Identifying Calcium Channels and Porters in Plant Membranes

PDF Version Also Available for Download.

Description

The overall objectives of the proposal submitted in 6/90 was to understand how Ca was transported across plant membranes, and how these transport pathways were regulated. Ca participates in many cellular processes, including the transduction of hormonal and environmental signals, secretion, and protein folding. These processes depend on the coordination of passive Ca fluxes via channels and active Ca pumps; however these transport pathways are poorly understood in plants. We had, therefore, proposed to identify and characterize Ca transport proteins, such as the inositol-1 ,4,5-trisphosphate (IP3)-sensitive Ca channels and Ca pumps. We have had difficulties characterizing and cloning the IP3-sensitive ... continued below

Physical Description

7 pages

Creation Information

Sze, Heven April 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The overall objectives of the proposal submitted in 6/90 was to understand how Ca was transported across plant membranes, and how these transport pathways were regulated. Ca participates in many cellular processes, including the transduction of hormonal and environmental signals, secretion, and protein folding. These processes depend on the coordination of passive Ca fluxes via channels and active Ca pumps; however these transport pathways are poorly understood in plants. We had, therefore, proposed to identify and characterize Ca transport proteins, such as the inositol-1 ,4,5-trisphosphate (IP3)-sensitive Ca channels and Ca pumps. We have had difficulties characterizing and cloning the IP3-sensitive Ca channel, but have made considerable progress on the biochemical characterization, and partial purification of a 120 kD Ca-pumping ATPase. We have begun to determine the structure of Ca pumps by molecular cloning and have already obtained a partial cDNA with features characteristic of Ca pumps.

Physical Description

7 pages

Subjects

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE00007215
  • Report No.: NONE
  • Grant Number: FG05-86ER13461
  • DOI: 10.2172/7215 | External Link
  • Office of Scientific & Technical Information Report Number: 7215
  • Archival Resource Key: ark:/67531/metadc712539

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Nov. 4, 2015, 2:07 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Sze, Heven. Identifying Calcium Channels and Porters in Plant Membranes, report, April 1, 1998; United States. (digital.library.unt.edu/ark:/67531/metadc712539/: accessed August 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.