Statistical analysis of low-voltage EDS spectrum images

PDF Version Also Available for Download.

Description

The benefits of using low ({le}5 kV) operating voltages for energy-dispersive X-ray spectrometry (EDS) of bulk specimens have been explored only during the last few years. This paper couples low-voltage EDS with two other emerging areas of characterization: spectrum imaging of a computer chip manufactured by a major semiconductor company. Data acquisition was performed with a Philips XL30-FEG SEM operated at 4 kV and equipped with an Oxford super-ATW detector and XP3 pulse processor. The specimen was normal to the electron beam and the take-off angle for acquisition was 35{degree}. The microscope was operated with a 150 {micro}m diameter final ... continued below

Physical Description

3 p.

Creation Information

Anderson, I.M. March 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The benefits of using low ({le}5 kV) operating voltages for energy-dispersive X-ray spectrometry (EDS) of bulk specimens have been explored only during the last few years. This paper couples low-voltage EDS with two other emerging areas of characterization: spectrum imaging of a computer chip manufactured by a major semiconductor company. Data acquisition was performed with a Philips XL30-FEG SEM operated at 4 kV and equipped with an Oxford super-ATW detector and XP3 pulse processor. The specimen was normal to the electron beam and the take-off angle for acquisition was 35{degree}. The microscope was operated with a 150 {micro}m diameter final aperture at spot size 3, which yielded an X-ray count rate of {approximately}2,000 s{sup {minus}1}. EDS spectrum images were acquired as Adobe Photoshop files with the 4pi plug-in module. (The spectrum images could also be stored as NIH Image files, but the raw data are automatically rescaled as maximum-contrast (0--255) 8-bit TIFF images -- even at 16-bit resolution -- which poses an inconvenience for quantitative analysis.) The 4pi plug-in module is designed for EDS X-ray mapping and allows simultaneous acquisition of maps from 48 elements plus an SEM image. The spectrum image was acquired by re-defining the energy intervals of 48 elements to form a series of contiguous 20 eV windows from 1.25 kV to 2.19 kV. A spectrum image of 450 x 344 pixels was acquired from the specimen with a sampling density of 50 nm/pixel and a dwell time of 0.25 live seconds per pixel, for a total acquisition time of {approximately}14 h. The binary data files were imported into Mathematica for analysis with software developed by the author at Oak Ridge National Laboratory. A 400 x 300 pixel section of the original image was analyzed. MSA required {approximately}185 Mbytes of memory and {approximately}18 h of CPU time on a 300 MHz Power Macintosh 9600.

Physical Description

3 p.

Notes

OSTI as DE98005718

Source

  • 14. international congress on electron microscopy, Cancun (Mexico), 31 Aug - 4 Sep 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98005718
  • Report No.: ORNL/CP--97481
  • Report No.: CONF-980808--
  • Grant Number: AC05-96OR22464
  • DOI: 10.2172/658437 | External Link
  • Office of Scientific & Technical Information Report Number: 658437
  • Archival Resource Key: ark:/67531/metadc712519

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Jan. 21, 2016, 12:32 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Anderson, I.M. Statistical analysis of low-voltage EDS spectrum images, report, March 1, 1998; Tennessee. (digital.library.unt.edu/ark:/67531/metadc712519/: accessed April 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.