SURFACE BRILLOUIN SCATTERING FROM GRAPHITE*

M. Grimsditch

Material Science Division
Argonne National Laboratory, Argonne, IL 60439

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

*Research supported by the U.S. Department of Energy under contract #W-31-109-ENG-38.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
This letter discusses the conflicting results of two previous Brillouin scattering determinations of the C_{44} elastic modulus of graphite.1,2 As such we will not repeat the introductory reasons for performing the experiments or their implications.

In reference 1 it was found that the velocity of surface waves on the basal plane of a single crystal of natural graphite was 1.50 ± 0.05 km/s leading to $C_{44} = 5.05 \pm 0.35$ GPa. In Ref. 2 the velocity on HOPG graphite was found to be 1.20 ± 0.02 km/s yielding $C_{44} = 3.25 \pm 0.015$ GPa. Although the effects of finite collection angle had been discussed in Ref. 1 it was concluded in Ref. 2 that an error had been made in accounting for the solid angle.

We have now remeasured our graphite sample and obtained identical results to those we presented earlier i.e. 1.52 ± 0.03 km/s. We have also measured a sample of HOPG graphite and obtained 1.20 ± 0.05 km/s in good agreement with the results of Ref. 2.

The remaining question is to decide which value is more representative of 'ideal' graphite. Our samples consist of crystallites which can be estimated to be close to 0.5 mm in diameter so that the ~0.1 mm laser spot only probes one crystal, HOPG graphite is usually made up of crystallites of ~1 mm in size and which are only aligned to within 1 - 5 degrees along the c axis. Since the phonon wavelengths are only a few times smaller than the
crystallite size one could expect the boundaries between crystallites to play a significant role in determining the velocity of wave propagation. We interpret the results of the previous paragraph as a confirmation of this fact.

The graphite samples used in our experiments have been show to possess excellent surface quality as probed by atom scattering. Furthermore our x-ray scattering characterization showed that the coherency perpendicular to the layers is greater than 2000Å (close to the resolution of the instrument). Since there appears to be no reason to distrust our measurements we feel that the higher values of the velocity and of the elastic constant measured on the natural sample represent the 'real' value for graphite.

Work supported by the U.S. Department of Energy, BES Materials Sciences, under contract #W31-109-ENG-38.
REFERENCES