Use of self assembled monolayers at variable coverage to control interface bonding in a model study of interfacial fracture: Pure shear loading

PDF Version Also Available for Download.

Description

The relationships between fundamental interfacial interactions, energy dissipation mechanisms, and fracture stress or fracture toughness in a glassy thermoset/inorganic solid joint are not well understood. This subject is addressed with a model system involving an epoxy adhesive on a polished silicon wafer containing its native oxide. The proportions of physical and chemical interactions at the interface, and the in-plane distribution, are varied using self-assembling monolayers of octadecyltrichlorosilane (ODTS). The epoxy interacts strongly with the bare silicon oxide surface, but forms only a very weak interface with the methylated tails of the ODTS monolayer. The fracture stress is examined as a ... continued below

Physical Description

47 p.

Creation Information

KENT,MICHAEL S.; YIM,HYUN; MATHESON,AARON J.; COGDILL,C.; NELSON,GERALD C. & REEDY JR.,EARL DAVID May 16, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The relationships between fundamental interfacial interactions, energy dissipation mechanisms, and fracture stress or fracture toughness in a glassy thermoset/inorganic solid joint are not well understood. This subject is addressed with a model system involving an epoxy adhesive on a polished silicon wafer containing its native oxide. The proportions of physical and chemical interactions at the interface, and the in-plane distribution, are varied using self-assembling monolayers of octadecyltrichlorosilane (ODTS). The epoxy interacts strongly with the bare silicon oxide surface, but forms only a very weak interface with the methylated tails of the ODTS monolayer. The fracture stress is examined as a function of ODTS coverage in the napkin-ring (pure shear) loading geometry. The relationship between fracture stress and ODTS coverage is catastrophic, with a large change in fracture stress occurring over a narrow range of ODTS coverage. This transition in fracture stress does not correspond to a wetting transition of the epoxy. Rather, the transition in fracture stress corresponds to the onset of deformation in the epoxy, or the transition from brittle to ductile fracture. The authors postulate that the transition in fracture stress occurs when the local stress that the interface can support becomes comparable to the yield stress of the epoxy. The fracture results are independent of whether the ODTS deposition occurs by island growth (T{sub dep} = 10 C) or by homogeneous growth (T{sub dep} = 24 C).

Physical Description

47 p.

Notes

OSTI as DE00755610

Medium: P; Size: 47 pages

Source

  • Journal Name: Journal of Adhesion; Other Information: Submitted to Journal of Adhesion

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND2000-1228J
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 755610
  • Archival Resource Key: ark:/67531/metadc712456

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 16, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 12, 2017, 6:54 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

KENT,MICHAEL S.; YIM,HYUN; MATHESON,AARON J.; COGDILL,C.; NELSON,GERALD C. & REEDY JR.,EARL DAVID. Use of self assembled monolayers at variable coverage to control interface bonding in a model study of interfacial fracture: Pure shear loading, article, May 16, 2000; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc712456/: accessed September 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.