The impact of summer heat islands on cooling energy consumption and CO{sub 2} emissions

PDF Version Also Available for Download.

Description

It has been well documented that summer heat islands increase the demand for air conditioning. Several studies have suggested developing guidelines to mitigate this negative effect, on both micro- and meso-scales. Reducing summer heat islands saves cooling energy, reduces peak demand, and reduces the emission of CO{sub 2} from electric power plants. This paper summarizes some of the efforts to quantify the effects of techniques to reduce heat islands. In particular, the authors summarize simulations they have made on the effects of plating trees and switching to light colored surfaces in cities. The results indicate that these techniques effectively reduce ... continued below

Physical Description

12 p.

Creation Information

Akbari, H.; Huang, J.; Martien, P.; Rainer, L.; Rosenfeld, A. & Taha, H. August 1, 1988.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 23 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

It has been well documented that summer heat islands increase the demand for air conditioning. Several studies have suggested developing guidelines to mitigate this negative effect, on both micro- and meso-scales. Reducing summer heat islands saves cooling energy, reduces peak demand, and reduces the emission of CO{sub 2} from electric power plants. This paper summarizes some of the efforts to quantify the effects of techniques to reduce heat islands. In particular, the authors summarize simulations they have made on the effects of plating trees and switching to light colored surfaces in cities. The results indicate that these techniques effectively reduce building cooling loads and peak power in selected US cities, and are the cheapest way to save energy and reduce CO{sub 2} emissions. This paper compares the economics of technologies to mitigate summer heat islands with other types of conservation measures. The authors estimate the cost of energy conserved by planting trees and recoating surfaces on a national level and compare it with the cost of energy conserved by increasing efficiencies in electrical appliances and cars. Early results indicate that the cost of energy saved by controlling heat islands is less than 1{cents}/kWh, more attractive than efficient electric appliances ({approximately} 2{cents}/kWh), and far more attractive than new electric supplies ({approximately}10{cents}/kWh). In transportation, the cost of conserving a gallon of gasoline, though far more attractive than buying gasoline at current prices, is again more expensive than controlling heat islands. By accounting for the carbon content of the fuels used for power generation and transportation, the authors restate these comparisons in terms of cents per avoided pound of carbon emitted as CO{sub 2}. The results show that the cost of avoided CO{sub 2} from planting trees/increasing albedo is about 0.3--1.3{cents}/lb. of carbon; for buying efficient electric appliances, 2.5{cents}/lb. of carbon; and for efficient cars, 10{cents}/lb. of carbon.

Physical Description

12 p.

Notes

OSTI as DE97054241

Source

  • ACEEE summer study on energy efficiency in buildings, Pacific Grove, CA (United States), 28 Aug - 3 Sep 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97054241
  • Report No.: LBL--25179
  • Report No.: CONF-9708168--
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 674927
  • Archival Resource Key: ark:/67531/metadc712164

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 1988

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Jan. 19, 2018, 1:58 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 23

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Akbari, H.; Huang, J.; Martien, P.; Rainer, L.; Rosenfeld, A. & Taha, H. The impact of summer heat islands on cooling energy consumption and CO{sub 2} emissions, article, August 1, 1988; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc712164/: accessed July 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.