The time-of-flight system for CLAS

PDF Version Also Available for Download.

Description

The time-of-flight system for the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility is described. The system, covering an area of 206-square-meters, is composed of scintillation counters 5.08 cm thick, 15 and 22 cm wide, and lengths which vary from 32 cm at the most forward angle to 450 cm at larger angles. All of the components of the system have been designed to optimize the time resolution. Event timing, achieved by leading-edge discrimination with time-walk correction, has been measured with cosmic rays, a laser pulser, and known particle interactions. The intrinsic time resolution varies from ... continued below

Physical Description

1259 KILOBYTES pages

Creation Information

Smith, E.S.; Carstens, T. & Distelbrink, J. February 1, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The time-of-flight system for the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility is described. The system, covering an area of 206-square-meters, is composed of scintillation counters 5.08 cm thick, 15 and 22 cm wide, and lengths which vary from 32 cm at the most forward angle to 450 cm at larger angles. All of the components of the system have been designed to optimize the time resolution. Event timing, achieved by leading-edge discrimination with time-walk correction, has been measured with cosmic rays, a laser pulser, and known particle interactions. The intrinsic time resolution varies from about 80 ps for the short counters to 160 ps for the longer counters. Reconstruction of interacting particles during the first period of operation yields an average time resolution for electrons of 163 ps.

Physical Description

1259 KILOBYTES pages

Source

  • Journal Name: Nuclear Instrumentation and Methods A; Journal Volume: A; Journal Issue: 432; Other Information: Submitted to Nuclear Instrumentation and Methods A; Volume A, No. 432

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: DOE/ER/40150-1335
  • Report No.: JLAB-PHY-99-03
  • Grant Number: AC05-84ER40150
  • Office of Scientific & Technical Information Report Number: 754024
  • Archival Resource Key: ark:/67531/metadc712295

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 1, 1999

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Feb. 5, 2016, 8:38 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Smith, E.S.; Carstens, T. & Distelbrink, J. The time-of-flight system for CLAS, article, February 1, 1999; Newport News, Virginia. (digital.library.unt.edu/ark:/67531/metadc712295/: accessed December 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.