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Abstract 
The occurrence and properties of singularities in the equation for the surface density function 
o IV<pI are analyzed analytically and numerically using data from two-dimensional direct 
numerical simulation (DNS) of pocket formation in a premixed methane-air flame. The 
various stages and the relevant time scales associated with pocket formation were determined 
in a previous study. It was found that isolated pockets form if and only if a nondegenerate 
critical point of a saddle point type appears. The appearance of a singularity in the isoline 
representing the flame front may have implications to modeling of the terms in the surface 
density function (sdf) approach during such transient events as pocket formation. The sink 
and source terms in sdf are evaluated in the neighborhood of a critical point using DNS 
data during pocket formation, and an analytic representation of a scalar in the vicinity of 
the critical point which allows for the computation of all kinematic properties. The analytic 
and computational results show that the normal restoration and dissipation terms in the sdf 
become singular at the critical point when the pocket emerges. Furthermore, the analytic 
results show that the singularities exactly cancel, and therefore, the main conclusion is that 
it is unnecessary to model the singular behavior of these terms at critical points. However, 
closure of their sum is recommended. 
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Introduction 

Pocket formation is a highly transient and intermittent process in turbulent flames, that can 

lead to enormous values of flame stretch, rate-of-change of heat release and fuel consumption. 

In two dimensions, pocket formation involves propagating reacting isolines that mutually 

annihilate at a saddle point singularity of the scalar surface. Analysis of direct numerical 

simulation results and theory has demonstrated the roles of normal and tangential diffusion 

and reaction in determining the propagation of species isolines approaching and leaving the 

critical point during pocket formation in a premixed methane-air flame (Chen e t  al. [l]). 

In particular, it was determined that the following sequence of events characterize pocket 

formation: initially, prior to thermodiffusive interactions, normal diffusion is balanced by 

reaction in the primary reaction zone (channel region). However, normal diffusion and 

reaction become cumulative as a result of changes in species inflection points as the species 

diffusive layers merge. At the critical point the curvature, which was small in the channel 

region, becomes infinite as the approaching layers touch. At this point, both normal and 

tangential diffusion become unbounded, while the reaction rate vanishes. Retreating from 

the critical point, tangential diffusion at the cusps, which is linearly proportional to the 

local curvature, dominates normal diffusion. Subsequently, a reaction-diffusion balance is 

established as reaction rate at the cusps is restored on a time scale comparable with diffusion 

rates of radical species from the critical point to the cusps. 

The focus of the present study is to determine the effect of pocket formation on the 

production and destruction mechanisms in the flame surface density equation. Models ac- 

counting for the contribution of intermittent, highly transient mutual annihilation events to 

dissipation and restoration of flame surface density do not exist. In flamelet models (Vey- 

nante et  al. [2], Weller [3], Fichot e t  al. [4]), the flame surface density is one of the two 

main ingredients determining the local mean reaction rate. The combustion intensity, or the 

comsumption speed is the second ingredient. The results presented in this paper show that 

models for the singularity at critical points are not necessary. 
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SDF equation 

The flame surface density is defined as the differential surface area per unit volume (Candel 

and Poinsot [5], Cant et al. [6], Vervisch e t  al. [7]) by 

which is governed by the balance equation (Bray [17]) 

dC d d V ;  d V ;  d I d  d@ 
- + -(v;C) = (- - n;nj-)C - n;-{6(@ - ‘p)[--(pD-) +GI}. d t  dxi dX; dXj dX; p a x j  d X j  (2) 

The scalar @(g, t )  defining the flame surface is the solution of the transport equation 

d@ d@ a d@ 
d t  ax ;  a x ;  a x ;  

p(- +vi-) = -( P’D-) + w (3) 

with appropriate boundary and initial conditions. The unit normal vector of the surface is 

defined by 

The flame surface density defined above is a distribution and its derivatives in equation 

(2) must be regarded as generalized derivatives. It is preferable to work instead with the 

function o defined by 

o E pq. (5) 

Its transport equation follows at once from (3). It can be given in various forms, for instance 

which is the most concise version, but not suitable for the investigation of the role of pocket 

formation since the velocity of the surface, 

consisting of the fluid velocity, v;, and the propagation velocity, n;Sd (Gibson, [SI) 
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is not bounded at a critical point, and the unit normal vector is not defined. Hence, we work 

with the variant [9] 

da d V ;  d d l  d da 
at dX; dxj dX; ax; p dxj 3-a + n;-(Dm) + n;-{-[nj--(pDa) + L J ] }  - + vi- = -n.n. 

where the mean curvature of the flame surface is 

The terms on the right hand side of (9) can be interpreted as (Peters [lo])  

production 

dissipation 
d D f ni-(DKa), 
dX; 

and kinematic restoration 

d l  d 8 ;  R f n;--[-nj-(pDa)] + n;-(-). 
ax; p d X j  ax; p 

(9) 

It should be noted that neither production nor dissipation are definite; therefore, their sign 

may change. 

The effect of pocket formation on surface density 

Direct numerical simulation of reacting flows allows for the detailed analysis of the effect 

of pocket formation on the terms governing the surface density a. Three distinct phases 

emerge from the results of the simulations. Isolated pockets can only be formed if a non- 

degenerate critical point of the type of a saddle point appears on the flame surface [ l ] .  The 

associated time separates the three phases and is referred to as the critical time. First, we 

show analytically that dissipation and normal restoration become unbounded at the critical 

point, and then we present the results of the numerical simulations. The DNS is used to 

evaluate the terms in (9) before, during and after the isoline representing the flame surface 

approaches the critical point. The Lemma of Morse (see Milnor [ l l ] ,  lemma 2.2) implies 
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that for a non-degenerate critical point of index unity (saddle point) the representation of 

the scalar 
1 2  1 2  q x ,  y) = @(I - -x -t - y  
2 2 

holds (with appropriately scaled coordinates) in an open neighborhood of the critical point. 

The origin of the coordinate system is at the critical point and at the 

origin. This representation can be used to show that dissipation and kinematic restoration 

become unbounded at a non-degenerate critical saddle point, which is necessary for the 

formation of a pocket. Singularities in the right hand side of (9) for o must be expected €or 

pocket formation. The right hand side of the equation for o2 = V<a-V@ is certainly bounded, 

= &R(02) has 

a singularity if R(02) # 0 at a critical point. Hence, it is worth taking a closer look at the 

dynamics of cr at critical points. 

is the value of 

- Da’ Dt = R(02) ( D / D t  denotes the Stokes derivative) at critical points, but 

Normal restoration at the critical point 

The kinematic restoration term, R, can be divided into normal and reactive contributions 

(13) and the normal restoration, RN, (first term in (13)) can be further decomposed as 

It will be shown that both contributions in ( 1 5 )  are singular for o + 0. The reactive 

restoration (second term in (13)) remains bounded at a critical point. Hence, we need only 

analyze the two terms in the normal restoration. The scalar representation in (14) allows 

analytic computation of all kinematic terms in the neighborhood of the critical saddle point. 

From (5) and (14) we obtain B = d w ,  and thus 

1 
ni = - o ( :y) 

and 
dn;  1 - X Y  

The divergence of the unit normal vector is the curvature, IC E V n, and is given by 

(17) 

1 y2 - x 2  
a y2 + 22’ 

I C = -  
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It follows from this result that the product tca remains bounded as the critical point is 

approached. The first contribution to RN in (15), defined by 

is decomposed as 
dnj d o  dnja d R N ~  = Dni-- + na---(pD). 
ax ;  a x j  ax;  p dXj 

Using ( 1 6 )  and (17) we find that the second term is bounded at the critical point and we 

need only evaluate the first term. The resulting expression for R N ~  is then 

4D x2y2 dnja d 
R N ~  = - + ni---(pD). 

0- (y2 + x2)2 ax;  p d X j  

It is easy to see that the first term becomes unbounded as the critical point (origin) is 

approached. For instance, choosing the path 2 = y we get a = x1/2 and 

. The second contribution to the normal restoration 

d 1 d  R N ~  = n;nj - [ - - (pDa)] ax;  PdXj 

is divided into singular and nonsingular contributions 

The singular part of R N ~  can be evaluated using ( 1 6 )  and the derivatives of o leading to 

d2a 4V x2y2 
dx;dxj a ( 2 2  + y2)2 

Dninj- - - - 

Near the critical point the normal restoration term behaves as 

823 x2y2 
RN = - + a .  

0 (x2 + y2)2 

where the dots indicate the nonsingular contributions. We conclude that normal restoration 

is singular at critical points and reactive restoration is bounded and, therefore, unimportant 

for the evolution of c during the formation of pockets. 
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Dissipation at the critical point 

Dissipation of 0 as defined above is not definite, but can be decomposed into a transport 

term and a negative definite true dissipation 

Using the results obtained in the previous section for the restoration terms the transport 

term is obtained in the neighborhood of the critical point as 

a v (IC4 - 1ox2y2 + y4) 
-(Vm;) = - i dX; 0 ( I C 2  + y 2 ) 2  

and the true dissipation term is 

2 V(y2- x2)2 
0 ( 2 2  + y y  

V0K = -  

The dissipation term behaves near the critical point according to 

We conclude that the dissipation term, D ,  is also singular at critical points. Furthermore, 

the singular parts of the restoration and dissipation terms exactly cancel at the critical point. 

Numerical simulat ion results 

Direct numerical simulation is used to study the stages of pocket formation and their effect 

on the terms in the surface density equation for a premixed turbulent lean methane-air 

flame. 

Numerical Met hod 

The numerical scheme for the solution of the Navier-Stokes, species and energy equations 

for a compressible gas mixture is based on an explicit finite difference algorithm using a 

fourth-order low storage Runge-Kutta scheme for time advancement, and an eighth-order 

explicit spatial differencing scheme [la]. The chemical mechanism is based on a detailed 

C1 mechanism by Warnatz [13] with 17 species and 68 reversible reactions. The species 
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mass diffusion is modeled with a Lewis number formulation and a prescription of the Lewis 

numbers for the different species [14]. The dynamic viscosity of the mixture is temperature 

dependent, while the thermodynamic properties (enthalpy, specific heat) are temperature 

and composition dependent. The Prandtl number is taken to be Pr = 0.708. 

The computations are initialized with a one-dimensional steady laminar flame profile 

for a fuel-lean mixture (equivalence ratio of 0.7) of methane-air preheated to 800 K. The 

profiles are obtained from a one-dimensional steady code PREMIX [15], and the solution is 

allowed to adjust to the simplified transport in a one-dimensional DNS. 

The turbulence is prescribed by an initial two-dimensional turbulent kinetic energy spec- 

trum function [16] which is superimposed on the laminar flame. The ratio of the turbulence 

intensity to the laminar flame speed, u ’ / s ~ ,  is taken to be ten and the ratio of the integral 

scale to the laminar flame thickness is L I 1 / 6 ~  = 2.77. Here, SF is a thermal thickness of the 

flame based on the maximum temperature gradient: 

The subscripts u and b correspond to the unburned and burned states of the mixture. The 

turbulence Reynolds number based on L11 and the unburned gas properties at 800 K is 181. 

Unless otherwise noted, length scales are normalized by SF, velocities by sL, and time by 

flame time, defined as tF = SF/SL. The computational domain size is 0.67 cm, or 21 .66~ in 

the directions parallel and perpendicular to the laminar flame. The domain is resolved into 

750 uniform grid points in each direction. 

DNS results 

Two-dimensional unsteady DNS simulations of a premixed flame are performed with detailed 

chemistry to study the stages of pocket formation. After approximately 1 eddy turnover 

time, a pair of counter-rotating vortices embedded in the turbulent flow field, forms a thin 

channel of reactants as it passes through the flame. Subsequently an isolated unburnt pocket 

is created as the channel pinches-off, and a critical saddle point appears on the scalar surface 

chosen to represent the flame. The terms in the surface density equation are evaluated in the 

neighborhood of the critical points to establish the effect of the singularity on the dissipation 
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and restoration terms. The emergence of the critical saddle point and the formation of the 

isolated pocket are illustrated using the 10% unburnt value of the methane mass fraction in 

Fig. 1. The terms in the surface density equation are then presented in Figs; 2 and 3 as the G & , L  
isoline approaches and leaves the saddle point. 0 

Prior t o  the critical time 

In Fig. 1 prior to the critical time, t=-0.02tC/t~,  the methane isoline shows a narrow channel 

formed by the passage of a vortex pair. The corresponding sink and source terms in (9) are 

shown in Fig. 2a as a function of the arclength, in the neighborhood of where the channel 

pinches-off. Dissipation is negligible at this location, since the local curvature is small. 

As shown in this figure, reactive and normal restoration act in opposite directions, with 

normal restoration being much larger than reactive restoration. Production at this The 

main mechanism for destruction of CT is due to normal restoration. 

At the  critical time 

-L At the critical time the methane isolines from opposite sides of the channel touch at their 

point of tangency as shown in Fig. 1. At the critical point an isolated pocket of reactants 

emerges and two cusps are formed. As shown in Fig. 3b at this time, the terms in the 

surface density equation show a dramatic increase in both normal restoration (-------- line) and 

dissipation (--- line). Furthermore, the increase in normal restoration is accompanied by a 

reversal in its sign. Analytically it was shown that the singularity in dissipation identically 

cancels the singularity in normal restoration; however, due to finite numerical discretization, 

it is not possible to show this numerically, although the width and magnitude of the two 

terms are approximately the same. Consistent with the analytic description, both production 

and reactive restoration are zero at the critical point. 

3 

After the critical time 

The cusps that were formed during channel closing rapidly retreat from the critical point 

as shown in Fig. 1 at t=0 .02tC/ t~ .  As shown in Fig. 2c at an even later time, t=0 .36tC/ t~ ,  

dissipation becomes larger than normal restoration due to increasing values of CT as the 
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separated parts of the isosurface (isolines in 2-d) propagate away from the critical region. 

Normal restoration, on the other hand, counterbalances dissipation, although dissipation 

temporarily exceeds normal restoration as the cusps retreat away from the critical point. 

Reactive restoration and production are both negligible compared to diffusion. The rate 

at which the instantaneous surface density decreases then is determined by the ratio of 

dissipation to normal restoration. Eventually, an equilibrium is reached between these two 

processes as dissipation decreases and normal restoration once again becomes negative. At 

this point the cusps no longer retreat. 

The analytic and numerical results indicate that the singular contributions to normal 

restoration and dissipation must cancel. This is evident in Figs. 2b and 2c and Fig. 3 

(flame normal profile along nl in Fig. l), where the spokes clearly cancel. This result has 

an important consequence for the modeling of the normal restoration and dissipation terms 

in the surface density equation (9). It follows from the analytic investigation that normal 

restoration and dissipation terms are singular at critical points, but their sum is bounded 

since the singular contributions cancel out. Hence, it is not necessary t o  model the singular 

parts and only the nonsingular contributions require closure. This could be attempted by 

modeling the sum of normal restoration and dissipation, which is bounded at critical points. 

Conclusions 

- The numerical and analytic investigation of pocket formation in a premixed methane-air 

flame shows that isolated pockets can form in the presence of strong vorticity. The formation 

of pockets is initiated by the emergence of narrow channels, which close and a critical saddle 

point appears. After the appearance of the critical point cusps form, which rapidly retreat 

and the pocket burns out subsequently. The normal restoration and dissipation terms in 

the equation for the surface density become singular at the critical point, but their sum 

remains bounded. This was demonstrated numerically and shown analytically. Hence, it is 

not necessary to model the singular behavior of these terms at critical points; rather, closure 

of their sum is recommended. 
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Figure Captions 

1. Temporal evolution of the 10% methane mass fraction isoline before, during and after 

the critical time. t = - 0 . 0 2 t , / t ~ ,  -.-- t = O.Ot,/ tF, and -...-.-. t = 0 . 0 2 t C / t ~ .  

2. Source and sink terms in the o equation (9) evaluated along the arclength in the vicinity 

of the critical point denoted by 10% unburnt methane mass fraction before, during 

and after the critical time: - production, -..--... normal restoration, ---- reactive 

restoration, and --- dissipation, a) t = - 0 . 0 2 t C / t ~ ,  b) t = O.Ot,/tF, and c )  t = 

0 . 3 6 t J t ~ .  

3. Source and sink terms in the o equation (9) evaluated along the flame normal (nl shown 

in Fig. 1) at the critical point. - production, .-...... normal restoration, ---- reactive 

restoration, and dissipation. 
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Figure 1: Temporal evolution of the 10% methane mass fraction isoline before, during and 
after the critical time. t = -0 .02 t , / t~ ,  t = O . O t C / t ~ ,  and ------.. t = 0 . 0 2 t , / t ~ .  
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Figure 2: Source and sink terms in the equation (9) evaluated along the arclength in 
the vicinity of the critical point denoted by 10% unburnt methane mass fraction before, 
during and after the critical time: - production, ~~~~~~~~ normal restoration, ---- reactive 
restoration, and --- dissipation, a) t = - 0 . 0 2 t , / t ~ ,  b) t = O . O t c / t ~ ,  and c )  t = 0 . 3 6 t c / t ~ .  
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Figure 3: Source and sink terms in the CT equation (9) evaluated along the flame normal (nl 
shown in Fig. 1) at the critical point. - production, ........ normal restoration, ---- reactive 
restoration, and dissipation. 
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