Saturated polarization spectroscopy with a picosecond laser for quantitative concentration measurements

PDF Version Also Available for Download.

Description

The collisional dependence of saturated polarization spectroscopy with a picosecond laser is investigated by probing hydroxyl in a flow cell. While nanosecond lasers have been used often for nonlinear diagnostic measurements of flame composition, picosecond lasers provide a potentially superior source for such techniques. Compared to a nanosecond laser, picosecond lasers produce significantly greater peak power for the same pulse energy, and this could improve the signal strength of multi-photon techniques such as degenerate four-wave mixing (DFWM) and polarization spectroscopy (PS). It has been suggested that the signal produced by such lasers would be less dependent on the collisional environment ... continued below

Physical Description

5 p.

Creation Information

Reichardt, T. A.; Farrow, R. L.; Teodoro, F. D. & Lucht, R. P. February 11, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The collisional dependence of saturated polarization spectroscopy with a picosecond laser is investigated by probing hydroxyl in a flow cell. While nanosecond lasers have been used often for nonlinear diagnostic measurements of flame composition, picosecond lasers provide a potentially superior source for such techniques. Compared to a nanosecond laser, picosecond lasers produce significantly greater peak power for the same pulse energy, and this could improve the signal strength of multi-photon techniques such as degenerate four-wave mixing (DFWM) and polarization spectroscopy (PS). It has been suggested that the signal produced by such lasers would be less dependent on the collisional environment because the behavior of the molecular system probed by short-pulse lasers is governed more by the spectral width of the laser and the Doppler effect. To investigate the collisional dependence of the polarization spectroscopy signal generated with a picosecond laser, the authors probe the A{sup 2}{Sigma}{sup +}-X{sup 2}{Pi} (0,0) band of OH in a flow cell. In this well-controlled environment, the authors monitor the change in signal strength as they vary the buffer gas pressure by a factor of 50. Hydroxyl (OH) is created by photolysis of hydrogen peroxide using a Nd:YAG laser.

Physical Description

5 p.

Notes

OSTI as DE00755821

Medium: P; Size: 5 pages

Source

  • 2000 Laser Applications to Chemical and Environmental Analysis Topical Meeting, Santa Fe, NM (US), 02/11/2000

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND2000-8402C
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 755821
  • Archival Resource Key: ark:/67531/metadc712253

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 11, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 11, 2017, 12:46 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Reichardt, T. A.; Farrow, R. L.; Teodoro, F. D. & Lucht, R. P. Saturated polarization spectroscopy with a picosecond laser for quantitative concentration measurements, article, February 11, 2000; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc712253/: accessed April 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.