Application of CIS to high-efficiency PV module fabrication. Phase 3 final technical report

PDF Version Also Available for Download.

Description

During this research period, researchers at International Solar Electric Technology (ISET) concentrated their efforts on three different areas of research. Within the National CIS R and D Team, ISET participated in the substrate/Mo interactions working group and investigated issues such as Na diffusion from the soda-lime glass substrate into the Mo layers and CIS films. Researchers determined that the Na content within the Mo layers was not a strong function of the nature of the Mo film. However, they found that diffusion through the Mo layers was a function of the Mo film characteristics as well as a very strong ... continued below

Physical Description

38 p.

Creation Information

Basol, B.M.; Kapur, V.K.; Leidholm, C.R.; Halani, A.; Roe, R. & Norsworthy, G. August 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

During this research period, researchers at International Solar Electric Technology (ISET) concentrated their efforts on three different areas of research. Within the National CIS R and D Team, ISET participated in the substrate/Mo interactions working group and investigated issues such as Na diffusion from the soda-lime glass substrate into the Mo layers and CIS films. Researchers determined that the Na content within the Mo layers was not a strong function of the nature of the Mo film. However, they found that diffusion through the Mo layers was a function of the Mo film characteristics as well as a very strong function of the CIS growth process itself. Researchers showed conclusively that the Na resided on the grain boundaries of CIS layers. Another team activity involved evaluation of CdS-free CIS solar cells. ZnO/CIS junctions prepared by the two-stage process showed light-soaking effects. Cells left under illumination improved in efficiency and were similar to the CdS/CIS junctions. After storage in the dark, however, efficiency deteriorated greatly for the ZnO/CIS device, most of the decline coming from the open-circuit voltage values. Much of the effort during this period was spent on developing a low-cost, non-vacuum CIS deposition technique. The method developed involves particulate deposition and formation of precursor layers followed by the conversion of these layers into CIS. Test modules of 40--60 cm{sup 2} were adapted to understand the issues involved in this novel technology. At the present time, the submodule efficiencies are 6--7%. Single-cell efficiencies are in the 10--13% range.

Physical Description

38 p.

Notes

OSTI as DE98007319

Source

  • Other Information: PBD: Aug 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98007319
  • Report No.: NREL/SR--520-25218
  • Grant Number: AC36-83CH10093
  • DOI: 10.2172/656619 | External Link
  • Office of Scientific & Technical Information Report Number: 656619
  • Archival Resource Key: ark:/67531/metadc712254

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • March 31, 2016, 6:06 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Basol, B.M.; Kapur, V.K.; Leidholm, C.R.; Halani, A.; Roe, R. & Norsworthy, G. Application of CIS to high-efficiency PV module fabrication. Phase 3 final technical report, report, August 1, 1998; Golden, Colorado. (digital.library.unt.edu/ark:/67531/metadc712254/: accessed January 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.