

Report No. BMI-1493

Aircraft Resetors

Contract No. W-7405-eng-92

FAST-NEUTRON AND GAMMA SPECTRUM AND DOSE IN BERYLLIUM OXIDE

by

Raymond W. Klingensmith Richard G. Jung William A. Lindgren Harold M. Epstein Joel W. Chastain, Jr.

UNGLASSIFICU Geation cancelled (or changed) Class C.C.A. 12/21 100 The. by authority of Barene _ TOSOR, Late 6-7-61. 12040

5059

UNCLASSIFIED

January 11, 1961

ED DATA

This document in the respicted data to Collided in the Atomic Energy Action 104. Its transmittal of discipler of its contents in any manner to an unautionized person it prohibited,

BATTELLE MEMORIAL INSTITUTE 505 King Avenue Columbus 1, Ohio BATTELLE MEMORIAL INSTITUTE 505 King Avenue Columbus 1, Ohio

March 28, 1961

From: AEC Library H. W. Russell

CORRECTION OF REPORT BMI- 1493

In the upper right corner of the figures, add the following:

Figure 13 (page 19) - Fission Plate Power 19.5 watts Figure 14a (page 20) - Fission Plate Power 19.5 watts Figure 14b (page 20) - Fission Plate Power 19.5 watts Figure 14c (page 21) - Fission Plate Power 19.5 watts Figure 14d (page 21) - Fission Plate Power 19.5 watts Figure 15a (page 22) - Fission Plate Power 21.65 watts Figure 15b (page 22) - Fission Plate Power 21.5 watts Figure 15b (page 22) - Fission Plate Power 21.5 watts Figure 15c (page 23) - Fission Plate Power 21.9 watts

3

3 and 4

TABLE OF CONTENTS

																		Page
ABSTRACT	•	•	•	•		•	•		•	•	•	•	•	•	•		•	5
INTRODUCTION	•		•	•		•	٠	•	•	•	•	•	•		•			6
INSTRUMENTATION , , .	•	•		•			•	•	•	•	•	•	•	•	•	•	•	6
DESCRIPTION OF EXPERIMENT	т		•	•	•	•	•	•	•	•	•	•		,		•	и •	7
REFERENCES		,	,		•						•	•						25

5

FAST-NEUTRON AND GAMMA SPECTRUM AND DOSE IN BERYLLIUM OXIDE

Raymond W. Klingensmith, Richard G. Jung, William A. Lindgren, Harold M. Epstein, and Joel W. Chastain, Jr.

Nuetron and gamma penetrations through and behind BeO were measured in the Batzelle-GE-ANPD Lid-Tank Shielding Facility. The BeO was in the form of slabs 35 in. square and 4 or 9 in. thick. To prevent short circuiting of radiation around the slabs they were mounted in 48-in.-square iron frames. One of the slabs contained a 7/8-in.-diameter instrument hole. This instrumented slab was placed at desired locations within a 21-in. array of slabs to permit measurements through an effectively solid medium.

Neutron-spectra measurements by threshold foil techniques indicated practically no change in the fast-neutron spectrum above 2.5 Mev in 13 in. of BeO. Thus, beryllium appears to lie in the transition region between the very light elements such as water which harden a fission spectrum and the heavier elements which soften it. The ratio of fast-neutron flux below 2.5 Mev to the flux above it increases rapidly with distance through the BeO. Present spectral information indicates that the flux peaks in the region of 1-1/2 to 2-1/2 Mev. In this energy range the scattering cross section of beryllium goes through o minimum.

Fast-mentron dose measurements with Hurst dosimeters through 21 in. of BeO were compared with those calculated by the NDA moments method. The experimental results were within 30 per cent of those calculated by GE-ANPD based on the moments calculations.

The removal cross section for BeO was determined from fast-neutron dose rates measured in the water behind the stabs to be 2.02 barns.

Gamma dose rates were neasured through and behind the BeO slabs with a 3/4-in,-diameter curbon chamber. The gamma dose rate decreased with a relaxation length of about 13 cm near the source. The relaxation length increases with distance through BeO indicating spectrum hardening.

Gamma spectra were measured at 4-in. intervals behind BeO slabs from 0 to 21 in. thick with a collimated B by S-in. wodium indide crystal. The 6.2- and 3.41-Nev beryllium capture gammas become dominant as the distance through the BeO increases.

Thermal flux was measured through and behind the BeO with both a 3/4-in.diameter fission chamber and 1/4 by 1/4-in. by 1-mil-thick gold foils. Thermal-flux distributions for these tests were calculated by GE-ANPD with the 6-2 multilevel diffusion code. The calculations differ by about a factor of 2 from the experiment at large penetration distances through BeO.

INTRODUCTION

ch

th

ſ

t

r

As part of the GE-ANPD shielding program being conducted at Battelle a series of tests was run to determine the shielding properties of BeO. The material was in the form of slabs 35 in. square and either 4 or 9 in. thick. To prevent short circuiting of radiation around the slabs they were mounted in 48-in.-square steel frames. The slabs could be combined to give configurations which were 4, 8, 9, 12, 13, 17, or 21 in. thick. Measurements were made behind these various configurations. One of the 4-in.-thick slabs contained a 7/8-in.-diameter by 27-in.-long vertical instrument hole. This instrumented slab was placed at desired locations within the 21-in. configuration to permit measuroments through an effectively solid medium.

The tests were conducted at the Battelle Lid-Tank Shielding Facility which consists of a 28-in.-diameter highly enriched uranium plate 0.020 in. thick placed in one wall of a water pool 15 by 15 by 12 ft deep. The pool and fission plate are located at the end of the thermal column of the Battelle Research Reactor.(1,2) About 30 w is generated in the fission plate at steady-state 2-megawatt reactor operation. The fission-plate power can be reduced by a factor of 8.5 without reduction of reactor power by means of a borated polyethylene curtain positioned between the plate and the thermal column. This curtain replaces the previous lithium-magnesium curtain which reduced the plate power by a factor of 2.3.(1)

INSTRUMENTATION

The Facility is equipped to measure fast-neutron dose rate, gamma dose rate, thermal-neutron flux, gamma energy spectra, and integrated fast-neutron spectra. A detailed description of the instrumentation is reported elsewhere (1,2), and only a brief summary will be given here.

For measurements of fast-neutron dose rate Hurst-type fast-neutron dosimeters are used. One 2-in.-diameter Reuter-Stokes, Inc., RSN-2 dosimeter, two 3/4-in.diameter Reuter-Stokes, Inc., modified RSN-3 dosimeters, two 3/4-in.-diameter ORNL Q-1329 D dosimeters, and one 1-in.-diameter GE-ANPD dosimeter were used in the BeO tests. Due to thermal-neutron sensitivity it was necessary to place a 0.020-in.-thick cadmium sheath around each dosimeter.

Carbon-wall ionization chambers filled with CO_2 to 10 psig are used to measure gamma dose rate. Measurements over an extended range of dose rate are accomplished by using three chambers of different sensitivity. Dose rates in the range of 0.5 to 30 rad per hr are measured with a 500-cm³ chamber; dose rates in the range of 25 to 1000 rad per hr are measured with a 10-cm³ chamber; dose rates in the range of 100 to 2000 rad per hr are measured with a 9-cm³ chamber. The 9-cm³ chamber is 3/4 in. in diameter and was used for measurements within the instrumented slab.

(1) References at end.

Thermal-neutron-flux distributions are measured with gold foils and fission chambers. The chambers, made by GE-ANPD, are 3/4 in. in diameter by 7-3/4 in. long and have an active length of 3 in. For absolute flux determinations, the output of the fission chamber is normalized to flux as determined by gold-foil activation. A Maxwellian-averaged gold cross section is used in the flux determination.

Measurements of gamma-ray energy spectra from 0.2 to 10 Mev are made with an 8 by 8-in. NaI crystal. (3, 4)

Threshold foil techniques patterned after the techniques of Trice⁽⁵⁾, are used to measure integrated fast-neutron fluxes.

DESCRIPTION OF EXPERIMENT

Measurements of fast-neutron dose rate, gamma dose rate, and thermal-neutron flux were made along the water center line behind 4-, 9-, 13-, 17-, and 21-in.-thick configurations of BeO. The results are shown in Figures 1, 2, and 3. Experimental data points are given in the Appendix. From the fast-neutron dose rates measured in the water behind these configurations, the removal cross section for BeO was determined to be 2.02 barns.

Measurements of fast-neutron dose rate, gamma dose rate, and thermal-neutron flux were made along the center line through the 21-in. configuration. The results are shown in Figures 4, 5, and 6. The fast-neutron dose rate through the 21-in. configuration was compared with the NDA moments method calculation⁽⁶⁾. The experimental results are within 30 per cent of those calculated by GE-ANPD based on the moments calculations. A relaxation length of about 5.3 cm for the fast-neutron dose rate through BeO was calculated from the slope of the curve in Figure 4. The relaxation length of the gamma dose rate was calculated from Figure 5 to be about 11 cm near the fission plate. As shown by the change in shape, the relaxation length increases with penetration into the BeO indicating a hardening of the spectrum. This is verified by gammaenergy-spectrum measurements. Thermal-flux distributions for these tests were calculated by GE-ANPD with the G-2 multilevel diffusion code. The calculations agree well near the source but differ by about a factor of 2 from the experimental data at large penetration distances through BeO.

Measurements of fast-neutron dose rate, gamma dose rate, and thermal-neutron flux were made in a vertical plane at various positions within the 21-in. configuration. These results are shown in Figures 7, 8, and 9.

Integral fast-neutron spectra were measured through the 21-in. configuration by means of threshold foils. Data points obtained are shown in Figures 10 and 11. There is very little change in the shape of the spectrum with penetration through BeO for neutrons above 2.4 Mev. This fact is emphasized by the Watt's spectrum drawn through the data points and normalized to the 8.1-Mev point. To measure the integral fastneutron spectrum above 1.4 Mev, depleted uranium-238 foils were used. The results are compared with the corresponding phosphorus (2.4-Mev threshold) data in Figure 12.

.

٠

...

FIGURE 1. (CONTINUED)

CONFIDENTIAL

.

.

.

d. 17-In-Thick BeO Slab

•

•

•

a 21-In.- Thick BeO Slab

120

FIGURE 2. (CONTINUED)

1

CONFIDENTIAL

.

•

20

 \mathbf{O}

FIGURE 4. FAST-NEUTRON DOSE RATE MEASURED ALONG THE CENTER LINE THROUGH THE 21-IN. -THICK BEO SLAB

.

FIGURE 6. THERMAL-NEUTRON FLUX PER WATT MEASURED ALONG THE CENTER LINE THROUGH THE 21-IN. THICK BEO SLAB

O

FIGURE 7. FAST-NEUTRON DOSE RATE MEASURED IN A VERTICAL PLANE WITHIN THE 21-IN, -THICK BeO SLAB

14

FIGURE 8. GAMMA DOSE RATE MEASURED IN A VERTICAL PLANE WITHIN THE 21-IN, - THICK BeO SLAB

()

FIGURE 9. THERMAL-NEUTRON FLUX MEASURED IN A VERTICAL PLANE WITHIN THE 21-IN. - THICK BeO SLAB

CONFIDENTIAL

FIGURE 13. LOW-ENERGY GAMMA SPECTRA MEASURED BEHIND THE BeO SLABS USING AN 8 BY 8-IN. NaI CRYSTAL AT 0 DEG WITH THE HORIZONTAL CENTER LINE

*

24

CONFIDENTIAL

100

0.

25 and 26

The curve indicates that the neutrons above 1.4 Mev are altenuated with a relaxation length of 5.1 cm. A relaxation length of 5.3 cm for fast-neutron dose rate due to neutrons above 0.3 Mev has been determined. It is thus concluded that there is a build-up of neutrons in the 1.0 to 2.0-Mev range and is attributed to the minimum in the beryllium cross section in this energy range.

Gamma energy spectra behind 4, 9, 13, 17, and 21 in. of BeO were measured using an 8 by 8-in. NaI crystal. ^(3,4) The beam was collimated by a 5/8-in.-diameter by 5-ft-long watertight collimator which could be positioned at angles of 0, 30, and 45 deg with the horizontal center line. The crystal was placed in a watertight lead cask with 10-in.-thick walls. Figures 13, 14, and 15 show the results of the spectra measurements. The 6.8 and the 3.41-Mev beryllium capture gammas became prominent as the thickness of BeO increased. The 2.2-Mev hydrogen capture gamma from the water could also be seen. Hardening of the spectrum with penetration into the BeO is evident. The angular dependence of the spectrum shape is only slight. No unscrambling or efficiency correction has been done on these spectra. The change of efficiency with incident gamma energy is shown in Figure 16.

REFERENCES

- Morgan, W. R., Epstein, H. M., Anno, J. N., and Chastain, J. W., "Shielding-Research Area at Battelle", BMI-1291 (Sept. 18, 1958).
- (2) Klingensmith, R. W., Epstein, H. M., and Chastain, J. W., "Shielding Studies on Salt Slabs", BMI-1384 (October 7, 1959). Confidential.
- (3) Weiss, W. L., "Galibration of an 8 In. x 8 In. Sodium Iodide (T1) Crystai", XDC-60-3-212 (March 24, 1960).
- (4) Brooks, E. H., and Weiss, W. L., "Resolution of Total Absorption Nal (T1) Crystals", paper presented at the Total Absorption Gamma-Ray Spectrometry Symposium, Gatlinburg, Tennessee (May 10, 1960).
- (5) Trice, J. B., "A Series of Thermal, Epithermal, and Fast Neutron Measurements in the MTR", CF-55-10-140 (October, 1955).
- (6) Goldstein, H., and Krumbein, A. D., "Moments Method Calculation of the Penetration of Neutrons From a Point Fission Source Through Be and BeO", NDA Memo 2124-1 (May 27, 1960).

RWK:RGJ:WAL:HME:JWC/ims:nb

A-1

TABLE A-1. FAST -NEUTRON DOSE RATE MEASURED ALONG THE CENTER LINE BEHIND THE BOD SLABS

4-la.	BO	P-In. BCO		In. BED 13-7a. BeD		12-4	1. 840	21-Ja	BeO
Distance	Dose	Distance	Dose	Distance	Dose	Distance	Dose	Distance	Dose
17.78	4.54	28.14	1.09	39. 57	1.35 x 10-1	51.98	1.44 x 10 ⁻²	60.07	4.82 x 10-3
20.00	2,92	36.21	2.41 x 10 ⁻¹	44.34	5.9 × 10-2	56.03	5.67 x 10-3	64.08	1.90 x 10-3
24,00	1.35	40.25	9.00 x 10 ⁻²	18.29	2.8 × 10-2	60.04	3.29 x 10 ⁻³	68.11	8.98 x 10-4
25.02	6.48 x 10-1	44.29	5.50 x 10-2	52. 22	1.3×10-2	64.04	1.70 x 10"3	72.11	4.37 x 10-4
32.00	3.25 x 10-1	18.26	2.80 : 10-2	56.38	6.9×10-3	68.07	9.16 × 10-4	76.11	2. 34 x 10 ⁻⁴
36.01	1.68 x 10-1	52.51	1.40 x 10-2	60.35	3.6 x 10-3	12.02	4.86 x 10-4	00.13	1.33 × 10-4
40.00	8,82 x 10 ⁻²	56.98	6.09 x 10-3	68.97	9.05 x 10-4	.04	2.72 × 10-4	84.14	6.63 x 10-5
44.04	4. 15 x 10-2	60.97	4.17 x 10-5	73.00	5.09 x 10-4	80.08	1.51 x 10-4	86.98	3.94 x 10 -5
44.91	4.19 x 10-2	64.96	2.53 x 10-3	11.00	2.91 1 10-4	84.09	8,19 x 10-5	93, 06	2.30 x 10-5
49.90	2.39 x 10-2	68.95	1.39 x 10-3	80. 98	L. 72 x 10-4	\$8.95	4.30 x 10 ⁻⁵	98. 85	1. 25 x 10""
52.96	1.39 x 10-2	72.97	8.07 x 10-4	84. 98	1.04 x 10-4	93.00	2.62 × 10-5		
56. 31	7.66 x 10-3	17.00	4.82 x 10-4	89,00	6.05 x 19-5				
61.00	4.37 x 10-3	80,98	2.88 x 10-4	93.00	3.75 x 10-5				
64.16	2.81 x 10-3	85,00	1.71 x 10-4						
69.00	1.59 x 10-3	89.00	1.13 × 10-4						
72.58	9.57 x 10-4	92.98	7.01 \$ 10-5						
77.00	5.74 × 10-4	96.96	4.42 x 10-5		No. Contractor of				
80, 59	3.52 × 10-4	101.02	3.03 x 10-5						
85.0)	2.17 × 10-4								
\$8.91	1.82 × 10-4								
92.95	8.50 x 10-5								
	5 05 - 10-0								

Dose rate is rad/(hrgw); distance is can from fission plate.

CONFIDENTIAL

0

0.

.

A-2

TABLE A -2. GAMMA DOSE BATE MEASURED ALONG THE CENTER LINE BEHIND THE BOO SLABS

Changes muster by the st	and of the second second second	distance is a	own Success. 6	Santania in	100.00
RADING CARLE OF THE P.	NAME OF TAXABLE PARTY	MARKAGEN AN A	APPENDE T	ACCURATE AND	A DECK

4-10	. 8:0	9-3a. Bot)		13-1	n. BeO	17-1	s. BeO	21-in, BeO		
Distance	Dose	Distance	Dose	Distance	Dow	Distance	Dose	Distance	Dose	
17, 18	18.1	33.17	5.01	41,19	3.55	51, 23	1.77	62.68	8.53 x 10 ⁻¹	
21.20	10.6	37.20	4.30	45, 21	2.58	43.12	1.52	65.25	7.03 x 10-1	
25.17	8.88	41.20	3.61	49.13	1.96	\$7.21	1.15	69.26	4.98 x 10-1	
29, 16	1.43	45.22	2.17	53.24	1.61	61.24	8.65 x 10-1	73.29	4.00 x 10-1	
33.17	5.08	49.23	2.21	\$7.21	1.17	65.25	6.78 x 10 ⁻¹	11.28	3,15 x 10-1	
37.15	4.51	53,14	1.17	61.23	9.21 x 10-1	69,30	2.40 x 10-1	81.39	2.52 x 10-1	
41. 23	3. 64	57.23	1.4	65, 26	7.20 x 10-1	13.28	4.32 × 10-1	85.30	2.06 x 10-1	
45.18	3.07	61.11	1.11	69, 25	5_87 x 10-1	17.50	3.63 × 10-1	89.32	1.67 x 10-1	
49.23	2.63	65.29	9,13 x 10-1	73, 27	4-67 x 10-1	\$1.26	2.77 x 10"1	83, 32	1.38 x 10-1	
53, 21	2.09	69, 31	7.96 x 10-1	71.24	2-03 x 10-1	85.27	2,33 × 10-1	97.33	1-15 x 10-1	
51.13	1.78	13, 27	5,90 x 10-1	81.29	8.06 x 10-1	\$9.50	1.85 × 10-1	101.34	9.13 x 10-2	
61.94	1.40	17.30	4.77 × 10-1	85.30	2.45 x 10-1	93, 28	1.55 × 10-1	105.35	7.66 x 10-2	
65.29	1.40	81.29	3.15 × 10-1	85.35	1-90 x 10-1	97. 32	1.27 8 10-1	109, 36	6.27 1 10-2	
69.27	9,95 x 10-1	89.30	2.63 x 10-1	93. 54	1-53 × 10-1	101.34	1.09 - 10-1	113. 37	5.40 x 10-2	
73.30	7.61 1 10-1	93.36	2.13 × 10-1	11.35	1-22 × 10-1	105.34	9.17 = 10-2	117.38	4.52 × 10-2	
77. 30	6.14 1 10-1	97.11	1.63 × 10-1	105.34	7-14 × 10-"	209.30	7.48 × 10-2	121.41	L-21 10-2	
81.29	4.95 1 10-1	101.34	1.57 × 10-1	113.40	4-08 × 10-2					
89.33	3.25 x 10-1	205.35	1.25 × 10-1	19. 37	1.35 × 10-2					
97. M	2. 31 + 10-1	209.34	1.05 - 10-1							
103.38	1.62 1 10-1	113.35	8 71 - 10-2							
123.37	1 18 - 10-1	317 99	- M - 10-2							
101.40	2 26 - 10-2									
129, 29	5.88 x 10-2									

A-3

TABLE A-3. THERMAL-NEUTRON FLUX MEASURED ALONG THE CENTER LINE BEHEND THE BOO SLABS

4-1	a. Beo	9-1	. BeO	13-4	n. BeO	17-1	n. BeO	21.	In. 800
Distance	Flux	Distance	Flas	Distance	flux	Distance	Flux	Distance	Flux
17, 20	1.59 x 10 ⁷	29.13	1. 01 x 10 ⁶	34.81	4.30 x 10 ⁶	50.95	1.33 x 10 ⁵	59,95	9.44 x 10 ⁵
21.18	1-42 x 10 ⁶	33, 22	2.02 × 105	41.21	1.68 x 10 ⁶	53,24	3.27 x 10 ⁵	61.21	5.07 x 105
25,13	2-68 x 10 ⁶	31, 21	6.24 x 10 ⁵	43.25	8.79 x 10 ⁵	57.24	1. 95 x 104	63, 30	2.92 x 10 ⁵
29, 16	1.05 x 10 ⁶	41.19	1. 95 x 10 ⁵	45.23	4.92 × 105	61.24	2.17 × 104	65.85	9.79 x 10 ⁴
33, 23	4.49 x 105	45.21	6.96 x 104	49.22	1.26 x 105	65.27	7.13 × 103	67.28	6.01 × 104
41.21	9- 87 x 10 ⁵	49, 21	2. 58 × 104	50,23	9.01 × 104	69,26	2.08 x 103	69,26	2.78 x 104
45.23	5.18 × 104	53.99	1. 34 × 304	53.22	4.04 × 104	13,22	6.65 x 102	73, 29	6.59 x 30 ³
49. 29	2-19 x 104	57.14	6.22 + 103	57.14	1.22 × 104	77.29	2.46 . 102	77.32	1. 73 × 103
53. 27	1-16 × 104	65.13	1.51 x 203	61.25	4.19 × 103	\$1.30	1.06 x 102	\$1.33	4.57 × 102
57.93	6-10 x 103	69.24	7. 97 x 10 ²	64.27	1.75 × 103	45.35	5.00 x 101	25.34	1.27 x 102
61.26	3. 20 + 103	73.91	4.27 × 102	69.27	7.79 × 102			89.33	4.30 x 101
65.29	1.81 × 103	71.29	2. 37 × 3.02	73.97	3.69 × 102			93.32	1.68 - 101
69.51	8.79 × 10 ²	AL	1.34 - 202		1.54 × 102		•	A State State	
73.97	5.81 + 102		3.40 - 301						
77. 33	3. 23 + 102	89.55	4 37 - 101	-	5 69 - 101				
81.99	1.90 - 102		2 59 - 101	89.35	3 20 - 101				的现在分词 小道
	1.07 - 102								
89. 30	6 75 x 101								
93.30	4 10 1 101								

.

3

Fin is n/(cm²)(sec) is distance is cm from fission plate

	San	Sector Manager and			Therma	Neutron		
East New	iteon	Gamm	A	Gold-Foil M	easurements	Firsion-Chamber Measurements		
Distance From Fission Plate, cm	Done Rate, rad//fit/(w)	Dutance From Fistion Plate. cm	Dose Rate, rad/(hr)(w)	Distance From Fission Plate, cm	Flux. n/(cri ²) (zec) (w) .	Distance From Fission Plate, cm	Flux. n/(cm ²)(sec) (w	
9.4	82,4	3.9	52.9	1,75	1.10 x 10 ⁷	4.2	2.07 x 10 ⁷	
14.5	23,9	9,4	30.9	12, 16	4.31 x 10 ⁷	9,5	3.74 x 107	
19,8	10,4	14,5	17,8	22.5	3,31 x 10 ⁷	14,6 .	3,94 x 10 ⁷	
• 32.3	9,10 x 10 ⁻¹	18,6	12.4	48, 80	7.08 x 10 ⁶	19,8	3,36 x 10 ⁴	
37, 5	3,30 x 10 ⁻¹	29,8	6.2	56,00	2,86 x 10 ⁶	30,1	2.04 x 107	
47, 9	6.20 x 10 ⁺²	37, 8	3, 1			37,6	1,22 x 10 ⁷	
53,1 ,	2,40 x 10 ⁻²	42,8	. 2. 5		1	· 42,9	8.97 x 10 ⁶	
		47,9	2.5			47.9	5,94 x 106	
1		53,1	1.4			53,1	3, 36 x 106	

TABLE A-4. FAST -NEUTRON DOSE RATE, GAMMA DOSE RATE, AND THERMAL-NEUTRON FLUX MEASURED ALONG THE CENTER LINE THROUGH THE 21-IN, +THECK BOO SLAB

0

TABLE A-5. FAST-NEUTRON DOSE RATE, GAMMA DOSE RATE, AND THERMAL-NEUTRON FLUX IN A VERTICAL PLANE WITHIN THE 21-IN. -THICK BOO SLAB

-

.

i ar

0

	Fast Neutr	on	an an ann Strandbarry	G	ama			Thermal New	tron	
Vertical Distance From Horizontal	Dose Rate -	at Indicated Dis on Plate, rad/(h	tance From	Vertical Distance From Horizontal	Dose Rate Distance I Plate, r	at Indicated from Fision ad/(hr)(w)	Vertical Distance From Horizontal	Flux at In Fission P	dicated Distan	(sec)(w)
Center Line, cm	24, 8 Cm	37.5 Cm	47.9 Cm	Center Line, cm	3, 9 Cm	19.8 Cm	Center Line, em	19,75 Gm	37, 73 Cm	53, 10 Ca
0.00	3.70	3.31 x 10 ⁻¹	5.66 x 10-2	0,00	50.0	12.8	•	3.30 x 107	1.28 × 10 ⁷	3.36 x 10
10.56	3, 98	3.60 x 10-1	5.76 x 10-2	2.64	50.0	12.8	15.84	3,23 x 107	1. 18 x 107	3.21 x 10
21.12	3.48	3.16 x 10-1	5.00 x 10-2	5.28	50.4	12.8	26.41	2.75 x 107	1.01 x 107	2.63 x 10
31.68	2.41	2.22 × 10 ⁻¹	3.17 x 10-2	10,56	49.4	12.4	36.97	1.69 x 107	5.94 x 10 ⁶	1.54 x 10
				15.84	48.5	11.0	42, 25	9.74 × 106	3. 27 x 10 ⁶	8.56 x 10
42.25	1.13	1.21 x 10-1	1.99 x 10-2	21.12	44.8	10.3	44.89	5.98 x 106	1.93 x 106	4.86 x 10
52.80	6.43 x 10 ⁻¹	1.15 x 10 ⁻¹	2.51 x 10 ⁻²	26.41	36.9	8.6	47.53	2.27 x 10 ⁶	8.81 x 10 ⁵	2.18 x 1.
				31.69	26.4	6.8	50.17	8.05 x 10 ⁵	2.65 x 105	0.11 x 16
				36.97	15.4	5.45	52.81	2.91 x 105	7.50 x 105	1.61 x 10
63.38	1.73 x 10-1	3.86 x 10 ⁻²	9.40 x 10-3	42.25	9,20		55.45	1.58 x 105	3.46 x 105	6.99 x 10
73.92	1.07 x 10-2		4.56 x 10-3	47.53	5,11	2, 16	58.09	1.30 x 10 ⁵	3.09 x 105	5.59 x 10
				52.81	2.62		60.73	1.86 x 10 ⁵	4.44 x 10 ⁵	7.62 x 10
				58.09	1.79		63.37	2.71 x 10 ⁵	6.64 x 10 ⁵	1.07 x 1
				63.37	1.35		66.01	3.19 x 105	7.57 x 105	1.22 x 1
							68.65	2.69 x 10 ⁵	6.30 x 10 ⁵	9.52 x 1
			13				71.30	1.75 x 10 ⁵	3.94 x 10 ⁵	5.94 x 1
							73.93	9.73 x 10 ⁴	2.09 x 10 ⁴	3.36 x 1

Ö

A-6

1

TABLE A-F. MEASUREMENTS OF FAST-NEUTRON INTEGRAL FLUX THROUGH THE 21 IN. - THICK BEO SLAB

Threshold Energy,	Integral Flux, n/(cm ² /(sec)(w), at Indicated Distance from Fision Plate										
Mey	1,65 Cm	11,96 Cm	21,96 Cm	32,60 Cm .							
2.4	(4. 17 ± 0,07) x 10 ⁶	(5,07 ± 0,20) x 10 ⁵	(7. 80 ± 0. 60) × 104	(1.33 ± 0.12) x 104							
2.9	(3, 16 ± 0, 13) × 10 ⁶	(3.97 ± 0.10) × 105	(5.50 ± 0, 13) x 10 ⁴	(8.50 ± 0.20) × 10 ³							
2.4	(4.17 ± 0,07) × 10 ⁶	(5,13 ± 0,07) × 105	(6, 90 ± 0, 10) × 194	(1, 15 ± 0, 01) × 105							
5.0	(7, 26 ± 0, 07) × 10 ⁵	(8.97 ± 0.13) x 10 ⁴	(1.20 ± 0.02) × 104	(2.00 ± 0.02) × 103							
5.5	(5. 16 ± 0, 20) × 10 ⁵	(6,37 ± 0,27) × 104	(9, 20 ± 0, 77) × 103	(1.85 + 0.26) × 103							
6.3	(2,46 ± 0,05) × 10 ⁵	(4.13 ± 0.70) × 104	(1. 19 ± 0. 01) × 104	(1.97 ± 0.17) × 103							
8.1	(7.06 ± 0,13) × 104	(8.87 ± 0.40) × 10 ³	(1.29 ± 0.07) × 103	(1.98 + 0.16) × 102							
	Threshold Energy. Mey 2.4 2.9 2.4 5.0 5.5 6.3 8.1	Threshold Energy. Integral Flux Mev 1,65 Cm 2.4 (4.17 ± 0,07) × 10 ⁶ 2.9 (3.16 ± 0,13) × 10 ⁶ 2.4 (4.17 ± 0,07) × 10 ⁶ 2.4 (4.17 ± 0,07) × 10 ⁶ 5.0 (7.26 ± 0,07) × 10 ⁵ 5.5 (5.16 ± 0,20) × 10 ⁵ 6.3 (2.46 ± 0,05) × 10 ⁵ 8.1 (7.06 ± 0,13) × 10 ⁴	Integral Flux, n/(cm ²)(sec)(s), at in Mev 1,65 Cm 11,96 Cm 2.4 (4,17 ± 0,07) × 10 ⁶ (5,07 ± 0,20) × 10 ⁵ 2.9 (3,16 ± 0,13) × 10 ⁶ (3,97 ± 0,10) × 10 ⁵ 2.4 (4,17 ± 0,07) × 10 ⁶ (5,13 ± 0,07) × 10 ⁵ 2.4 (4,17 ± 0,07) × 10 ⁶ (5,13 ± 0,07) × 10 ⁵ 5.0 (7,26 ± 0,07) × 10 ⁵ (8,97 ± 0,13) × 10 ⁴ 5.5 (5,16 ± 0,20) × 10 ⁵ (6,37 ± 0,27) × 10 ⁴ 6.3 (2,46 ± 0,05) × 10 ⁵ (4,13 ± 0,70) × 10 ⁴ 8.1 (7.06 ± 0,13) × 10 ⁴ (8,87 ± 0,40) × 10 ³	Integral Flux, n/(cm ²)(sec)(v), at Indicated Distance from F Mev 1,65 Cm 11,96 Cm 21,96 Cm 2.4 (4.17 ± 0,07) × 10 ⁶ (5.07 ± 0,20) × 10 ⁵ (7.80 ± 0,60) × 10 ⁴ 2.9 (3.16 ± 0,13) × 10 ⁶ (3.97 ± 0,10) × 10 ⁵ (5.50 ± 0,13) × 10 ⁴ 2.4 (4.17 ± 0,07) × 10 ⁶ (5.13 ± 6,07) × 10 ⁵ (6.90 ± 0,10) × 10 ⁴ 2.4 (4.17 ± 0,07) × 10 ⁶ (5.13 ± 6,07) × 10 ⁵ (6.90 ± 0,10) × 10 ⁴ 5.0 (7.26 ± 0,07) × 10 ⁵ (8.97 ± 0,13) × 10 ⁴ (1.20 ± 0,02) × 10 ⁴ 5.5 (5.16 ± 0,20) × 10 ⁵ (6.37 ± 0,27) × 10 ⁴ (9.20 ± 0,77) × 10 ³ 6.3 (2.46 ± 0,05) × 10 ⁵ (4.13 ± 0,70) × 10 ⁴ (1.19 ± 0,01) × 10 ⁴ 8.1 (7.06 ± 0,13) × 10 ⁴ (8.87 ± 0,40) × 10 ³ (1.29 ± 0,07) × 10 ³							