Micro-Grooving and Micro-Threading Tools for Fabricating Curvilinear Features

PDF Version Also Available for Download.

Description

This paper presents techniques for fabricating microscopic, curvilinear features in a variety of workpiece materials. Micro-grooving and micro-threading tools having cutting widths as small as 13 {micro}m are made by focused ion beam sputtering and used for ultra-precision machining. Tool fabrication involves directing a 20 keV gallium beam at polished cylindrical punches made of cobalt M42 high-speed steel or C2 tungsten carbide to create a number of critically aligned facets. Sputtering produces rake facets of desired angle and cutting edges having radii of curvature equal to 0.4 {micro}m. Clearance for minimizing frictional drag of a tool results from a particular ... continued below

Physical Description

22 p.

Creation Information

ADAMS,DAVID P.; VASILE,MICHAEL J. & KRISHNAN,A.S.M. July 24, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 26 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper presents techniques for fabricating microscopic, curvilinear features in a variety of workpiece materials. Micro-grooving and micro-threading tools having cutting widths as small as 13 {micro}m are made by focused ion beam sputtering and used for ultra-precision machining. Tool fabrication involves directing a 20 keV gallium beam at polished cylindrical punches made of cobalt M42 high-speed steel or C2 tungsten carbide to create a number of critically aligned facets. Sputtering produces rake facets of desired angle and cutting edges having radii of curvature equal to 0.4 {micro}m. Clearance for minimizing frictional drag of a tool results from a particular ion beam/target geometry that accounts for the sputter yield dependence on incidence angle. It is believed that geometrically specific cutting tools of this dimension have not been made previously. Numerically controlled, ultra-precision machining with micro-grooving tools results in a close match between tool width and feature size. Microtools are used to machine 13 {micro}m wide, 4 {micro}m deep, helical grooves in polymethyl methacrylate and 6061 Al cylindrical workplaces. Micro-grooving tools are also used to fabricate sinusoidal cross-section features in planar metal samples.

Physical Description

22 p.

Notes

OSTI as DE00759974

Medium: P; Size: 22 pages

Source

  • Journal Name: Journal of Precision Engineering; Other Information: Submitted to Journal of Precision Engineering

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND2000-1791J
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 759974
  • Archival Resource Key: ark:/67531/metadc712236

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 24, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 10, 2017, 3:15 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 26

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

ADAMS,DAVID P.; VASILE,MICHAEL J. & KRISHNAN,A.S.M. Micro-Grooving and Micro-Threading Tools for Fabricating Curvilinear Features, article, July 24, 2000; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc712236/: accessed November 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.