to thorium. In this experiment many carbon elaetic data were taken with good accuracy.

C. The Production of Deuterons

The production of deuterons from a target $\mathbf{z}^{\boldsymbol{A}}$ bombarded with protone may be regarded as the inverse reaction to the otripping of deutorons by a target $z^{\Lambda-1}$. At 31 Mev Butler atripping theory ${ }^{17}$ is appropriate, and the shape of the angular distribution of the cross sections for production is inferred from that for atripping if the principle of detalled balancing is invoked. In the inverse reaction, the shape of the angular distribution of the pickup deuterons provides a measure of the angular momentum change and parities. Daitch and French ${ }^{18}$ demonstrate the equivalence of the Butler theory and the reoulto of applying the Born approximation. They also show that if the interaction is considered to extend over the entire nuelear radlus instead of taling place only in a peripheral region (the implicit asoumption in the Butier theory) a modification in the shape of the angular distribution resulto which depende on the depth of the nuclear well for neutrons.

The energy Q (Fig. i) is the minimum kinetic energy that must be given up in the center-of-mase aystem to produce deuterons. If energies higher than Q are lost the residual nucleus z^{A-1} is left in an excleed atato.

-9.

EXPERIMENTAL METHODS

A. Beam Definition

The beam from the linear accelerator has an angular divergence of $10^{-3}=$ maximum), and a diameter of $1 / 4$ inch. ${ }^{19}$

The beam is then further collimated by the syatem shown in Fig. 2. Ir consista of a remotely operated four-jaw premagnet collimator C_{1}, an analyzing magnet, which deflecte the beam through 20°, and an adjastable four-jaw postmagnet collimator C_{2} (set at aperture $1 / 8$ inch by $1 / 8$ inch), all priniariiy for restricting the energy spread. Beam ahaping is accomplighed by the collimator syutem C_{3}, conaisting of a $1 / 8$-inch circular aperture in a carbon diak followed at one-foot intervale by $5 / 32$-inch and $3 / 16$-inch apertures which limit alit scattering. The syatem C_{3} may be retracted for initial alignment without breaking the vacuum. The time average beam current at the target is a maximum of 3×10^{-9} amperes with a maximum diameter of $3 / 16$ inch. A picture of the beam, burned into a glass plate at the exit port of the scattering chamber, together with the postmagnet collimator, determines the beam line along which a telescope can be aighted to permit accurate alignment of the syatem C_{3} and the scattering chamber centerline.

B. Scattering Chamber

The scattering chamber is 24 inches in diameter and contains a table which can be positioned in angle by remote control to within 0.1°. The 111 of the chamber it provided with a remotely controlled target holder which can be positioned in angle to 3° and holde as many as six targets. If only one target angle is to be used for a run, it is possible to determine this angle to 0.2° by placing a front-ausfaced mirror at one of the target positions and reading the table angle necessary to form an image of a reference point mounted on the table as aeen through the telescope. Pressure inside the scattering chamber is maintained at lese than $10^{-5} \mathrm{~mm}$ of H_{g} by a local vacuum syatem.
-10

Fig. 2. Bombardment geomatry
C. Targets

A 3-mil polystyrene (CH) foll was the primary target. However, the p-p scattering from the hydrogen in this target completely masks several of the levels of carbon at various forward scattering angles. Consequently, an almost pure carbon target was uand at these angles. This target was prepared by gluing a thin block of carbon to the face plate of a lathe with Duce cement and then very carefully facing down the block to about 3 milo thickness. The cement was dissolved off with ether, and the target was carefully washed in alcohol and water and mounted in a metal frame. This process left tome hydrogen (lesa than I percent), but no other impurities detectable in concentration to more than 1 percent. Targets prepared in this way from brittle substances Hike carbon are not entirely uniform in thickness over small areas, so that normalisation to the CH elastic carbon cross section at $60^{\circ} \mathrm{was}$ made experimentally each time the target wat used.

The targets were sufficiently thin so that less than 1 percent of the incident protons failed to be collected in the Faraday cup because of multiple Coulomb scattering. A useful approximate formula giving the multiple Coulomb scattering in thin targets to within 15 percent is

where $\overline{\theta^{2}}$ is the mean square scattering angle and $d E$ is the energy loss of a proton of energy E in traversing a foil of atomic number Z.

D. Detectors and Electronics

Two separate counting systems are employed: (1) pulse-height analysis of scintillation counter pulses, and (2) a differential-range proportional-counter method.

1. Scintillation Counter and Pulse-Height Analyser

The scintillation counter consisted of a fast plastic scintillator (terphenyl in polystyrene) mounted on the face of a DuMont 6291 photomultiplier. The thickness of the scintillator is greater than the range of full-energy protons in this material. Output pulses are delay-lineclipped to about $1.0 \mu \mathrm{gec}$ in a cathode-follower clipping preamplifier, then fed into a linear amplifier the output of which drives the pulse-height

-12.

analyser, Fig. 3A. The analyser consiata of a pulse subtractor, a window amplifier, and a pulee atretcher. ${ }^{20}$ The output is then passed into ten 1024 acaleri modified for differential pulse-height analyoie with appropriate coincidence and anticoincidence circuits in each unit so that any particular count muat fall in one and only one channel. Channol width are adjustable from 0.1 to 10 volts. A great deal of effort was expended in atabilising the analyser and removing long-term drifts. Over-all window stability io better than one percent for one- or twovolt windowe. Since only ten acaleri are available, a full pulse-height apectrum (0 to 100 volto) must be taken by sllding the windowe along succeasive portions of the apectrum if reasonable window widthe (1 to 2 volte) are used. The procese of sliding the windowe through many steps is not entirely reproducible and leado to uncertainties at low pulse heights. Enough acalers to record the entire spectrum aimultaneously should eliminate this difficulty and decrease the required counting time as well.

Pulse-height resolution is as good as 3.5 percent (full width at hal(maximum) for $31-\mathrm{Mev}$ protons atopping in the crystal. When the plastic scintillator is replaced byapulsed Ifght source of comparable Hight output a resolution of one to two percent is observed, indicating that the fundamental limitation in resolution is the variation of conversion efficiency (fonization energy into light). Total light collected for 31 -Mev protons represents sufficient quanta to produce saturation in the output of the photomultiplier if operated at recommended voltages. Consequently reduced values of hv were employed; the actual value used was determined by maximizing the energy resolution and the linearity over the energy range 10 to 31 Mev . Better energy resolution could probably have been attained by using a sodium fodide crystal, but with the concomitant evils of surface impusity effects and higher background response to gamma radiation. The observed energy levels of carbon are sufficiently well spaced to obviate this need.

2. Differential Range Telescope and Equipment

In the differential range method, particles aze detected in a telescope of three proportional counters of a typeffirat used by Benveniate and Cork. ${ }^{21,22}$ A remotely controlled absorber changer is located

$$
\begin{equation*}
\mathrm{CB2} \tag{12}
\end{equation*}
$$

immediately in front of the telescope and behind an aperture which defines the solid angle for acattering, For a particular energy group of scattered particles, nearly enough absorber (R) is introduced to atop the group. The degraded particles pase through two proportional counters, forming a coincidence, and atop in a ΔR foll $\left(\sim 6 \mathrm{mg} / \mathrm{cm}^{2}\right)$. A third proportional counter provides an anticoincidence pulse if a particle travele too far. So that no particles are lost because of multiple scattering in the counter folls, the countors have an aperture that subtends two root-mean-square scattering anglen for the worst case of scattering encountered. Thus all particles with a range between R and $R+\Delta R$ are counted. A plot of counto verous range yidele the differential range curve of the group. Particies that stop in Δ produce pulses in the first two countere many tmes higher than the average notee pulse height, consequently a discriminator level may be set for pulse acceptance (plateau measurement). Discrimination level for the third counter is set juat above the noise lovel in order to count all particles passing through ΔR. Ashby ${ }^{23}$ gives a complete analyols of this type of counter.

The throe proportional counters are aupplied by a common hy supply regulated to 0.1 percent. The preamplifiere (PA), Hinear ampllfiere (LA), and variable gate (VG) unite (Fig. 3B) are all of standard laboratory design. Gate widthe from the firat two counters are $0.5 \mu \mathrm{sec}$, while the gate width from the third counter to $1.5 \mu \mathrm{sec}$ and overlaps both 1 and 2 in time. The worst jitter in electronics io in the reaponse of Gate 3 with respect to Gates 1 and 2 , and is $0.5 \mu \mathrm{sec}$. The $0.75-\mu \mathrm{sec}$ overlap is sufficient cover for this jitter. Gate pulses are mixed in a diode coincidence circuit of time resolution of the order of $0.1 \mu \mathrm{sec}$. Coincidences and singles are monitored with scalers (S). A fourth variable gate, fed by the delayed output of LA 2 , is mixed with VG 1 and 3 in another coincidence circuit to monitor accidental coincidences.

E. Beam Monitor

A Faraday cup at the exit port of the scattering chamber collects the beam. The charge io integrated on a capacitor of value known to 0.1 percent. The potential aerose the capacitor is measured by a de feedback electrometer and a recording millivoltmeter. Permanent
magnete at the entrance of the Faraday cup prevent escape of secondary electrons formed within the cup.

REDUCTION OF DATA

A. Callbration of Pulee Hoight va Energy

A typical pulse-height distribution of the charged particies from carbon bombarded by $31-\mathrm{Mev}$ protons appeara in Fig. 4. The peaki (from right to left) correspond to the elastic peak, the $4.43-\mathrm{Mev}$ level, the $9,6-\mathrm{Mev}$ level, the $15-\mathrm{Mev}$ level, and deuterons associated with the ground state of C^{11}. In particulaz, the energies for the firat three peaks can be calculated precisely for any scattering angle, as the excitations Involved are well funown. Thus by varying the scattering angle one may generate a scintillator calibration curve of pulse height vo energy as in Fig. 5. It is ycen that the dependence is linear to below 10 Mev . Some deuter on points are shown on this plot to illustrate that deuterone with $\mathrm{dE} / \mathrm{dx}$ greater than that for protons at the same energy produce less light at the photocathode, a saturation effect of the scintillator. This type of energy callbration, although sufficient for the region of the first three peaks, ' inadequateat lower energles for the precise determination of the energles of now levels, since the pulse-height analyser introduces uncertainties in regions of low pulse height (cf. Sec. D above).
8. Range-energy Dependence

For a more precise energy determination of a particular group the range counter is used and a differential range spectrum is plotted. The energy is obtained from the zange at the center of the peak by using Smith's range-energy plot. ${ }^{24}$ For energies above 15 Mev the derived expresaion ${ }^{13}$

$$
R=(\operatorname{antilog} 0.4362) \Sigma_{\mathrm{Mev}}^{1.778}+2.0 \mathrm{mg} / \mathrm{cm}^{2}
$$

is employed.

C. Kinematics

(1) Transformation from laboratory to center-of-mass system For the reaction
-16.

Fig. 4. Puise-height spectrum

Fig. 5. Scintillator response

$$
M_{1}+M_{2}+E_{p}+M_{3}+M_{4}+i+E_{1},
$$

where it the nuclear excitation energy, M_{1} and M_{3} are incident and outgoing particles, M_{2} and M_{4} are target and residual nuclei, F_{p} is the laboratory energy of the incident particle, E_{f} is the kinetic e energy of the aystom after collision. If θ and $\$$ are the scattering angles (tab. and c, m. respectively), and da and dare the solid angle differcentals (lab, and c.m. zenyectivoly).
the following nonselativietic formulas apply:

$$
\tan \theta=\frac{\sin \phi}{\cos \phi+r} .
$$

$\cos \phi=\cos \theta \sqrt{1-r^{2} \sin ^{2} \theta}-2 \sin ^{2} \theta$, $\sin (\phi-\theta)=r \sin \theta$.

$$
\frac{d \omega}{d \theta}=\frac{\sin \theta d \theta}{\sin \theta d \theta}=\frac{\left(r \cos \theta+\sqrt{1-x^{2} \sin ^{2} \theta}\right)^{2}}{\sqrt{1-x^{2} \sin ^{2} \theta}},
$$

and

$$
\frac{1}{x^{2}}=\frac{M_{2} M_{4}}{M_{1} M_{3}}\left[1+\left(\frac{M_{1}+M_{2}}{M_{2}}\right) \frac{Q-0}{L_{p}}\right] \text {. }
$$

where

$$
Q=\left[\left(M_{1}+M_{2}\right)-\left(M_{3}+M_{4}\right)\right] c^{2}
$$

(2) The lab. energy of particles scattered at angle Q is

$$
E_{\theta}=\frac{M_{1} M_{3}}{\left(M_{1}+M_{2}\right)^{2}} \frac{\Sigma_{p}}{r^{2}}\left[r \cos \theta+\sqrt{1-r^{2} \sin ^{2} \theta}\right]^{2} .
$$

For protons elastically scattered from C^{12} the incident energy E_{p} may be found from the scattered energy E_{θ} and ϕ by

$$
\mathrm{E}_{\mathrm{p}}=1.174 \mathrm{E}_{0} \frac{\sin ^{2} \theta}{\sin ^{2} \phi} .
$$

For deuterons leaving C^{11} in the ground state, E_{p} is found from E_{θ} and ϕ by

$$
E_{p}=1.2803 \frac{\sin ^{2} \theta}{\sin ^{2} \phi} E_{\theta}+17.86 \mathrm{Mev} .
$$

(3) The excitation energy © of a level corresponding to a particuar group of protons of energy E_{θ} is

$$
c=0.9166 E_{p}-1.083 E_{\theta}+0.1666 \cos \theta \sqrt{E_{p} E_{\theta}} .
$$

D. Differential Cross Section

In the center-of-mass system the differential cross section corresponding to a particle group scattering at an angle θ is -

$$
\begin{aligned}
& \frac{d g}{d \omega}=\frac{d g}{d g} \frac{d \theta}{d \omega}=\frac{d g}{d n} f(\theta), \\
& \frac{d g}{d \omega}=N_{0} \frac{e M}{c V \Delta \theta} \frac{\cos \theta_{t}}{f} f(\theta) .
\end{aligned}
$$

where N_{9} is the total number of particles scattered into solid angle $\triangle \Omega$. Putting the quantities in conventional units and subatituting for $\mathrm{f}(\theta)$ from the preceeding section, we have
where
e is the charge of the electron in Coulombs, M in the mass of C^{12} in grams, C is the beam-integrating capacitance in μ farads, V is the electrometer potential in volts, ts the target thickness in $\mathrm{mg} / \mathrm{cm}^{2}$.
$\Delta \Omega$ is the solid angle of the counter at the target.
When data are taken with the pulse-height analyser, N_{8} is simply $\sum_{i}\left(N_{i}-B_{i}\right)$, where N_{i} and B_{i} are the number of total counts and background counts in the th channel, respectively. (B_{1} is approximated by drawing smooth curves through the minima of the pulse-height spectra.) For the differential range -method,

$$
N_{B}=\frac{1}{\Delta R}(A-B)=\frac{1}{\Delta R}\left[\int\left(\frac{d N}{d R} \Delta R\right) d R-B\right] .
$$

where A is the area under a peak (gaussian) of the differential range curve and B is the total background fagain estimated by drawing smooth curves through the minima of the spectrum). ($\frac{d N}{d R} \Delta R$) is the quantity actually measured at each range point R. The area A is found by fitting a triangle through the experimental points. The area of a triangle whose sides are tangent to a gaussian at the points of inflection, is 0.968 the area of the gaussian.

E. Errore

In terms of measured quantitios the cross section is given by

$$
\frac{d \sigma}{d \omega}=N_{s} \frac{\cos \theta_{t}}{c V \Delta \theta t} f(\theta) \text {. }
$$

For a functional dependence of the form

$$
y=\int_{1}^{x},
$$

the law of propagation of errore gives

$$
\frac{\partial y}{y}=\left[\sum_{j}\left(a_{j} \frac{8 x_{j}}{x_{j}}\right)^{2}\right]^{1 / 2} \text {. }
$$

Listing the terms separately, we find

$$
\begin{aligned}
& \frac{\partial c}{c}=0.1 \%_{,} \\
& \frac{\partial V}{V}=0.5 \%_{t} \\
& \frac{\theta\left(\cos \theta_{\mathrm{t}}\right)}{\cos \theta_{t}}=\tan \theta_{t} \Delta \theta_{t} \quad \theta_{t}=45^{\circ} \quad 8 \theta=0.2^{\circ}=0.0035 \mathrm{radian}, \\
& \frac{\theta\left(\cos \theta_{\mathrm{t}}\right)}{\cos \theta_{t}}=0.35 \%,
\end{aligned}
$$

$$
\frac{8(\Delta g)}{\Delta a}=2.6 \% \text {. }
$$

$$
\frac{6 t}{t}=0.1 \% \text { for } \mathrm{CH} \text { targets and } 5 \% \text { for carbon targets, }
$$

$$
\frac{\Delta(\theta)}{f(\theta)}=0.1 \% \text { for } \Delta \theta=0.1^{\circ}
$$

If the cross section for a reaction is a rapidily varying function of angle, then the uncertainty of 0.1° in table setting may contribute as much as 0.8 percent uncertainty in cross section (elastic scattering at 20°). All the above errors combine to give a relative error of 5.7 percent. To this figure must be added the contribution to the error from N_{8}. For the scintillation counter method

For the differential range method

$$
\left.\frac{\Delta N_{A}}{N_{0}}\right)=\left[\left(\frac{b(\Delta R)}{\Delta N}\right)^{2}+\left(\frac{b(A-B)}{\Delta-B}\right)^{2}\right]^{1 / 2}
$$

Hera $\frac{\Delta(\Delta R)}{\Delta R}=0.9 \%$, and $\frac{b(A-B)}{A-B}$ depende on the counting atatiotica but is eatimated directly from the data by determining the range in value of (A-B) for possible triangles making good fite with the data. Many independent observations impart confidence in the method. In the best cases (elastic data), $\frac{8(A-B)}{A-B}$ is 3 percent waile an average value might be 1 percent. The total combined relative error becomes
6.0% for 2% statiatico (beat data)
$\mathbf{7 . 6 \%}$ for 5% statiatice (average) for the scintillation method,
$\mathbf{6 . 5 \%}$ for 3% orror in A (beat data) for the differential range 9.6% for 7% error in A (average) $\}$ method.
It is seen that the total relative error in cross section for the two methode is quite comparable for the best data taken. The calculated error, however, taked no account of contributions to the error in N_{s} due to background variations or to shifto in beam energy during runs. The former can be detected when background shifte of more than 10 percent occur and to a source of trouble common to both methods. The latter contributes no error to the cross section as determined by analyais of the pulse-height data, since all channele bracketing a peak record simultaneously, and thus no counts are lost or counted twice. Shifts in beam energy may introduce as much as 20 percent uncertainty in eross section for data taken with the differential range method for processes with low cross section. Fundamentally then the scintillation counter can produce more accurate cross sections than the differential range method and requires much less running time. At low energies, however, background due to neutron and gamma radiation from the linear accelerator becomes a serious problem in analyaing the pulse height data, since the target-in -larget-out method requires the finding of a relatively small difference between two relatively large numbers. There is a physical limit to the amount of shielding that can be introauced to reduce this background. A thin proportional counter or very thin scintillator in front of the analyoing eryatal to produce a coincidence for heavy charged particles only would be an improvement.

The differential range counter with its coincidence requirement Is free from this limitation, and exhibite practically no target-out background. Its superior energy resolution ($\sim 1.8 \%$) permits estimation of energles of peake to about $0.1 \%(0,03 \mathrm{Mev}$ at 30 Mev$)$.

An additional practical conaideration in the operation of the scintillation counter is that the maximum counting rate is determined by the counting rate of all particles atopping in the erystal, not just the group being analysed, in contrast to the proportional counter telescope, where most of the particles pasaing entirely through the telescope have too low a $\mathrm{dE} / \mathrm{dx}$ to contribute to pile-up.

In the light of these considerations it ls seen that the most advantageous way to employ the two methods is to restrict the use of the scintiliation counter to that portion of the high-energy region of the spectrum for which target-out background is negligible.

RESULTS AND CONCLUSIONS

A. Pulse-Height and Range Spectra

Pulse-height distributions similar to those shown in Fig. 4 were taken at $30^{\circ}, 40^{\circ}, 50^{\circ}, 60^{\circ}, 80^{\circ}, 100^{\circ}, 120^{\circ}$, and 140°. In all spectra the elastic peak and the peaks corresponding to the $4.43-\mathrm{Mev}$ and $9,6-\mathrm{Mev}$ levels appear prominently. The peak corresponding to the $15-\mathrm{Mev}$ level is too small to be identified at angles less than 45° and is masked by background at angles greater than 80°. A level of $7.6-\mathrm{Mev}$ excitation is known to exist ${ }^{14}$ and considerable effort was expended in attempting to detect it in this experiment, but within reasonable running times it could not be found above statistical uncertainty at any angle.

As noted previously, the pulse-height analyser is most reliable If restricted to the higher pulse-height regions. Consequently the angular distribution of the elastic group and the group corresponding to the first excited level were taken from the pulse-height data. Spectra similar to those shown in Fig. 6 were taken at 5° intervals at all angles from 10° to 170° in the laboratory aystem and with a statistical accuracy of at least 2 percent for the elastic group and an average of 5 percent for the $4.43-\mathrm{Mev}$ level.
-23.

uusson

Fig. 6. Pulse-height distributions of protons corresponding to ground state and first excited level of Clii
63%

-24.

Complete differential range spectra were taken at $15^{\circ}, 30^{\circ}$, $45^{\circ}, 60^{\circ}, 90^{\circ}$, and 120°, some of which are shown in Fig. 7. Although these spectra are much more tedious to take (oince only one range point is obtained at a time), this method eliminated the possibility of finer structure in the peaks of the pulse-height spectra. In addition, Inde- . pendent confirmation of the cross sections obtained from pulse-height data was provided. In the differential range spectrum of 60° the peaks are (from right to left) the elastic group, the $4.43-\mathrm{Mev}$ level, the 9.6 Mev level, the $15-\mathrm{Mev}$ level, and a amall group of deuterons Just to the sight of the large peak of protons. The protons in this large peak are those scattered by hydrogen in the CH target that was used for this particular run. These two groups (deuterons and protone) would not have been resolved by the scintillator at this anglo. In the differential range apectrum at 30°, there is a amall peak between the proton groups corresponding to the $4.43-\mathrm{Mev}$ and $9.60-\mathrm{Mev}$ levels. This peak is due to the hydrogen impurity left in a "carbon" target and correoponde to less than one percent of the peak that would be present from a CH target. The width of the peak is greater than the width of the proton groups on either side because the energy of protons scattered from hydrogen is a ateep function of scattering angle, and for the fixed angular aperture of the counters ($\sim 1.6^{\circ}$) a rather large energy dispersion resulto.

In addition to the complete spectra Histed, all data presented for the $9.6-\mathrm{Mev}$ level as well as those for the pickup deuterons were obtained with the differential range method. The deuteron group observed is from the reaction $p+c^{12} \rightarrow d+c^{11}$ leaving c^{11} in the ground atate $(Q=-16.49 \mathrm{Mev})$. Poitive identification of the deuterons was made possible by taking advantage of the fact that the first two counters can be used to measure the $d E / d x$ of particles that stop in ΔR. Since the $\mathrm{dE} / \mathrm{dx}$ of deuterons, of the same residual range as protons, exceeds the $\mathrm{dE} / \mathrm{dx}$ of protons by about 30 percent, a similar difference in pulse height in the firot two counters should be observable. Figure B showe the reault of plotting counting rate againat discrimination level of the first two counters for elastic protons ($\mathbb{R}=1200 \mathrm{mg} / \mathrm{cm}^{2}$) and the suspected deuter ons $\left(\mathbb{R}=165 \mathrm{mg} / \mathrm{cm}^{2}\right)$ from the data taken at 30°. The plateau to definite in both cases and is seen to be about 35 percent longer for the second group, hence these particles are certainly deuterons.

Fig. 7. Differential range spectra

Fig. 8. Particle identificasi in by $\mathrm{dE} / \mathrm{dx}$ meavurement

$$
-27
$$

The excitation energies of the observed levels as measured from analyois of the differential range spectra are

$$
\begin{aligned}
4.43 \mathrm{Mev} & =0.05 \mathrm{Mev}, \\
9.60 \mathrm{Mev} & \pm 0.03 \mathrm{Mev}, \\
14.98 \mathrm{Mev} & \neq 0.11 \mathrm{Mev} .
\end{aligned}
$$

In addition to these levels, there in evidence suggesting the existence of a level of low cross section of $\mathbf{2 1 . 9 - M e v}$ excitation as well as the existence of several very broad levels or many sharp ones of excitation between 11 and 20 Mev which appear in the spectra taken at backward angles. Many levels are known to exiot in this region from experiments with deuterons and alphas as the bombarding particles. 14

B. Angular Distributions

1. Elastic Scattering

The differential crose section for elastic scattering has been measured at 33 angles with the scintillation counter and confirmed at 6 angles with the differential range method. The angular distribution is plotted in Fig. 9 and compared with the results of the Born approximation, which gives an angular dependence

$$
\frac{d o}{d \omega}=\left[\frac{f_{1}(2 k a \sin \phi / 2)}{2 k a \sin \phi / 2}\right]^{2} .
$$

The value for the nuclear radius producing a best fit to the experimental angular distribution at forward angles is $a=1.80 \times \mathrm{A}^{1 / 3} \times 10^{-13} \mathrm{~cm}$. Clearly the behavior at large angles does not fit this simple theory. The rather large value of the nuclear radius required to fit the data at forward angles seems characteristic of this type of matching (in the case of Be^{9}, a radius of $1.90 \times \mathrm{A}^{1 / 3} \times 10^{-13} \mathrm{~cm}$ was required ${ }^{13}$, and is not considered a significant measure of true nuclear size.

The ratio of the observed differential scattering cross section to the crose section calculated for pure Rutherford scattering vields masima and minima at angles that can be compared to the results at 10 and $22 \mathrm{Mev}, 9,16$ If $\phi \subset \pi / R$ and If R is independent of energy then

$$
\frac{\phi_{E_{1}}}{\phi_{E_{2}}}=\frac{x_{E_{1}}}{x_{E_{2}}}=\sqrt{\frac{E_{2}}{E_{1}}} .
$$

2e-

Fig. 9. Angular distribution of the differential cross section for elastic scattering of protons from C^{12} at 31 Mev (lab) and the Born approximation prediction
so that the angles at which the effecto necur, at different energies, should be related by the factore

$$
\frac{\phi_{10}}{\phi_{22}}=1.48, \frac{\phi_{22}}{\phi_{31}}=1.19, \frac{\phi_{10}}{\phi_{31}}=1.76 \text {. }
$$

The factors actually found are listed below.

	$\frac{\text { Angles at which effecto occur }}{10 \mathrm{Mev}} 22 \mathrm{Mev}$	$\frac{\phi_{10}}{31 \mathrm{Mev}}$	$\frac{\phi_{22}}{\phi_{22}}$	$\frac{\phi_{10}}{\phi_{31}}$	ϕ_{31}
mas.	50	36	34	1.39	1.06
min.	.-	55	53	-	1.04
max.	120	88	80	1.37	1.10

The resulto produce factors omaller than those predicted and might indicate that the nuclear radius cannot be considered to be independent of energy over this energy range.
2. Inelaatic Scattering.

Differential cross sections for inelastic scattering of protons from two excited levels of carbon have been measured at a sufficient number of angles to make a good comparison to the theory of inelastic scattering proposed by Austern, Butler, and McManus. ${ }^{12}$ In this theory the angular dependence to

$$
\frac{d o}{d \omega}-\left[J_{g}(g \theta)\right]^{2},
$$

where a is a measure of the sadius of the peripheral region in which the scattering takeo place and $\&$ to the change in angular momentum of the incident and scattored protons. This change Δ is related to the change in angular momentum ΔJ between initial and final nuclei by $\Delta \mathrm{J}=f \pm 1$ or 0 (1.e., contribution due to proton $\operatorname{spin} \mathrm{i}_{\mathrm{0}} \pm 1$ or 0). However, the position of the first observed maximum in the angular distribution determines the minimum value of $\&$ where

$$
f_{\min } \overrightarrow{\vec{j}}+\vec{j} \cdot+\left.\vec{i}\right|_{\min } .
$$

The parity of the wave function representing the excitcd state is the same as (\& even) or different from ($\&$ odd) that of the ground state. For $\mathrm{C}^{12}, \mathrm{~J}=0^{+}$for the ground atate. ${ }^{14}$ Thue a peak in the angular distribution directly forward ($\boldsymbol{\ell}_{\text {min }}=0$) would indicate that ΔJ $f=|\mathrm{J} \cdot \mathrm{J}|)$ is 0 or 1 with no change in parity. If there is no peak directly forward ($\ell_{\text {min }}>0$) then either $\Delta 〕 \geqq 0$ with a change in parity or $\Delta \mathrm{J} \geqslant 2$ with no parity change. The general rule then is:

$$
\begin{aligned}
& \text { if } \ell_{\min }=1 \text {, then } \Delta J=0,1 \text {, or } 2 \text { : } \\
& \text { if } \ell_{\min } \neq 1 \text {, then } \Delta J=\ell_{\text {min }} \text { or } \ell_{\text {min }}+1 \text {. }
\end{aligned}
$$

The cross sections of the first excited level of C^{12} are well defined at all angles and produce the angular distribution shown in Fig. 10. Probable errors are as high as 50 percent for 10° and 170°. but for most points are between 10 and 20 percent and include all sources of error in the absolute value of the differential cross section. Relative cross sections are more reliable by a factor of at least two. $\mathrm{J}=2$ for this level, ${ }^{14} \mathrm{sol}$ allowable values of b are 1,2 , and 3 . However, the parity is also known to be even, consequently the odd values of t are eliminated and there resulto the unequivocal cholee for b of two units. Thus, for this level, instead of predicting a $\Delta \mathrm{J}$ and hence J^{\prime}, it is only necessary to see if the observed distribution matchen that of $J_{2}(\mathrm{ga})$.

A plot of j_{2} for $a=1,82 \times \mathrm{A}^{1 / 3} \times 10^{-13} \mathrm{~cm}$ is shown in Fig. 10 . This choice of nuclear radiue is equivalent to requiring the maximum of the first lobe of the Bessel function to fall at 40°. If the argument of j_{2} is adjusted so that the maximum falls at 15°, to correspond to the observed data, the value obtained for the nuclear radius is 4.5 x $\mathrm{A}^{1 / 3} \times 10^{-13} \mathrm{~cm}$, which has little meaning. Furthermore, the shape of the first lobe beconies far too narrow and many lobet appear over the angular range which bear no relation to the observed distribution. Going to values of a less than $1.8 \times \mathrm{A}^{1 / 3} \times 10^{-13} \mathrm{~cm}$ produces a maximum where none appears in the date and results in essentially only one lobe extending over most of the angular range. It might seem that the plotted diatribution could be conoldered a fit if there were evidence of some other process (e. (s., slit scattering) contributing to the higher cross sections at angles less than 40°, but no ouch process
-31.

Fig. 10. Angular distribution of the differential cross section for the reaction $p+C^{12} \rightarrow p^{\prime}+C^{120}(4.43 \mathrm{Mev})$ and the Austern, Butler, and McManus prediction

-32-

was found. The data are also verified by resulte from the differential raage spectra for this level. The conclusion io drawn that this simple theory is inadequate.

- The angular distribution of protons corresponding to the third level $\left(f=9.6 \mathrm{Mev}\right.$) is shown in Fig. 11. Data were taken every 10° from 20° to $160^{\circ}(1 \mathrm{ab})$ with the differential range epectrometer. The spin and parity of this level are not known.

The general shape of the angular distribution at forward angles is given by J_{1}. Distributions for J_{0} are peaked at 0°, while J_{2} and Higher produce dietributions which, when normalized to peak at the experimentally observed value of $\theta=40^{\circ}$, are too narrow to fit the data. The beat fit is given by J_{1} with $a=1,16 \times A^{1 / 3} \times 10^{-13} \mathrm{~cm}$. Poorer fits to the observed distribution could be made for $a=1.20 x$ $\mathrm{A}^{1 / 3}=10^{-13} \mathrm{~cm}$ as well as $1.10 \times \mathrm{A}^{1 / 3} \times 10^{-13} \mathrm{~cm}$. The fit to the data shown in Fig, 11 is about as good as any obtained for beryllium. The value obtained for the nuelear radius perhaps should not receive any great weight, but ahould be within reasonable limits, I.e., between 1.0 and $2.0 \times A^{1 / 3} \mathrm{~cm}$. That a fit can be made to the data at forward angles is significant in this theor γ_{0}, since this defines $\ell_{\text {min }}$ and thus introduces information about $\Delta \mathrm{J}$. In this case then $\mathrm{J}^{\prime}=0,1$ or 2 with a parity change.

The deviation from J_{2} of the observed experimental angular distribution for the first excited level at forward angles may in part be due to the use of the impulse approximation in the theory. The wave function representing the incident proton is considered to be undiaturbed by the presence of the nuclear potential. In their paper, Austern, Butler, and McManus ahow that a correction for the offect of the nuclear potential raises the height of the predicted distribution at small angles and shifts the first maximum somewhat forward, both of which effects seem to hold for this level. There would be real value in determining the apin and parity of the third level independently to see If the fit with J_{1} is merely fortuitous.
3. Deuterons

The angular distribution of the pickup deuterons from the C^{12} $(\mathrm{p}, \mathrm{d}) \mathrm{C}^{11}$ reaction has been compared with the prediction oi Butler
-33-

Fig. 11. Angular distribution of the differential cross section for the reaction $p+C^{12} \rightarrow p^{\prime}+C^{12}(9,60 \mathrm{Mev})$ and the Austern. Butlez, and McManus curve for $l=1$

- 3 .

etripping theary, which gives

$$
\begin{aligned}
& \frac{d a}{d z}-f(K)\left[A_{I} j_{L}(Z r)+\left(\frac{Z_{r}}{2 I+T}\right) B_{s}\left\{A_{t-1}(Z R)-(t+1)_{L+1}(2 r)\right]_{2}^{2}\right. \\
& \text { where }(\mathrm{K})-\left\{\frac{1}{\mathrm{~K}^{2}+2} \cdot \frac{1}{\mathrm{~K}^{2}+(\mathrm{a}+\mathrm{h})^{2}}\right\}^{2} \begin{array}{l}
\text { (Fourier tranaform } \\
\text { of deuteron wave }
\end{array} \\
& \text { function) } \\
& \text { and } \\
& K=\sqrt{\left(\frac{1}{2} k_{d}-k_{p}\right)^{2}+2 k_{d} k_{p} \operatorname{tin}^{2} \phi / 2} \text {. } \\
& a=2,32 \times 10^{12} \mathrm{~cm}^{-1}, \quad b=6 \mathrm{a} \text {, } \\
& 2=\sqrt{\left(d_{d} p^{2}\right)^{2}+\left(4 k_{d} p^{2} \sin ^{2} \phi / 2\right.} \text {, }
\end{aligned}
$$

r = sum of the radil of deuteren and nueleus $=1.4\left(A^{1 / 3}+1\right)=10^{-13} \mathrm{~cm}$.

If the shell-model prediction ${ }^{25}$ of $J=\frac{3^{*}}{2}$ for the ground state of C^{11} is assumed, poseible values of t (the angalar momentum carried by the picked up neutron) are I and 3 .

Figure 12 is a comparison of a Butler-prediction curve for t = I and a curve drawn through the experimental points. Although more data points would be desirable, the character of the sharp rise at forward angles is definite and the similarity in shape at larger angles auggeste a reasonable fit. Efforts to match Butler predictions for $t=0,2$, or 3 were unsuccesaful. Thus, the results are consistent with the assumption that the ground atate of C^{11} ie $\frac{3}{2}$ with odd parity.
.35.

Fig. 12. Angular distribution of the differential cross section for the production of deuterons by the reaction $\mathrm{p}+\mathrm{C}^{12} \rightarrow$ $d+\mathrm{Cl}^{11}$ and the Butler Theory prediction

ACKNOWLEDGMENTS

The author is indebted to
Professor Luis W. Alvarez for his interest and encouragement,
Dr, Reinald G. Fink and Mr. Robert Silver for their active participation in all phases of the work,
Dr. Jack Benvenitefor the use of some carbon spectra taken earlier.

Dr. Warren Heckrotte for several illuminating discussions on Inelastic scattering and Butler stripping theory,
Mr. William Gaits of the Electronics Group for his capable maintenance of the electronic equipment,
And, finally, all members of the linear accelerator crew.
This work was done under the auspices of the U, S. Atomic Energy Commission.

REPRaznCES

1. V, F. Weleakegf, Helv. Phys, Acth. 23,187 (195e)
2. J, M, Blast and V, F, Welonkeyf, "Taesenetical Neclear Mhyaics," Witer (2932)
3. L. Welfenetein, Phyn, Rev, 32, 650 (1954)
4. J. M. Blatt and V. F, Welackept, Fechaleal Repert Ne. 42, M.1. F. (1950)
5. S. Fernbach, R. Serber, and \%. B. Tayler, Phya. Rev, 13,1354 (1949)
6. E. H. Rhoderick, Prec. Rey, Sec, (Lendoe) 201, 348 (15\$0)
7. H. E. Gove and H. F. Steddart, Plys, Rev, 85, 512 (1952)
8. C, 3, Baker, 3, N, Dodd, and D. M, Simmons, Phye, Rev, 85 , 1051 (1952)
9. G. E. Fischer, Phys, Rev, it 104 (1954)
10. R, Brittes, Phys Rev, 38, 283 (1953)
11. R, M. Elabere and G, Igo, Phys, Rev, 23, 1039 (1954)
12. N, Austern, S. T, Butler, SH. McManuk, Phys, Rev. 92, 350 (1953)
13. R, G. Finke, Univeraity of Califorsia Radiation Laboratery Report Ne. UCRL-27s9 (1954)
14. F. Ajzenberg and T, Lauritwen, Rev. Med. Mhy. 22, 77 (1955)
15. P, E. LeLevier and D, S, Saxon, Phy, Rev, 87, 40 (1952)
16. B, L. Cohen and R. Y, Neidigh, Pleye, Rev, 93, 262 (1954)
17. S. T, Butler, Pree. Rey, Soc. (Leeden) Az0s, \$59 (1951)
18. P, B. Daiteh and J. B. French, Phy*, Rev, 83, 900 (1952)
19. L. W, Alvares et al, Univezeity of Callforsis Radiation Laboratory Report Ne. UCRL-236Rev, (2953)
20. H. R. Bowman and R. I. Themas, Usiveralty of California Radiation Laboratory Report No, UCRL-2164 (1954)
21. 3. Benveniste, Univeraity of California Radiation Laboratery Report Ne, UCRL-1639 (2952)
1. 3, Benveniste and B, Cork, Phys, Rev, 39, 422 (1953)
2. V. J. Aahby, Univeraity of Califoraia Radiation Laboratery Report No. UCRL-202 (1953)
3. 3, H. Smith, Phys, Rev, 21, 32 (1947)
4. M, O, Mayer, Phys, Rev, 13, 16 (1950)
