RECEIVEL
 AUG 032000
 Osti

Overview of "Red Oil" Frequency Analyses for F-Canyon (U)

September, 1995

Westinghouse Savannah River Company Savannah River Site Aiken, SC 29808

SAVANNAH RIVER SITE
PREPARED FOR THE U.S. DEPARTMENT OF ENERGY UNDER CONTRACT NO. DE-ACO9-8ÅSR18035

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.
Available for sale to the public, in paper, from: U.S. Department of Commerce, National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161, phone: (800) 553-6847
fax: (703) 605-6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm
Available electronically at http://www.doe.gov/bridge
Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy, Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062, phone: (865) 576-8401 fax: (865) 576-5728
email: reports@adonis.osti.gov

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Key Words:	Explosion
	TBP
	Risk Assessment
	Evaporator
	Uncontrolled Reaction

Overview of "Red Oil" Frequency Analyses for F-Canyon (U)

by
C.R. Lux
R.E. Vail

Issued: September 21, 1995
UNCLASSIFIED
DOES NOT CONTAN
UKCLASSIF:SD COITROLLED
nUCLEAR MFORMATION
000 a
Qurctal: SJNAMhno, PTin Engr
Date: -
9/27 7 Tit

TITLE: OVERVIEW OF "RED OIL" FREQUENCY ANALYSES FOR F-CANYON (U)

Approvals:

A.G. Sarrack, Technical Reviewer

M.J Hitcher, Manager

TABLE OF CONTENTS

Page
1.0 , INTRODUCTION 1
2.0 SUMMARY 1
3.0 BACKGROUND 1
4.0 FREQUENCY METHODOLOGY 2
4.1 Determination of Need for Analysis 2
4.2 Analysis of Unheated Vessels 2
4.3 Analysis of Evaporators 3
4.4 Human Error Analysis 3
5.0 RESULTS 4
6.0 CONCLUSION 5
7.0 REFERENCES 6
APPENDIX A UNHEATED VESSEL ANALYSIS
APPENDIX B DETAILED ANALYSIS FOR EVAPORATORS
APPENDIX C EVAPORATOR SAFETY CLASS ITEM ANALYSIS
APPENDIXD HUMAN ERROR ANALYSIS FOR "RED OIL"

1.0 INTRODUCTION

A very small potential exists in the Savannah River Site (SRS) separations operations for an uncontrolled reaction between tri-n-butyl phosphate (TBP) and nitric acid that could result in unacceptable damage to separations facilities and a significant release of radioactive materials.

The recent "red oil" (TBP and nitric acid) accident in Tomsk, Russia, resulted in considerable damage and radioactive release. Explosions have also occurred at SRS during the early years of operations. While the SRS separations facilities \vdots - ve operated without incident for many years, it is prudent to revisit the SRS defense-in-depth approach to preventing such an accident and to upgrade preventive procedures and hardware as appropriate.

2.0 SUMMARY

A detailed risk assessment was conducted for the F-Canyon facility. The analyses indicated that a runaway "red oil" reaction was extremely unlikely. However, the consequences of such an accident are severe enough that steps should be taken to make the frequency of the accident less than the credibility limit of $1 \times 10^{-6} / \mathrm{yr}$. The steps include administrative changes, operational changes, and the addition of equipment. The added equipment includes level instrumentation, level alarms, and interlocks.

3.0 BACKGROUND

The basic chemistry of this reaction was studied extensively at SRS following the two early incidents. Recent experimental investigations were made at SRS and at Fauske Associates under SRS contract.

These investigations indicated the set of reactions known as a "red oil" reaction is exothermic with the reaction rate being a very strong increasing function of temperature. They also indicated the overall reaction rate and energy released is significantly enhanced in a closed system because of more energetic intermediate reactions and higher boiling points that result from the increase in constituent partial pressures.

Based on this information, the basic approach to preventing an uncontrolled reaction is to:

- Minimize the temperature of the TBP-nitric acid mixture, by ensuring the cooling mechanisms are capable of removing the heat being generated. The reaction will only runaway if the temperature exceeds some critical value (dependent upon the vessel), above which the rate of heat generation exceeds the rate of heat loss.
- Maximize the vessel vent areas to minimize constituent partial pressures in the vessel that could feedback to increase energy release rates and limit evaporative cooling. If the mixture is open to the atmosphere, evaporation of water, diluent, and nitric acid are efficient heat loss mechanisms which will limit the temperature of the mixture to the atmospheric pressure
boiling point. Also, adequate venting allows the escape of reactants and intermediates from the reaction mixture, and limits the extent of the reaction. In contrast, a closed or inadequately vented system allows the pressure to increase as gaseous reaction products accumulate, which raises the boiling point, suppresses the heat loss due to evaporation, and retains partially reacted intermediates which can continue to react and generate heat.
- Limit the availability of highly concentrated nitric acid since the reaction rate and energy release increases with highly concentrated acid.
- Limit the mass of TBP present, when any of the above three items can not be satisfied. The total amount of heat generated and total amount of gases generated will be proportional to the amount of TBP that is reacted. With limited amounts of TBP, uncontrolled reactions can be accommodated with minimal consequences.

4.0 FREQUENCY METHODOLOGY

The fault tree analysis was performed in three steps. The first step was to look at the F-Canyon as an entirety and determine if "red oil" reactions are a potential danger, and if so, which equipment requires further analysis. The second step examined all vessels in F-Canyon which were not normally heated above about $80^{\circ} \mathrm{C}$. The last step was to examine the F-Canyon evaporators. The evaporators are heated to a temperature high enough such that runaway "red oil" conditions are present if TBP is present in sufficient quantity. Human error analysis was used in all three of the steps and proved to be of great importance in the evaporator studies.

4.1 DETERMINATION OF NEED FOR ANALYSIS

An examination was made of the entire F-Canyon to determine where there was a potential concern for runaway "red oil" reactions. First, a "red oil" reaction requires that nitric acid be in contact with TBP. The vessels were then grouped into four general categories (Feed Tank, Sump Receipt Tank, Mixer Settler, and Evaporator) and a detailed analysis performed on a "worst case" vessel from each category.

This approach worked well for the first two categories, but the sources of TBP for each of the sump receipt tanks and evaporators were sufficiently different that it was necessary to construct a detailed fault tree for each sump receipt tank and each evaporator.

4.2 ANALYSIS OF UNHEATED. VESSELS

The unheated vessels (Sump Receipt Tanks, Feed Tanks, and Mixer Settlers) were all combined in one study (Ref. 1, Appendix A). These vessels were combined due to their similarity in receiving TBP and mechanisms for overheating. All of these vessels are known to normally contain some TBP, and none are normally heated.

The detailed fault trees were first constructed to model the current state of operation using the assistance of knowledgeable facility operations personnel. If the calculated frequency of occurrence was more than $1 \times 10^{-6} / \mathrm{yr}$, potential changes to the system were incorporated until the frequency dropped below this level. Once the $1 \times 10^{-6} / \mathrm{yr}$ goal had been reached, an elimination process was pursued to determine the minimum number of new components and controls necessary to keep the frequency below the goal. The controls and equipment remaining in the fault tree were designated as Safety Class Items to assure the desired protection.

$\therefore 3$ ANALYSIS OF EVAPORATORS

Originally, due to the lack of experimental data, it was as: med in early evaporator fault trees that a "red oil" reaction could occur whenever TBP was exposed to temperatures exceeding $120^{\circ} \mathrm{C}$ or at temperatures above $80^{\circ} \mathrm{C}$ under certan conditions. Since evaporation of the solution is a very good mechanism for removing any excess heat from an uncontrolled reaction at temperatures below $120^{\circ} \mathrm{C}$, the original fault trees modeled runaway reactions occurring during a) cool down, b) heating prior to boiling, and c) during excessive heating.

Experimental results (Ref. 2) now demonstrate that this reaction would not occur if an adequate aqueous layer is present and the temperature is less than $120^{\circ} \mathrm{C}$. Since the vessels at SRS are open systems, a second set of fault trees was developed to determine the frequency of a "red oil" reaction due to overheating or due to evaporation of the aqueous layer. The presence of aqueous in the evaporator tanks allow credit to be taken for temperature interlocks. The temperature of the solution is limited by the boiling point of the aqueous solution, and the specific gravity of the solution increases as the aqueous is evaporated (Ref. 3).

After the ear! * incidents at SRS, defense-in-depth based on limiting the temperature and the amount of Tl were successfully used to prevent any further incidents. After the Tomsk incident, restrictions on the use of highly concentrated nitric acid (a third measure) were implemented.

The second set of fault trees went through a similar process as that described above for the unheated tanks (Ref. 4, Appendix B). Once again new Safety Class controls were identified (Ref. 5, Appendix C).

4.4 HUMAN ERROR ANALYSIS

A human factors engineering review (Rev. 6, Appendix D) was performed for the accident scenario fault trees for runaway "red oil" reactions in the Savannah River Site (SRS) F-Canyon evaporators.

A total of five .Canyon evaporators were modeled for potential "red oil" reaction concerns. The modeling ror each evaporator was taken back to the point of initial release of organic material into the aqueous stream. Each step between the source and the evaporator was
examined for methods of release of organic, methods for detection of organic in the aqueous stream, and reasons why the human error or equipment failure would go undetected.

Since the controls that serve to prevent an uncontrolled "red oil" reaction were operator intensive, a review of the human factors assumptions, error models and probabilities, and operator dependency was performed to ensure appropriate consideration of the contribution of operator actions. First, a qualitative task analysis was performed to support the human error modeling and quantification selections made by the fault tree analysts, for each of five F-Canyon evaporators.

To assure that all human errors were identified, each operating procedure involved was examined to assure clarity, accuracy, and required check-offs. With the help of operating personnel, the operator involved with each transfer or activity was identified. Careful consideration was given to the length of time involved in each action, time span between actions, number of operators involved in the action, and possible dependence between the actions. These dependencies could be the result of operators being closely associated, lack of communication between operators, or the same operator performing a series of actions. The heavy human involvement in this system made the careful identification of these interactions crucial to understanding the risk associated with the actions.

Consistency in human error modeling and frequency quantification was another area of concern. To aid in this process, the generic human error database (Ref. 7) was used to quantify all human errors. The fault tree structure for similar actions was compared and discrepancies were identified and resolved. Conservative values of human error probability were used throughout the modeling process to assure that the frequency of "red oil" reactions would not be .underestimated.

5.0 RESULTS

The frequency of runaway "red oil" reactions, established by the detailed fault tree quantification, was in the incredible range of occurrence (i.e., $<1 \mathrm{E}-06 /$ year). To provide assurance of the reaction scenario's incredibility, a sensitivity study was performed. Each important function that could lead to a runaway reaction was evaluated to determine the subfunctions (either operator or equipment action) to which the fault tree frequency was most sensitive. An iterative process was employed to establish a minimum set of controls which would also be cost effective. Additional controls suggested by facility personnel were modeled in the fault tree and new top event frequencies were calculated. This iterative process continued until both the frequency and the set of controls were acceptable to analyst and facility personnel.

A minimum set of procedural controls and safety equipment which assure the incredibility of a runaway "red oil" reaction is:

- Agitators and cooling systems (where available) must be running during any transfer into a tank.
- Fluctuations in the specific gravity will be used as an indicator of the operation of the agitator.
- Verification of specific gravity of feed on the batch evaporators will be performed.
- Small volume evaporators will be operated as caustic evaporators.
- Waste from solvent recovery operations will be sent to a caustic evaporator.
- All sump receipt tanks require a dedicated head tank.
- . here must be a 72 hour time spacing between the feeding of sump receipt tanks to the continuous evaporator.
- High and Low Level Alarms on solvent hold tank will be operable.
- High level interlock on solvent hold tank will be operable.
- Stabilization of Solvent extraction process will be performed before starting evaporators.

6.0 CONCLUSION

The frequency of red oil explosion in each F-Canyon evaporator is determined to be incredible by fault tree analysis. Runaway "red oil" reactions are unlikely to occur in the evaporators because very large amounts of TBP are needed to cause significant uncontrolled reactions in a well-vented system. Experimental analysis and consequence studies demonstrate that only reactions involving large quantities of TBP could result in unacceptable releases to the environment and public. "Red oil" reactions involving large quantities of TBP are prevented by maintaining administrative controls of solvent inventory, ensuring that the evaporator's temperature remains below $120^{\circ} \mathrm{C}$, and ensuring that adequate aqueous layer is maintained in the evaporator to provide heat removal.

7.0 REFERENCES

1 Lux, C.R., Christiansen, L.W., Marshall, K.M., and Slaven, T. Frequency Determination for Runaway TBP/Nitric Acid Reactions in Support of the F-Canyon BİO (U). S-CLC-F-00100, Revision 1, Westinghouse Savannah River Company, Aiken, SC, June 1994.

2 Cowen, M.L. Uncontrolled TBP-Nitric Acid BIO Risk Analysis (F-Canyon BIO Reference Paper. Uncontrolled TBP-Nitric Acid Reactions). EPD-SSS-950007, Westinghouse Savannah River Co., Aiken, SC, February 1995.

3 Campbell, T.G. to Lux, C.R., et.al. Boiling Points of Various Evaporator Solutions, Westinghouse Savannah River Co., Aiken, SC, August 1994.

4 Browne, E.V., Lux, C.R., and Christiansen, L.W. Scoping Study of Red Oil Reactions in the F-Canyon Evaporators (U). S-CLC-F-00146, Revision A, Westinghouse Savannah River Company, Aiken, SC, January 1995.

5 Christiansen, L.W., and Lux, C.R. Fault Tree Analẏsis of Red Oil Reactions in the F-Canyon Eyaporators (U). S-CLC-F-00140, Revision B, Westinghouse Savannah River Company, Aiken, SC, March 1995.

6 Vail, R.E. to Lux, C.R., et. al. Human Factors Review of the "Red Oil" Explosion Fault Trees for the F Canyon Evaporators. EPD-SIM-940098, Westinghouse Savannah River, Aiken, SC, October 1994

7 Benhardt, H.C., et.al. Savannah River Site Human Error Data Base Development for Nonreactor Nuclear facilities (U). WSRC-TR-93-581, Westinghouse Savannah River Site, Aiken, SC, February 1994.

Calculation Cover Sheet

Project ${ }^{\text {F-Canyon BIO }}$	$\begin{aligned} & \text { Calculation No. } \\ & \text { S-CLC-F-00140 } \end{aligned}$	Project Number NA
Title	Functional Classification NS	Sheet 1 of 130
Fault Tree Analysis of Red Oil Reactions in the F-Canyon Evaporators (U)	Discipline Risk Analysis Group	
Preliminary \quad X Committed		
Computer Program No. Version 2.2c		
Pupose and Objective As requested by NMPD Safety Documentation, this Calc-Note determines the frequencies of runaway red oil reactions involving more than $3,000 \mathrm{lbs}$ of TBP, in F-Canyon evaporators 8.5E, 7.6E, 7.7E, , and 9.3E. The dominant sequences leading to an explosion and top event frequency for each evaporator are determined by fault tree analysis.		

Summary of Conclusion
Runaway red oil reactions involving more than $3,000 \mathrm{lbs}$ of TBP in the evaporators are calculated to be incredible ($<10 \mathrm{E}-6 / \mathrm{yr}$). Incredibility is achieved by a combination of old and new controls involving: temperature, solvent inventory, and ensuring that aqueous is present during evaporation. The results of the analysis (i.e. incredibility) are contingent upon resolution of the open items listed in this calc-note.

TABLE OF CONTENTS

Section Page
OPEN ITEMS 3
ASSUMPTIONS 4
INTRODUCTION 4
INPUT 5
ANALYTICAL METHODS \& COMPUTATIONS 5
RESULTS 8
CONCLUSION 8
REFERENCES 9
APPENDICES 11
Appendix A-Memoranda 12
Appendix B- Diagrams 25
Appendix C-Tabulation of Human Error Events 29
Appendix D- 8.5E Evaporator Fault Tree and Data 40
Appendix E-9.3E Evaporator Fault Tree and Data 71
Appendix F- 7.6E \&7.7E Evaporator Fault Tree and Data 102

OPEN ITEMS

Facility Commitments

The following is a list of commitments made by the facility (Ref. 18) that must be implemented in order for runaway red oil reactions to be incredible. These commitments must be implemented in order for the status of this calculation to be changed to "confirmed."

Equipment-Related

1 Low solvent hold tank $(906,14.7)$ level interlock and high level alarm will be installed or modified to ensure that solvent losses do not exceed $10,000 \mathrm{lbs}$ of 30% TBP.

Operational Basis

2 Solvent wash waste will not be fed to the batch or continuous evaporators (the batch evaporator will be fed only the continuous evaporator bottoms). Solvent wash waste will be processed via caustic evaporation.

Procedural

The procedural open items listed below are referred to by number in the tabulation of human error events presented in Appendix C. Appendix C specifies which procedural open items require modification of existing procedures, and which require new procedures to be written.

3 Operator shall verify (via flow measurement) that steam is shut off (closing the steam block valve manually if needed) whenever temperature or level interlocks demand the steam valve to close.

4 The solvent hold tanks (14.7,906) inventory will be administratively controlled to prevent losses in excess of $10,000 \mathrm{lbs}$ of organic.

5 During start-up, evaporators will not be operated until levels in solvent hold tanks have stabilized - (steady state).

6 Any actuation of the solvent hold tank's $(906,14.7)$ low level interlock, or discovery of large solvent losses, will require the evaporators to be shut down until accountability of the solvent inventory is performed.

7 Solvent hold tank operator $(906,14.7)$ will ensure that the solvent feed pump (to banks) is shut off if the low level interlock is demanded.

8 Operations will commit to emptying out the 8.7 and 8.3 feed tanks once every six months, such that three consecutive tank cleanings would have to be missed to build up 3,000 lbs of TBP (Ref. 19).

9 OMITTED

10 Administrative controls will be implemented to limit transfers from 17.5 to 8.7 (and from 7.3 to 8.3) to once per 72 hours to ensure that two full sump receipt tanks are not fed to the continuous evaporator feed tank in an evaporator cycle (Ref. 10).

11 Operators must verify that sp g in the batch evaporator is greater than 1.1 (matches that of the feed tank at the beginning of the batch) to ensure that an aqueous layer is present.

ASSUMPTIONS

Technical Bases

The following list contains details of system operation and characteristics used in the development of the fault tree. These items have formal documentation.

12 Tanks, 1 ventilation, and the F-Canyon structure can withstand runaway red oil reactions involving less thar 000 lbs of TBP with minimal consequences (Ref. 1).

13 Experim :ntal results indicate that a 1 ft aqueous layer will prevent red oil reaction for up to 9 feet of organic (Ref. 11).

14 There exist level and temperature interlocks for the continuous evaporators (Ref. 10).
15 There exist temperature interlocks for the batch evaporator (Ref. 10).
16 Each batch evaporator will process no more than 100 batches/yr (Ref. 10).
17 Because small amounts of the TBP in the evaporator will degrade within 72 hours, TBP can not accumulate in the evaporators unless a process upset has occurred (Ref. 10).

18 The probability of having $10,000 \mathrm{lbs}$ of solvent in the sump receipt tanks ($7.3 \& 17.5$) is $2.0 \mathrm{E}-3$ (Ref. 3).

19 Process upsets occur at a frequency of $1 / 10$ years (Ref. 10).
20 Operator actions are considered independ ant when they involve different tanks since the operati, usually involve different operators and are not performed simultaneously. A review of human error , pendencies and common causes was performed (Ref. 9), and the facility has agreed to operational at procedural changes that eliminate most of the dependencies between operators found during the initial human factors review (i.e. acidic evaporation of solvent wash waste streams will not be performed). A tabulation of the human error events for the continuous and batch evaporators is presented in Appendix C. This table specifies which operator actions are contingent upon open items. The tables are somewhat different than those listed in Reference 9 because of the previously mentioned facility commitments and because of logic changes to the trees subsequent to the initial review.

21 Temperature of concentrate in the de-entrainment column will increase and trigger the temperature interlock if there is a failure to supply feed to the evaporator. The temperature will increase due to an increase in the boiling point and spg of the concentrate (Ref. 2).

22 There is sufficient time for the operator to shut off the steam block valve if a high solution temperature is detected (Ref. 10)

23 Cold streams are assumed to be sent he eva: ator feed tanks 25% of the time (Ref. 10).

Experience-Related and General

The following assumptions are used in the fault tree and are assumed to be true, but do not have a formally documented technical basis:

24 Uncontrolled reactions do not generate sufficient heat to raise the evaporator contents over $120^{\circ} \mathrm{C}$ and to cause a red oil reaction. Most uncontrolled reactions lead to eructation of evaporator contents, and cause high delta-p's that lead to the steam being shut off. Since it is assumed that uncontrolled reactions can not lead to red oil reactions, these scenarios are not modeled.

25 Direct transfer errors to the evaporator feed tanks are not considered because direct solvent paths are assumed blocked off.

26 Continuous evaporator will not run more than a total of 4 days/month.

OMITTED

All TBP is assumed to "survive" the continuous evaporator and will be fed to the batch evaporator.
29 No credit is given to the batch evaporator temperature interlock whenever a very large amount of solvent ($\geq 30,000 \mathrm{lbs}$) is fed because there may not be sufficient aqueous to prevent a runaway reaction even if the steam is shut down.

30 Process upsets can be detected and corrected in 12 hours.
31 Calibrations for instrumentation are performed every 6 months.

Continuous Evaporator 9.3E (when different from 8.5E)

32 Can receive excess TBP from 1A bank with credit for low level detection in 14.7 to catch a large loss of solvent ($\geq 10,000 \mathrm{lbs}$). For losses involving $\geq 30,000 \mathrm{lbs}$, credit was given for detection via the low level alarm, since the full capacity of the tank is slightly less than $30,000 \mathrm{lbs}$ and at least one full tank would have to be sent (Ref. 12).

33 Can receive excess TBP from 7.3 sump receipt tank. Transfers were assumed to be sent from 7.35% of the time, per cognizant engineer's estimate.

INTRODUCTION

A very small potential exists in the SRS separations operations for an uncontrolled reaction between tri-n-butyl phosphate (TBP) and nitric acid that could result in unacceptable damage to separations facilities and a significant release of radioactive materials.

The recent red oil (TBP and nitric acid) accident in Tomsk, Russia, resulted in considerable damage and radioactive release. Explosions have also occurred at SRS during the early years of operations. While the SRS separations facilities have operated without incident for many years, it is prudent to revisit the SRS defense in depth approach to preventing such an accident and to upgrade preventive procedures and hardware if appropriate.

A previous analysis (Ref. 16) was performed showing that the frequency of a runaway red oil reaction in the FCanyon feed tanks, mixer-settlers and sump receipt tanks was incredible. This analysis presents the frequency of runaway red oil reactions in the F-Canyon evaporators.

Originally, due to the lack of experimental data, it was assumed in early evaporator fault trees that a red oil reaction could occur whenever TBP was exposed to temperatures exceeding $120^{\circ} \mathrm{C}$ or at temperatures above $80^{\circ} \mathrm{C}$ under certain conditions. Since evaporation of the solution is a very good mechanism for removing any
excess heat from an uncontrolled reaction at temperatures below $120^{\circ} \mathrm{C}$, the original fault trees modeled runaway reactions occurring during a) cool down b) heating prior to boiling and c) during excessive heating.

Experimental results demonstrate that this reaction would not occur if an aqueous layer (Ref. 1) is present unless the temperature exceeds $120^{\circ} \mathrm{C}$. Since the vessels at SRS are open systems a second set of fault trees were developed to determine the frequency of a red oil reaction due to overheating or due to evaporation of the aqueous layer. The presence of aqueous in the evaporator tanks allow credit to be taken for temperature interlocks. The temperature of the solution is limited by the boiling point of the aqueous solution, and the sp g of the solution increases as - iqueous is evaporated (Ref. 2).

INPUT

Basic data used to quantify the fault trees came from the following sources: WSRC-TR-93-262, "Savannah River Site Generic Data Base Development", WSRC-TR-83-581, "Savannah River Site Human Error Data Base Development for Nonreactor Nuclear Facilities", Low Activity Waste (LAW) Study Guide (221-F Canyon), High Activity Waste (HAW) Study Guide (221-F Canyon), and estimates by F-Canyon and SRTC engineers/scientists (references $2,3,4,5$). Complete sources for the basic events in the fault trees are listed in their corresponding "Basic Event and Type Code" reports, which are included in this Calc-Note. The basic event file also includes assumptions involving restoration and mission times used to calculate unavailabilities and unreliabilities of equipment.

ANALYTICAL METHODS AND COMPUTATIONS

Fault tree analysis was used to generate a logic model that generates "minimal" combinations (cutsets) of events that yield a runaway red oil reaction involving in excess of $3,000 \mathrm{lbs}$ of TBP. The fault trees' logic structure was developed based on extensive discussions of a) canyon operations with F-Canyon engineers (D. Chostner, R. Eubanks (Ref. 10), S. Marek, and T. G. Campbell), and b) experimental results by SRTC (Ref. 1,11).

In order for a runaway red oil reaction of sufficient magnitude to compromise the F-Canyon containment to occur, it must involve at least 3,000 pounds of TBP. In addition, the organic must be heated to $120^{\circ} \mathrm{C}$ or above in the absence of an aqueous layer of at least one foot.

The fault trees model failures of the three main controls that prevent runaway red oil reaction: solvent inventory control, temperature control, and ensuring the presence of aqueous in the evaporator.

The analysis is conservative because the fault tree calculates the frequency of runaway reaction for $3,000 \mathrm{lbs}$ (in the first two cases below), and for $10,000 \mathrm{lbs}$ (in the last case). Reactions involving more than 3,000 pounds will happen with less frequency than those involving exactly $3,000 \mathrm{lbs}$ because a large process upset is less likely than a small one, so the calculated frequency will conservatively bound the "actual" frequency.

The analysis does not take credit for items not committed to by the facility in the F-Canyon Basis for Interim Operation (BIO) (Ref. 18). If a non-safety class item performs a mitigative or preventative action, then no credit was taken for it in the analysis. However if the failure of an item (for example a pressure switch) could instigate a failure scenario, then its failure was accounted for in the fault trees.

Continuous Evaporators

- Excess TBP ($\geq 3,000 \mathrm{lbs}$) is fed to the continuous evaporator and failure to regulate steam pressure to maintain a safe temperature. Credit is given to automatic shut down of steam by temperature interlocks. If the interlocks do not work, but the loss of control is detected by the temperature sensors or alarms, then credit is given to an operator for closing a steam block valve.
- Excess TBP ($\geq 3,000 \mathrm{lbs}$) is fed to the continuous evaporator and failure to maintain an aqueous layer, and failure to shut down steam. Credit is given to automatic shut down of steam by level and temperature interlocks if the heating tubes begin to uncover. If the interlocks do not work, but failure is detected by the temperature or level sensors or alarms, then credit is given to an operator for closing a steam block valve. It is postulated that as long as the steam is shut off before all the aqueous is evaporated a runaway reaction is prevented. It should be noted that operators could be misled by the correct instrumentation signals (high level) to increase the steam flow and therefore remove the aqueous present.
- Excess TBP ($\geq 10,000 \mathrm{lbs}$) is fed to the continuous evaporator and normal operation. $10,000 \mathrm{lbs}$ of TBP represents enough organic so that any aqueous present will be displaced, so that no credit can be taken for cooling by an aqueous layer. Credit is given to automatic shut down of steam by the temperature interlock. It should be noted that, due to the large amount of TBP and small amount of aqueous in this scenario, a rapid response is necessary.

Batch Evaporators

- Excess TBP ($\geq 3,000 \mathrm{lbs}$) is fed to the batch evaporator and failure to regulate steam pressure to maintain a safe temperature. Credit is given to automatic shut down of steam by the temperature interlocks. If the interlocks do not work, but the loss of control is detected (by the temperature sensors or alarms), then credit is given to an operator for closing a steam block valve.
- Excess TBP ($\geq 3,000 \mathrm{lbs}$) is fed to the batch evaporator and failure to maintain an aqueous layer by overcooking the feed. Credit is given to automatic shut down of steam by the temperature interlock (due to an increase in boiling point).
- Excess TBP ($\geq 10,000$) is fed to the batch evaporator from the continuous evaporator bottoms tank during normal operation. Credit is given to verification that the $s p g$ in the batch evaporator matches that of the evaporator feed tank at the beginning of the batch.

The following table shows the sources of TBP for each evaporator and mechanisms for detecting its presence.

Evaporator	Source of TBP	Detection
Continuous		
8.5 E	Solvent Extraction Bank 2A Solvent Extraction Bank 2 (cold streams operations) Sump Receipt Tank 17.5	Organic high level alarm in tank 16 -ganic low level alarm in tank 16
9.3 E	Solvent Extraction Bank 1A	
		Organic high level alarm in tank 14.7
	Sump Receipt Tank 7.3	
	Tank 12.6, 1C Bank (cold streams operations)	Organic low level alarm in tank 14.7

*B-Line (via tank 9.7), this event was judged incredible because: a) no further processing of B-Line material is planned b) would have to transfer organic up to B-Line unnoticed then back down to canyon again

Evaporator	Source of TBP	Detection			
Batch	8.5 Bottoms Tank (see above 8.6 E				Verification between 7.6 E evaporation
7.7 .8 prior to					
	8.5 Bottoms Tank (see above $8.5 \mathrm{E})$	Verification of matching sp g between 7.7 E and 7.8 prior to evaporation			

The fault trees underwent extensive revisions and the open items represent the list of requirements needed to prevent an unacceptable runaway red oil reaction frequency. The list below shows some of the additional controls that were considered:

- High and low sp g alarms for the evaporators
- Monitor $\}$ of feed flow rate into continuous evaporators
- Improv ampling \& additional sampling requirements
- Improved decanting procedures
- High organic level alarms on decanters

Reference 17 presents a scoping calculation detailing the frequency of uncontrolled red oil reactions in F Canyon if these additional features/controls are implemented. These controls cause a reduction in frequency of approximately two orders of magnitude less than those presented in the Results section.

RESULTS

The frequency of evaporator explosion due to red oil reaction is listed in the following table for each of the evaporators analyzed. The final sets of fault trees and resulting cutsets are included in Appendices D, E and F.

Evaporator	Operation	Frequency (/yr)
Continuous		
8.5 E	Continuous Mode	$2 \mathrm{E}-7$
9.3 E	Continuous Mode	$2 \mathrm{E}-7$
Batch		$4 \mathrm{E}-7$
7.6 E	Batch (8.5E Bottoms Only)	
		$4 \mathrm{E}-7$
7.7 E	Batch (8.5E Bottoms Only)	4

CONCLUSION

The frequency of red oil explosion in each F-Canyon evaporator is determined to be incredible by fault tree analysis. These results are contingent upon the facility implementation of the identified open items. Runaway red oil reactions are unlikely to occur in the evaporators because very large amounts of TBP are needed to cause significant uncontrolled reactions in a well-vented system. Experimental analysis and consequence studies demonstrate that only reactions involving more than $3,000 \mathrm{lbs}$ of TBP could result in unacceptable releases to the environment and public. These red oil reactions are prevented by maintaining administrative controls of solvent inventory, ensuring that the evaporator's temperature remains below $120^{\circ} \mathrm{C}$, and ensuring that one foot of aqueous is maintained in the evaporator to provide adequate heat removal.

REFERENCES

1. M. L. Cowen, "Uncontrolled TBP-Nitric Acid BIO Risk Analysis (F-Canyon BIO Reference Paper, Uncontrolled TBP-Nitric Acid Reactions)", EPD-SSS-950007. Westinghouse Savannah River Co. February 3, 1995.
2. Inter-Office Memorandum from T. G. Campbell, "Boiling Points of Various Evanorator Solutions", Westinghouse Savannah River Co. August 26, 1994.
3. Inter-Office Memorandum from T. G. Campbell, "Probability for Accumulation of TBP in Canyon Sumps", Westinghouse Savannah River Co. June 3, 1994.
4. Inter-Office Memorandum from S. H.Marek, "8.5 Evaporator Information", Westinghouse Savannah River Co. August 4, 1994.
5. Inter-Office Memorandum from Tracy Rudisill (with attachments), "RE: Mixing Studies" , Westinghouse Savannah River Co. August 30, 1994.
6. C. H. Blanton and S. A. Eide. "Savannah River Site Generic Data Base Development" ,WSRC-TR-93-262. Westinghouse Savannah River Co. June 30, 1993
7. H.C. Benhardt et al. "Savannah River Site Human Error Data Base Development for Nonreactor Nuclear Facilities", WSRC-TR-93-581. Westinghouse Savannah River Co. February 28, 1994.
8. Low Activity Waste (LAW) Study Guide (221-F Canyon). Training Course NSATSYWE. Westinghouse Savannah River Co.
9. R. E. Vail, "Human Factors Review of the 'Red Oil' Explosion Fault Trees for the F Canyon Evaporators", FPD-SIM-940098. Westinghouse Savannah River Co. October 5, 1994.
10. D. F. Chostner and R. A. L. Eubanks, "Existing Parameters to Mitigate TBP Reaction in 221-F (U)", NMP-EFA-94-0289. Westinghouse Savannah River Company. October 14, 1994.
11. J. R. Smith and W. S. Cavin, "Isothermal Heat Measurements of TBP-Nitric Acid Solutions", WSRC-TR-94-0540. Westinghouse Savannah River Co. December 16, 1994.
12. V. M. Martinez, "F-Canyon Vessels Capacities (U)", NMP-EFA-94-0054. Westinghouse Savannah River Co. February 17, 1994.
13. High Activity Waste (HAW) Study Guide (221-F Canyon). Training Course NSATSYWE. Westinghouse Savannah River Co.
14. R. A. L. Eubanks, "906 Operator Independence (U)", NMP-EFA-94-0309. Westinghouse Savannah River Co. November 21, 1994.
15. H. A. Ford, "Common Cause Parameters Using the Multiple Greek Letter Method-Work Performed by Los Alamos National Laboratory for WSRC (U)", WSRC-TR-92-470. Westinghouse Savannah River Co. June 21, 1993.
16. C. R. Lux, L. W. Christiansen, K. M. Marshall, T. L. Slaven, "Frequency Determination for Runaway TBP/Nitric Acid Reactions in Support of the F-Canyon BIO (U)." S-CLC-F-00100. Westinghouse Savannah River Co. June 21, 1994.
17. E. V. Browne, L. W. Christiansen, C. R. Lux, "Scoping Study of Red Oil Reactions in F-Canyon Evaporators (U)." S-CLC-F-00146. Westinghouse Savannah River Co. January, 1995.
18. F-Canyon Basis for Interim Operation (U). WSRC-RP-93-1215.
19. Inter-Office Memorandum from R. A. L. Eubanks, "Solvent Additions (U)", Westinghouse Savannah River Co. March 8, 1995.

ATTACHMENTS AND APPENDICES

APPENDIX A - MEMORANDA (Page 12)
APPENDIX B - DIAGRAMS (Process Flow Diagram, Evaporator Diagrams) (Page 25)
APPENDIX C - TABULATION OF HUMAN ERROR EVENTS (Page 29)
APPENDIX D - 8.5E EVAPORATOR FAULT TREE AND DATA (Page 40)
APPENDIX E - 9.3E EVAPORATOR FAULT TREE AND DATA (Page 71)
APPENDIX F-7.6E \& 7.7 EVAPORATOR FAULT TREE AND DATA (Page 102)
APPENDIX A - MEMORANDA
MEMO
Inter-Office Memorandum from T. G. Campbell,
PAGE13
"Boiling Points of Various Evaporator Solutions",Westinghouse Savannah River Co. August 26, 1994.Inter-Office Memorandum from T. G. Campbell,"Probability for Accumulation of TBP in CanyonSumps", Westinghouse Savannah River Co. June 3,1994.
Inter-Office Memorandum from Tracy Rudisill (with 15 attachments), "RE: Mixing Studies", Westinghouse Savannah River Co. August 30, 1994.Inter-Office Memorandum from S. H.Marek (withattachments), "8.5 Evaporator Information",Westinghouse Savannah River Co. August 4, 1994.
Inter-Office Memorandum from R. A. L. Eubanks, 24 "Solvent Additions (U)", Westinghouse Savannah River Co. March 8, 1995.

INTER-OFFICE MEMORANDUM Savannah River Site

26-Aug-1994 02:53pm EST
To: See Below
From: Thomas G. Campbell
(CAMPBELL-TG-O5094 AT A1 AT SASRS2)
Dept: NMPD Safety Documentation
Tel : 2-3319

Boiling Points of Various Evaporator Solutions

I have found some good information on vapor-liquid equilibrium and boiling points in DPSOP 250, "200 Areas Process Guidebook". Using this information, I have made some calculations to prove our assumption that the temperature interlock will be reached before all of the aqueous in an evaporator could be boiled away. In these calculations I assumed the temperature interlock was set at 118 C , although I'm sure we could set the interlock lower without adversely impacting operations.

Under normal operating conditions, a continuous evaporator runs with a boiling $s p$ of 1.25, and makes overheads wich about 6\% nitric acid. For this condition, the vapor-liquid equilibrium chart in DPSOP 250 gives a sodium nitrate concentration of 25% (about 3.7 M) and 20% nitric acid (about 4.0 M), with a boiling point of 112 C , which is consistent with our experience. Concentrating this solution to a boiling point of 118 C gives a final sodium nitrate concentration of 33% and nitric acid concentration of 23%. The sp g would be about 1.33 (boiling). The volume reduction to reach this point is only about 30%.

If you assume that the evaporator bottoms have no solids (very unusual), only nitric acid, then to make 6% nitric acid overheads would require the bottoms to be about 32% nitric acid, with a boiling point of about 106 C . To reach a boiling point of 118 C , th:- evaporator bottoms must be concentrated to about 56\% nitric acis My calculations indicate a volume reduction in this case of about 75\%, ..aich is probably somewhat larger than actual because of the conservative assumptions I made about the amount of nitric acid lost to the overheads.

In my opinion, expected operating conditions are closer to the first example, with the second example being more of a worse case. In both of the examples, however, the temperature interlock of 118 C would be reached and the evaporator shut down well before all of the aqueous is gone. As I mentioned earlier, the interlock probably can be lowered to at least 115 C , thus providing even more margin.

Although the above calculations were primarily done with the continous waste evaporators (9.3 E and 8.5 E) in mind, the same conclusions can be expected with the batch evaporators, especially when they are being used for acid stripping concentrated bottoms. As for 17.7 E , you can concentrate uranyl nitrate to a boiling point of 118 C also, but the U concentration ($\mathrm{wt} \%$) would have to be increased from about 30% (1.5 sp g) to about 75% (sp g of over 2.2). I find it hard to believe that the evaporator would continue to operate under these conditions. The temperature interlock on 17.7E could be lowered substantially, however, probably to about 110 C .

INTER-DFFICE MEMORANDUM
Sauannah River Site
03-Jun-1994 84:30pm EDT
To: See Below
From: Thomas G. Campbell
(CAMPBELL-TG-05094 AT A1 AT SASRS2)
Dept: NPSR
Tel: 2-3319

Probabillty for Accumulation of TBP in Canyon Sumps

Process solvent is expected to be received in canyon sump receipt tanks from time to time due to olerflows and leaks from canyon tanks and piping. Procedures require that accumulated solvent be remoued from receipt tanks before amounts (about 3000 pounds of TBP) are reached that could be a concern from a "red oil" reaction standpoint. The only way an amount can be received that is large enough to be of concern is from a single sump transfer. Experience indicates that the frequency of receiving such a large mass of organic material unespectedly into a canyon vessel is uery low. Myself, Ronnye Eubanks, and Dave Chostner conservatively estimate that a receipt of solvent, containing more than 3000 pounds of TBP, can be espected in the sump receipt tanks less than once every five years. This value is considered conservative because loss of such a large volume would be detected during operations. Actions other than transfer to sump receipt would be expected in these situations. fiso, in our collective experience in the canyons (more than 40 years) we can recall of no occasion when such a large volume of organic material was received into a sump receipt tank from a leak, spill, or transfer error. Please incorporate this value conce in 5 years for receipt of large volumes of soluent in sump receipt) into the sump receipt tank fault trees for "red oil".

Distribution:

To: Lance W. Christiansen
(CHRISTIANSEN-LW-LB489 @A1@SLSRP1)

$\begin{aligned} & \text { CC: } \\ & \text { C: } \\ & \text { CC: } \end{aligned}$	ONELIO M. EBRA-LIMA	(${ }^{\text {a }}$ (EB
	Ray lus	CHACRR-T
	Dauid F. Chostner	
	OSTNER-DF-030	
	NKS-nh-06258	

CC: Sandra H. Marek (MAREK-SH-07923 AT A1 AT SASRS2)

INTER-OFEICE MEMORANDUM

Savannah River Site

30-Aug-1994 02:25ym EST
TO: ONELIO M. EBRA-LIMA
(EBRALIMA-OM-T5452 AT Al AT SLSRPI)
CC: Thomas G. Campbell
(CANPBELL-TG-05094 @AlGSASR52)
From: Tracy 5. Rudisill
(RUDISILI-TS-T6876 AT AI AT SLE. Pl
Dept: CPT/CHEMICAI \& HYDROGEN TECH
Tel : 52539

RE: Mixing Studies

Neguib estimates the experimental work will be complete by the end of september. He anticipates data analysis and documentation will require approximately 2 months. Therefore, we should have correlation(s) for the canyon tanks by the end of November.
INTER-OFFICE MEMORANDUMSavannah River Site
22-Jul-1994 08:15am EST
To: See Below
From: Neguib M. Hassan(HASSAN-NM-L2267 AT AI AT SASR52)
Dept: CPT/CHEMICAL \& HYDROGEN TECH
Tel : x5-5765
RE: Good Newe About Mixing Testa
This may be a worse case, but in the next few runs we will reduce the liquid level in small increments andestablish a mixing pattern. We know thus far that just below the second impeller (approximately 12 inchesof liquid in our tank or about 5.3 feet scaled canyon tank-8' $\times 11^{\prime \prime}$) no organic is detectable in thecurrent sampling procedure.
Distribution:
To: Thomas G. Campbell
(CAMPBELI-TG-05094 AT Al AT SASR52)
CC: DON F. PADDLEFORD
(PADDLEFORD-DE-H0010 AT Al AT SLSRPI)
CC: Tracy 5. Rudisill
(RUDISILI-TS-T6876 AT Al AT SLSRP1)
CC: Lee Hyder (HYDER-ML-T3258 AT Al AT SLSRPl)
CC: James R. Schornhorst
(SCHORNHORST-JR-Y4538 AT AI AT SLSRPI)
CC: William E. Harris(LUX-CR-T7244 AT Al AT SLSRPI)
CC: ONELIO M. EBRA-LIMA
(EBRALIMA-OM-T5452 AT AI AT SLSRPI)
CC: Thomas G. Campbell
David F Chostner (CHOSINER-DF-03090 @Al@SASRS2)
CC: Charlene B. Cochran
(COCHRAN-CB-06921 @Al@SASRS2)
CC: CLINT R. WOLFE (WOLFE-CR-H0021 AT AI AT SLSRPl)
CC: Jim Knight
CC: Frank R. Graham
(KNIGHT-JR-T3559 AT Al AT SLSRPl)
CC: Neguib M. Hassan
(GRAHAM-FR-T6413 AT Al AT SLSRPI)
CC: Major C. Thompson(HASSAN-NM-L2267 @Al@SASRS2)(THOMPSON-MC-T3324 @AI@SASRS2)

INTER-OFFICE MEMORANDUM
Savannah River Site
22-Jul-1994 11:02am EST

To: See Below

From: Thomas G. Campbell (CAMPBELL-TG~05094 AT AI AT SASR52
Dept: NMPD Safety Documentation
Tel : 2-3319

RE: Good_News About Mixinc Tests

I've got to make one more comment on this subject.
If covering the top set of agitator blades is what is important for sampling organic, then a tank certainly does not have to be "full". In canyon tanks, both sets of agitator blades are covered by the time the tank is about half full. In $8 x 11$ and loxil tanks, there is four feet between the bottom of the lower set of blades and the bottom of the upper set of blades. The bottom set of blades is within about six inches of the bottom of the tank. Therefore both sets of blades should be covered before the tank contains five feet of solution. In bicell tanks, which are 15 feet high, there is six feet from bottom to bottom of the agitator blades. Again, the upper set of blades are covered by the time the tank is about half full.

From what Neguib said in his message, I'm not sure your test equipment is scaled correctly. He said the upper impeller is uncovered at $5^{\prime \prime} 3^{\prime \prime}$ of liquid level. In an actual canyon 8×11 tank, the upper set of agitator blades would be covered by at least 3 inches of solution at that level.

Distribution:

To: Tracy 5. Rudisill
(RUDISILL-TS-T6876 AT Al AT SLSRPI)
CC: Charlene B. Cochran
(COCHRAN-CB-06921 AT A1 AT SASRS2)
CC: DON F. PADDLEFORD
(PADDLEFORD-DF-HOO10 AT A1 AT SLSRP1)
CC: Lee Hyder (HYDER-ML-T3258 AT Al AT SLSRPl)
CC: James R. Schornhorst
(SCHORNHORST-JR-Y4538 AT AI AT SLSRPI)
CC: William E Harris (HARRIS-WE-05596 QAl@SASRS2)
$\begin{array}{ll}\text { CC: } & \text { Ray Lux } \\ \text { CC: } & \text { ONELIO M EBRA-LIMA }\end{array}$
(EBRALIMA-OM-T5452 AT AI AT SLSRPI)
CC: David F Chostner . (CHOSTNER-DF-03090 @Al@SASRS2)
CC: CLINT R. WOLFE (WOLFE-CR-H0021 AT AI AT SLSRPI)
CC: Jim Knight
CC: Frank R. Graham
CC: Neguib M Hassan
(KNIGHT-JR-T3559 AT Al AT SLSRPl)
(GRAHAM-FR-T6413 AT Al AT SLSRPI)
(HASSAN-NM-L2267 QAl@SASRS2)
CC: Major C Thomp~on
(THOMPSON-MC-T3324 @Al@SASR52)

```
INTER-OFFICE MEMORANDUM
Savannah River Site
22-Jul-1994 11:40am EST
To: See Below
From: DON F. PADDLEFORD
( PADDLEFORD-DF-HOO10 AT Al AT SLSRPI Dept: WESTINGHOUSE STAFF
Tel :45420
```


RE: Good News About Mixing Tests

```
I guess I meant---filled above upper stirrer blades--- instead of full. Apparently this would only be half full according to \(T\). Campbell's response. You may well be right that full could represent a bad situation too?? I don't know whether the scale tests covered this "full" depth or not.
Don
Distribution:
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{To: Charlene B. Cochran ( COCHRAN-CB-06921 AT Al AT SASRS2 )} \\
\hline \multicolumn{3}{|l|}{CC: DON F. PADDLEFORD} \\
\hline \multicolumn{3}{|l|}{( PADDLEFORD-DF-HOO10 AT Al AT SLSRPl )} \\
\hline \multicolumn{3}{|l|}{CC: Tracy S. Rudisill} \\
\hline \multicolumn{3}{|l|}{( RUDISILL-TS-T6876 AT Al AT SLSRP1 )} \\
\hline CC: & Lee Hyder & ( HYDER-ML-T3258 AT Al AT SLSRPI ) \\
\hline \multicolumn{3}{|l|}{CC: James R. Schornhorst} \\
\hline \multicolumn{3}{|l|}{( SCHORNHORST-JR-Y4538 AT Al AT SLSRPl )} \\
\hline CC: & William E. Harris & ( HARRIS-WE-05596 @Al@SASRS2 ) \\
\hline CC: & Ray Lux & ( LUX-CR-T7244 AT Al AT SLSRPl \\
\hline \multicolumn{3}{|l|}{CC: ONELIO M. EBRA-LIMA} \\
\hline \multicolumn{3}{|l|}{( EBRALIMA-OM-T5452 AT Al AT SLSRPl )} \\
\hline CC: & Thomas G. Campbell & ( CAMPBELL-TG-05094 @Al@SASRS2 \\
\hline CC: & David F. Chostner & ( CHOSTNER-DF-03090 @Al@SASRS2 ) \\
\hline CC: & Charlene B. Cochran & ( COCHRAN-CB-06921 @Al@SASRS2 ) \\
\hline CC: & CLINT R. WOLFE & ( WOLFE-CR-H0021 AT Al AT SLSRP1 ) \\
\hline CC: & Jim Knight & ( \(\sim\) NIGHT-JR-T3559 AT Al AT SLSRPl ) \\
\hline CC: & Frank R. Graham & ( GRAHAM-FR-T6413 AT Al AT SLSRPl ) \\
\hline CC: & Neguib M. Hassan & ( HASSAN-NM-L2267 @Al@SASR52 ) \\
\hline CC: & Major C. Thompson & ( THOMPSON-MC-T3324 @Al@SASRS2 ) \\
\hline
\end{tabular}
```

INIER-OFFICE MEMORANDDM
Savannah River Site
22-Jul-1994 12:30pm EST
To: See Below
From: Neguib M. Hassan
(HASSAN-NM-L2267 AT Al AT SASR52
Dept: CPT/CHEMICAL \& HYDROGEN TECH
Tel : x5-5765

RE: Good News About Mixing Tests

The second impeller in our small tank is currently located 14 inches from the bottom of the tank and it can be moved up/down. In the prelimenary test runs, we collected data at 6,8 and 12 inches with one set of impeller and found that no organic is detectable at the 12 inch level even when the initial concentration of organic was 8% volume. In the current runs, we raised the liquid level above the second impeller to see the effect. As I mentioned we can locate the second impeller at any point in the shaft and repeat an experiment. Thanks for the information

Distribution:

To: Thomas G. Campbell
(CAMPBELL-TG-05094 AT AI AT SASR52)
CC: Tracy S. Rudisill
(RUDISILL-TS-T6876 AT Al AT SLSRPl)
CC: Charlene B. Cochran
(COCHRAN-CB-06921 AT AI AT SASRS2)
CC: DON F. PADDLEFORD
(PADDLEFORD-DF-HOO10 AT AI AT SLSRPI)
CC: Lee Hyder (HYDER-ML-T3258 AT Al AT SLSRPI)
CC: James R. Schornhorst
(SCHORNHORST-JR-Y4538 AT Al AT SLSRPl)
CC: William E. Harris (HARRIS-WE-05596 @Al@SASRS2)
CC: Ray Lux
(LUX-CR-T7244 AT Al AT SLSRPI)
CC: ONELIO M. EBRA-LIMA
(EBRALIMA-OM-T5452 AT AI AT SLSRPI)
CC: David F Chostner (CHOSTNER-DF-03090 @Al@SASR52)
CC: CLINT R. WOLFE
(WOLFE-CR-H0021 AT Al AT SLSRPI)
CC: Jim Knight
CC: Frank R. Graham
(KNIGHT-JR-T3559 AT Al AT SLSRPl)
(GRAHAM-FR-T6413 AT Al AT SLSRPl)
$\begin{array}{ll}\text { CC: } & \text { Neguib M. Hassan } \\ \text { CC: } & \text { Major C. Thompson }\end{array}$
(HASSAN-NM-L2267 @Al@SASRS2)
(THOMPSON-MC-T3324 @Al@SASR52)

```
INTER-OFFICE MEMORANDTM
Savannah River Site
30-Aug-1994 03:35pm EST
To: See Below
From: Thomas G. Campbell
( CAMPBELI-TG-05094 AT Al AT SASR52 )
Dept: NMPD Safety Documentation
Tel : 2-3319
```


See Attached

```
It looks like it will be a long time before we have anything conclusive on O/A sampling reliability from SRTC. As Dave has suggested, an in-canyon test is still probably our best bet to get useful information anytime soon.
```


Diatribution:

```
\begin{tabular}{|c|c|c|}
\hline T0: & Andrew P. Mock & ( MOCK-AP-L0498 AT Al AT SASR52 ) \\
\hline \multicolumn{3}{|l|}{To: Charlene B. Cochran} \\
\hline \multicolumn{3}{|l|}{( COCHRAN-CB-06921 AT Al AT SASRS2 )} \\
\hline To: & Renee H. Spires & ( SPIRES-RH-06630 AT Al AT SASRS2 ) \\
\hline To: & David F. Chostner & \\
\hline \multicolumn{3}{|l|}{( CHOSTNER-DF-03090 AT Al AT SASR52 )} \\
\hline To: & Ray Lux & ( LUX-CR-T7244 QAlQSLSRPI ) \\
\hline To: & Eric V. Browne & ( BROWNE-EV-Y8089 QAlQSLSRPI ) \\
\hline To: & J. Stuart Evans & ( EVANS-JS-07266 AT Al AT SASRS2 ) \\
\hline
\end{tabular}
```

```
INTER-OFFICE MEMORANDOM
Savannah River Site
04-Aug-199408:26am FDT
To: Eric V. Browne ( BROWNE-EV-Y8089 EAlQSLSRPl )
CC: Charlene B. Cochran
    ( COCHRAN-CB-06921 AT Al AT SASRS2 )
CC: Ronnye A. L. Eubanks
( EUBANKS-RA-06258 AT Al AT SASRS2 )
CC: David F. Chostner
( CHOSTNER-DF-03090 AT Al AT SASRS2 )
From: Sandra H. Marek
( MAREK-SH-07923 AT Al AT SASRS2 )
Dept: NMPD/SEP TECH.
Tel : 9524199
```


85 Evaporator Information

```
Attached is the information you requented for 8.5E. Bryan, one of our STE's, reviewed some blueprints to perform the calculations and verified/corrected the numbers I gave you off the top of my head on Tuesday. I'll call you later today to discuss these numbers and some of your other assumptions.
```

INTER-OFFICE MEMORANDUM
Savannah River Site
03-Aug-1994 05:28am EDT
To: Sandra H. Marek
(MAREK-SH-07923 AT Al AT SASRS2)
From: Bryan K. Altringer
(ALTRINGER-BK-Y5558 AT Al AT SASRS2
Dept: SEP TECH
Tel : 952-2153
Info you requested (U)
OK. . .
By now you should have found the four prints I left you. Hope they are helpful. Sorry about the poor quality of the one showing the trays.

1. The overflow wier is at 96.7", or 15.360 lb water
2. Typical steam rates for 8.5 E are $13,500 \mathrm{lb} / \mathrm{hr}$ to $16,500 \mathrm{lb} / \mathrm{hr}$
(or $15,000+/-1500 \mathrm{lb} / \mathrm{hr}$). It's unusual to see it run outside this range. I normally assume $15,000 \mathrm{lb} / \mathrm{hr}$ as the normal rate.
3. Time to lose 1 ft level....this is a fun one.

Assumptions: $15,000 \mathrm{lb} / \mathrm{hr}$ steam 90% efficiency (0.9 lb evap per lb steam) initial liquid level at wier height, $96.7^{\prime \prime} \mathrm{sp} \mathrm{gr}$ at 1.0 (this made it easier for me)

Calculations: \quad Feed rate $=(15,000 \mathrm{lb} / \mathrm{hr})(0.9)=13,500 \mathrm{lb} / \mathrm{hr}$
Final liquid level $=96.7^{\prime \prime}-12^{*}=84.7^{\prime \prime}$
Final pounds $=-11,634 \mathrm{lb}$ (per calib chart)
Pounds depletion $=15,360 \mathrm{lb}-11,634 \mathrm{lb}$
$=3726 \mathrm{lb}$
Time $=(3726 \mathrm{lb}) /(13,500 \mathrm{lb} / \mathrm{hr})=0.26 \mathrm{hr}$
$=16.56$ minutes (How 'bout those sig figs!)
NOTE: You know as well as I do how the $l b / i n$ varies so much in a continuous evaporator. Ultimately, this calculation is only one of many possibilities for the evaporator...
4. The typical length of a run:

Assumptions:

$$
\begin{aligned}
& \text { Full } 8.7 \text { at } 146,797 \mathrm{lb} \text { water } \\
& \text { Heel of } 36,000 \mathrm{lb} \text { water } \\
& \text { Typical run rate }=13,500 \mathrm{lb} / \mathrm{hr} \text { feed } \\
& \begin{array}{l}
(146,797 \mathrm{lb}-36,000 \\
8.2 \mathrm{lb}) /(13,500 \mathrm{lb} / \mathrm{h}
\end{array}
\end{aligned}
$$

Time $=(146,797 \mathrm{lb}-36,000 \mathrm{lb}) /(13,500 \mathrm{lb} / \mathrm{hr})$
If you count startup and shutdown heating and cooling times (while the evaporator above 80 deqrees C), Ronnve mav have been able to stretch it to 16 hours. I do not believe we could have gotten 16 hours on feed.
5. How far down 'till we uncover the tube bundle? A quickie roundabout calculation based on the prints lead~ me to believe that we could go down as far as 1.5 ft below wier level before uncovering tubes. Unfortunately, this number sounds funny to me. Check it out.
6. Distance between the bottom of the de-entrainment column and the bottoms of the reboiler looks to be about 4.5 feet based on the prints. You can check it out yourself.

I didn't have time to look into any of the instrumentation stuff. I saw the alarm light you saw for the
"low hat flow," but that's all I saw.

```
INTER-OFFICE MEMORANDUM
    Savannah River Site
08-Mar-1995 10:31am EST
To: Thomas G. Campbell
    ( CAMPBELL-TG-05094 AT A1 AT SASRS2 )
To: Ray Lux ( LUX-CR-T7244 @A1@SLSRP1 )
CC: Dave H Ecklund
    ( ECKLUND-DH-L1695 AT A1 AT SASRS2 )
CC: David F. Chostner
    ( CHOSTNER-DF-O3090 AT A1 AT SASRS2 )
From: Ronnye A. L. Eubanks ( EUBANKS-RA-O6258 AT A1 AT SASRS2 fi
Dept: SEP TECH/NMPD
Tel : 2-4074
Solvent additions (U)
Years ago I summarized the amount of solvent added to each cycle. The data
I used was from Maurice Meadows records from 1970-1985. This is what I came
up with:
Average solvent (n-Paraffin plus TBP) added to:
1st Cycle - 30,500 pounds/year
2nd Pu - 13,200 pounds/year
2nd U - 18,700 pounds/year
Average pounds of solvent/MTU processed through 1st cycle:
1st Cycle - 28 pounds/MTU
2nd Pu - }13\mathrm{ pounds/MTU
2nd U - }17\mathrm{ pounds/MTU
On average the n-paraffin and TBP addition was at 30 vol\% TBP. I assumed the TBP lost to solubility in the aqueous was about equal to the evaporation rate of the n-paraffin. Solvent lost to entrainment (or oops) would have been at approximately \(30 \mathrm{vol} \%\) TBP.
Tom, I hope this is what you told me Ray needed. If not, I will try again.
```

Ronnye

APPENDIX B - DIAGRAMS

- Process Flow Diagram (Page 28)
- Continuous Evaporator Diagram (Page 29)
- Batch Evaporator Diagram (Page 30)

Schematic of Continuous Eraporator

Standard Coll Batch Evaporator and Columa

APPENDIX C - TABULATION OF HUMAN ERROR EVENTS

The following Appendix contains a tabulation of the human error events for the evaporators considered (8.5E, 9.3 E and $7.6 \mathrm{E}-7.7 \mathrm{E}$). It gives the event names and descriptions of the human error events, as well as information on the probability of human error (Ref. 7). It also contains information on applicable procedures, and actions/equipment involved in the event where necessary.

- 8.5E Evaporator (Page 32)
- 9.3E Evaporator (Page 35)
- 7.6E \& 7.7E Evaporators (Page 38)

Calculation No. S-CLC-F-00140 Sheet No. 32 of 130
Rev. B

			$\stackrel{\square}{\circ}$		啓	
					$\begin{array}{\|l\|l} \hline 8 \\ \frac{8}{2} \\ \frac{3}{5} \\ \frac{5}{5} \end{array}$	
					亭昆	
					嵓品	
	$\begin{array}{\|c} 1 \\ \hline \\ \hline \end{array}$					
		苗			\％	$\begin{array}{\|c} n \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$
		\sim	\％	$\left\lvert\, \begin{aligned} & 7 \\ & \therefore \end{aligned}\right.$	右	

							妾
				O		$\bar{\circ}$	$\stackrel{\rightharpoonup}{\circ}$
登荳;							
							䨖
				$\underline{\Sigma}$		这	忍
空；							
							郞
					$\left\lvert\, \frac{\square}{2}\right.$	最	\％
F－$\because+$	¢	\cdots	$\cdots \%$	\cdots	$8 \times$	8	8
	$\cdots+$	$\square \div$		＋$+\ldots$			
			＋	$\cdots+\cdots$	\cdots		

\％；						
\because						
䳐：						
管						
		菏	\qquad		豎	
\％			K	＋$+\ldots$		

Kion				
	曾			
蔍等		\square		\qquad

APPENDIX D - 8.5E EVAPORATOR FAULT TREE AND DATA

The following abbreviations appear on the fault tree print out and in the basic event file for the fault tree:
FR=Failure Rate
a:= assumption
COG= cognizant engineer estimate/information
TRUNC $=$ Truncation limit of cutset evaluator
The Beta Factor method used to estimate common cause alarm failure is explained in Reference 15.
NOTE: Events in this tree with a probability of "1E-32" are incredible. They do not contribute to the top event frequency and were included only to show that they had been considered. The number " $1 \mathrm{E}-32$ " was used because it is the smallest number CAFTA is capable of handling.

Fault Tree (Page 41)
Gate/Event Cross Reference (Page 57)

Cutset Report (Page 58)

Basic Event Data (Page 68)
Type Code Data (Page 70)

Cutset Report for 8.5E Evaporator

Set No.	Event Name	Description	c	$\begin{aligned} & \text { B.E. } \\ & \text { Input } \end{aligned}$	Calc. Result		CUM \%
1.	GI_TOP					$2.02 \mathrm{E}-07$	
	FRE-PMP-ADJG+	Pump speed is adjusted	4	0.25H	5.00E-01	7.80E-08	100.0
	LOW-CE-FEED	Low Feed Flow is Not Detected or Corrected		1.0 N	$1.00 \mathrm{E}+00$		
	OPR906LEMCNA\#	Calibration Error - Level instrument is calibrated to give a false reading		5.0E-3 ${ }^{1} \mathrm{~N}$	5.00E-03N		
	OPRCELE-MCNA \#	Calibration Error - Level Instrument is calibrated to give a high signal		0 N $5.0 \mathrm{E}-3$ N	5.00E-03N		
	OPRGCETEIRNA\#	Evaporator Temperature Sensor is Out of Calibration	1	1-1N	1.00E-02N		
	PER8.50P013\#	Continuous Evaporator is in Operation	1	$1.0 \mathrm{E}-2$ N 1 N	1.30E-01N		
	TBPTK---PREA\#	Process upset causes excess organic in feed	3	$1.30 \mathrm{E}-01 \mathrm{~N}$ 12 H	$1.37 \mathrm{E}-04$		
				0.1 Y			
2.	FRE-PMP-ADJG+	Pump speed is adjusted	4	0.25H ${ }^{0.1 \mathrm{H}}$	5.00E-01	2.73E-08	100.0
	LOW-CE-FEED OPR906LEMCNA\#	Low Feed Flow is Not Detected or Corrected Calibration Error - Level instrument is calibrated		1.0 N	$1.00 \mathrm{E}+00$		
		Cive a false reading		$5.0 \mathrm{E}-3 \mathrm{~N}$	$5.00 \mathrm{E}-03 \mathrm{~N}$		
	OPRCELE-MCNA\#	Calibration Error - Level Instrument is calibrated to give a high signal		$5.0 \mathrm{E}-3 \mathrm{r} \mathrm{N}_{\mathrm{N}}^{\mathrm{N}}$	5.00E-03N		
	OPRGCETEIRNA\#	Evaporator Temperature Sensor is Out of Calibration		$1{ }^{1 N}$	$1.00 \mathrm{E}-02 \mathrm{~N}$		
	PER-COLD035G\#	Cold streams sent to 8.7		$1.0 \mathrm{E}-2$ N 1 N	3.50E-01N		
	PER8.50P013\#	Continuous Evaporator is in Operation	1	3.50E-01N	1.30E-01N		
				$1.30 \mathrm{E}-01 \mathrm{~N}$			
	TBPTK2BPPREA\#	Process upset causes excess TBP in canyon product	3	$\begin{gathered} 12 \mathrm{H} \\ 0.1 \mathrm{Y} \end{gathered}$	1.37E-04		
3.	FRE-PMP-ADJG+	Pump speed is adjusted	4	0.25 H	5.00E-01	$2.28 \mathrm{E}-08$	
	LOW-CE-FEED	Low Feed Flow is Not Detected or Corrected					${ }_{0}$
	OPR17.5-ACNA\#	Second consecutive transfer containing TBP from tank 17.5 is fed to same batch		5.0E-3 $\begin{array}{r}1.0 \mathrm{~N} \\ 1 \mathrm{~N} \\ \mathrm{~N}\end{array}$	$1.00 \mathrm{E}+00$ $5.00 \mathrm{E}-03 \mathrm{~N}$		-
	OPRCELE-MCNA\#	Calibration Error - Level Instrument is calibrated to give a high signal		$\left\|\begin{array}{rr} 2.0 \mathrm{E}-3 & \mathrm{~N} \\ 5.0 \mathrm{~N}-3 & \mathrm{~N} \end{array}\right\|$	5.00E-03N		-
	OPRGCETEIRNA\#	Evaporator Temperature Sensor is Out of Calibration	1	5.0E-3 1 N	1.00E-02N		
	PER8.50P013\#	Continuous Evaporator is in Operation	1	$1.0 \mathrm{E}-2 \begin{aligned} & 1 \mathrm{~N} \\ & 1\end{aligned}$	1.30E-01N		
	PERTK175.20A\#	Sufficient TBP present in tank 17.5	1	$\left.\begin{array}{r} 1.30 \mathrm{E}-01 \mathrm{~N} \\ 1 \mathrm{~N} \end{array} \right\rvert\,$	$2.00 \mathrm{E}-03 \mathrm{~N}$		
	PERTR175002A\#	Material Is Being Received From 17.5	1	$\begin{array}{r} 2.00 \mathrm{E}-03 \mathrm{~N} \\ 1 \mathrm{~N} \end{array}$	2.00E-02N		
	TR-17.5-T0-8.7	Transfer Excess TBP From 17.5 to 8.7		2.00E-02N	$1.00 \mathrm{E}+00$		

Cutset Report for 8.5E Evaporator (CONT.)

Cutset Report for 8.5E Evaporator (CONT.)

$\begin{aligned} & \text { Set } \\ & \text { No. } \end{aligned}$	Event Name	Description	C	B.E. Input	$\begin{array}{r} \text { Calc. } \\ \text { Result } \end{array}$	Cutset Freq. (/yr)	CUM \%
8.	OPRGCETEIRNA\#	Evaporator Temperature Sensor is Out of Calibration	1	1N	1.00E-02N		
	OPRLV906ACNA	Operator over fills tank 906 (Level Procedurally		1.0E-2	1.00E-02N		
	OPRLV906ACNA\#	Operator over fills tank 906 (Level Procedurally Controlled)	1	5.0E-3 $\begin{array}{rr}1 N \\ N\end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$		
	PER-COLD035G\#	Cold streams sent to 8.7	1	1 N	$3.50 \mathrm{E}-01 \mathrm{~N}$		
				$3.50 \mathrm{E}-01 \mathrm{~N}$			
	PERCESPG100G\#	Low SPG Not Detected	1	1, 1 N	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	TBPTK2BPPREA\#	Process upset causes excess TBP in canyon product	3	$1.00 \mathrm{E}+00 \mathrm{~N}$ 12 H			
	TBPTK2BPPREA	Process upset causes excess TBP in canyon product	3	0.1 Y	1.37E-04		
	FRE-PMP-ADJG+	Pump speed is adjusted	4	0.25 H	5.00E-01	5.89E-09	100.0
	LOW-CE-FEED	Low Feed Flow is Not Detected or Corrected		1.0N	$1.00 \mathrm{E}+00$		
	LSTTK906FAIA\#	Tank 906 level sensor failure	5	1.0 N 6 M	1.08E-03		
	OPRCELE-MCNA\#	Calibration Error - Level Instrument is calibrated to		$5.00 \mathrm{E}-07 \mathrm{H}$			
	OPRCELE-MCNA\#	Calibration Error - Level Instrument is calibrated to give a high signal	1	$\left\lvert\, \begin{array}{lr} 1 N \\ 5.0 E-3 & N \end{array}\right.$	5.00E-03N		
	OPRGCETEIRNA\#	Evaporator Temperature Sensor is Out of Calibration	1	1 N	1.00E-02N		
	PER-COLD035G\#	Cold streams sent to 8.7	1	1.0E-2 $\quad 1 \mathrm{~N}$	3. $50 \mathrm{E}-01 \mathrm{~N}$		
			1	$3.50 \mathrm{E}-01 \mathrm{~N}$	3.50E-01N		
	PER8.50P013\#	Continuous Evaporator is in Operation	1	1N	1.30E-01N		
	TBPTK2BPPREA\#	Process upset causes excess TBP in canyon product		$1.30 \mathrm{E}-01 \mathrm{~N}$			
	TBPIK2BPPREA\#	Process upset causes excess TBP in canyon product	3	$\begin{array}{r} 12 \mathrm{H} \\ 0.1 \mathrm{Y} \end{array}$	1.37E-04		
9.	EREBATCH-2WG+	Frequency of a batch		48Y		3.29E-09	
	OPRGCETEIRNA\#	Evaporator Temperature Sensor is Out of Calibration	1	1N	$1.00 \mathrm{E}-02 \mathrm{~N}$	3.29E-09	100.0
		Operator over fills tank 906 (Level Procedurally		1.0E-2			
	OPRLV906ACNA\#	Operator over fills tank 906 (Level Procedurally Controlled)	1	$\left\lvert\, \begin{array}{lr} & 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 \end{array}\right.$	$5.00 \mathrm{E}-03 \mathrm{~N}$		
	OPRTK906CSNA\#	Operator fails to respond to level alarm in tank 906	1	1N	$1.00 \mathrm{E}-02 \mathrm{~N}$		
	PERCESPG100G\#	Low SPG Not Detected	1	1.0E-2 $\begin{array}{rr}\text { N } \\ 1 \mathrm{~N}\end{array}$			D
			1	$1.00 \mathrm{E}+00 \mathrm{~N}$			$\stackrel{\square}{*}$
	TBPTK---PREA\#	Process upset causes excess organic in feed	3	12 H	1.37E-04		-
				0.1 Y			
10.	FREBATCH-2WG + OPR906LEMCNA\#			$\begin{array}{r} 48 \mathrm{Y} \\ 1 \mathrm{~N} \end{array}$	4.80E+01Y	$1.64 \mathrm{E}-09$	100.0
	OPR906LEMCNA\#	Calibration Error - Level instrument is calibrated to give a false reading	1	5.0E-3 $\begin{array}{rr}1 N \\ N\end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	1.64E-09	
	OPRGCETEIRNA\#	Evaporator Temperature Sensor is Out of Calibration	1	$1 \mathrm{~N}$	$1.00 \mathrm{E}-02 \mathrm{~N}$		
	OPRLV906ACNA\#	Operator over fills tank 906 (Level Procedurally	1	$1.0 \mathrm{E}-2 \mathrm{~N}$			
		Controlled)	1	5.0E-3 N	$5.00 \mathrm{E}-03 \mathrm{~N}$		
	PERCESPG100G\#	Low SPG Not Detected	1	$1 \mathrm{~N}$	$1.00 \mathrm{E}+00 \mathrm{~N}$		
				$1.00 \mathrm{E}+00 \mathrm{~N}$			

Cutset Report for 8.5E Evaporator (CONT.)

$\begin{aligned} & \text { Set } \\ & \text { No. } \end{aligned}$	Event Name	Description	c	$\begin{aligned} & \text { B.E. } \\ & \text { Input } \end{aligned}$	Calc. Result	Cutset Freq. (/yr)	CUM \%
11.	TBPTK---PREA\#	Process upset causes excess organic in feed	3	12 H 0.1 Y	1.37E-04		
	FREBATCH-2WG+	Frequency of a batch		$48 Y$	4.80E+01Y	$1.15 \mathrm{E}-09$	100.0
	OPRGCETEIRNA\#	Evaporator Temperature Sensor is Out of Calibration		1.0E-2 $\begin{array}{r}\text { 1 } \\ \mathrm{N} \\ \hline\end{array}$	$1.00 \mathrm{E}-02 \mathrm{~N}$		
	OPRLV906ACNA\#	Operator over fills tank 906 (Level Procedurally Controlled)	1	5.0E-3 $\begin{array}{cr}1 \mathrm{~N} \\ \mathrm{~N}\end{array}$	5.00E-03N		
	OPRTK906CSNA\#	Operator fails to respond to level alarm in tank 906	1	$\|$ $1.0 \mathrm{E}-2$ 1 N N	$1.00 \mathrm{E}-02 \mathrm{~N}$		
	PER-COLD035G\#	Cold streams sent to 8.7	1	$3.50 \mathrm{E}-01 \mathrm{~N}$	$3.50 \mathrm{E}-01 \mathrm{~N}$		
	PERCESPG100G\#	Low SPG Not Detected	1	$\begin{array}{r} 1 \mathrm{~N} \\ 1.00 \mathrm{E}+00 \mathrm{~N} \end{array}$	1.0UE\%00N		
	TBPTK2BPPREA\#	Process upset causes excess TBP in canyon product	3	$\begin{gathered} 12 \mathrm{H} \\ 0.1 \mathrm{Y} \end{gathered}$	1.37E-04		
12.	ALRTK906NRIG\#	Low level alarm in tank 906 fails	5	3.00E-05H ${ }^{6 \mathrm{H}}$	6.21E-02	$9.69 \mathrm{E}-10$	100.0
	FRE-PMP-ADJG+	Pump speed is adjusted	4	0.25 H 4 H	5.00E-01		
	LOW-CE-FEED	Low Feed Flow is Not Detected or Corrected		1.0 N	$1.00 \mathrm{E}+00$		
	OPRCELE-MCNA\#	Calibration Error - Level Instrument is calibrated to give a high signal		5.0E-3r N	5.00E-03N		
	OPRGCETEIRNA\#	Evaporator Temperature Sensor is Out of Calibration		$\left\|\begin{array}{lr} & 1 \mathrm{~N} \\ 1.0 \mathrm{E}-2 & \mathrm{~N} \end{array}\right\|$	1.00E-02N		
	PER8.50P013\#	Continuous Evaporator is in Operation	1	$1.30 \mathrm{E}-01 \mathrm{~N} \mid$	1.30E-01N		
	RLPPUMP-NREG\#	Pump switch fails to open	1	1.308 1 N	$1.00 \mathrm{E}-03 \mathrm{~N}$		
	TBPTK---PREA\#	Process upset causes excess organic in feed	3	1.0E-3N	1.37E-04		
				$0.1 Y$			
13.	FRE-PMP-ADJG+	Pump speed is adjusted	4	0.25 H 4 H	5.00E-01	7.49E-10	
	LOW-CE-FEED	Low Feed Flow is Not Detected or Corrected		1.0 N	$1.00 \mathrm{E}+00$		
	OPR906LEMCNA\#	Calibration Error - Level instrument is calibrated to give a false reading		5.0E-3	$5.00 \mathrm{E}-03 \mathrm{~N}$		to
	OPRCELE-MCNA\#	Calibration Error - Level Instrument is calibrated to give a high signal		$\left\lvert\, \begin{array}{lr} & 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 & \mathrm{~N} \end{array}\right.$	5.00E-03N		
	PER8.50P013\#	Continuous Evaporator is in Operation	1	$1.30 \mathrm{E}-01 \mathrm{~N}$	1.30E-01N		
	TBPTK---PREA\#	Process upset causes excess organic in feed	3.	1.30 H	$1.37 \mathrm{E}-04$		
	TSTCETE-FAIG\#	Continous Evaporator Temperature Sensor Has Failed	3	$\left\|\begin{array}{r} 0.1 \mathrm{Y} \\ 4 \mathrm{D} \\ 1.00 \mathrm{E}-06 \mathrm{H} \end{array}\right\|$	$9.60 \mathrm{E}-05$		
14.	FREBATCH-2WG+	Frequency of a batch .		48 Y	4.80E+01Y	5.75E-10	100.0

Cutset Report for 8.5E Evaporator (CONT.)

WSRC-RP-95-910
REV. 0
Cutset Report for 8.5E Evaporator (CONT.)

Set No.	Event Name	Description	C	B.E. Input	Calc. Result	Cutset Freq. (/yr)	CUM \%
28.	OPR17.5-ACNA\#	Second consecutive transfer containing TBP from tank 17.5 is fed to same batch		5.0E-3 ${ }^{1 \mathrm{~N}} \mathrm{~N}$	5.00E-03N		
	PER8.50P013\#	Continuous Evaporator is in Operation	1	1 N	1.30E-01N		
	PERTK175.20A\#	Sufficient TBP present in tank 17.5	1	$1.30 \mathrm{E}-01 \mathrm{~N}$ 1 N	$2.00 \mathrm{E}-03 \mathrm{~N}$		
	PERTR175002A\#	Material Is Being Received From 17.5	1	$2.00 \mathrm{E}-03 \mathrm{~N}$ 1 N	$2.00 \mathrm{E}-02 \mathrm{~N}$		
				$2.00 \mathrm{E}-02 \mathrm{~N}$	$2.00 \mathrm{E}-02 \mathrm{~N}$		
	TR-17.5-TO-8.7	Transfer Excess TBP From 17.5 to 8.7		1 N	$1.00 \mathrm{E}+00$		
	CAVCESTMFOWG\#	Pneumatic steam control valve fails open	3	2 H	6.00E-06	1.71E-11	100.0
	FRE-PMP-ADJG+	Pump speed is adjusted	4	3.00E-06 ${ }^{\text {H }}$	5.00E-01		
				- 4 H	5.008-01		
	LOW-CE-FEED	Low Feed Flow is Not Detected or Corrected		1.0 N	$1.00 \mathrm{E}+00$		
	OPR87EM1ACNA\#	operator fails to feed remaining tank contents at end of 1st interval-clean c.		$\left\|\begin{array}{lr} & 1 \mathrm{~N} \\ 5.0 \mathrm{~N}-3 & \mathrm{~N} \end{array}\right\|$	5.00E-03N		
	OPR87EM2ACNA\#	operator fails to feed rellaining tank contents at end	1	5.08-1N	$5.00 \mathrm{E}-03 \mathrm{~N}$		
	OPR87EM3ACNA\#	of 2nd interval-clean out operator fails to feed remaining tank contents at end		$5.0 \mathrm{E}-3$ N 	$5.00 \mathrm{E}-03 \mathrm{~N}$		
		of 3 rd interval-clean out Operator fails to respond to 8.5 E temp. level alarms		5.0E-3 N			
	OPrgblocdenan	Operator fails to respond to 8.5E temp., level alarms (close block valve)		$\left\|\begin{array}{lr} 1 \mathrm{~N} \\ 1.0 \mathrm{E}-2 & \mathrm{~N} \end{array}\right\|$	$1.00 \mathrm{E}-02 \mathrm{~N}$		
	PER8.50P013\#	Continuous Evaporator is in Operation	1	1 N	1.30E-01N		
	PER870RG100A\#	organic remains in feed tank	1	$\begin{array}{r} 1.30 \mathrm{E}-01 \mathrm{~N} \\ 1 \mathrm{~N} \end{array}$	$1.00 \mathrm{E}+00 \mathrm{~N}$		
				$1.00 \mathrm{E}+00 \mathrm{~N}$			
29.	FREBATCH-2WG+ OPR906LEMCNA\#	Frequency of a batch Calibration Error - Level instrument is calibrated to give a false reading		[${ }^{48 \mathrm{Y}} \mathrm{r}$	$\begin{aligned} & 4.80 \mathrm{E}+01 \mathrm{Y} \\ & 5.00 \mathrm{E}-03 \mathrm{~N} \end{aligned}$	$1.58 \mathrm{E}-11$	100.0
	OPRLV906ACNA\#	Operator over fills tank 906 (Level Procedurally Controlled)		$\left\|\begin{array}{rr} & 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 & \mathrm{~N} \end{array}\right\|$	5.00E-03N		
	PERCESPG100G\#	Low SPG Not Detected	1	$1 \mathrm{~N}$	$1.00 \mathrm{E}+00 \mathrm{~N}$		0
	TBPTK---PREA\#	Process upset causes excess organic in feed	3	$1.00 \mathrm{E}+00 \mathrm{~N}$ 12 H	$1.37 \mathrm{E}-04$		\bigcirc
	TSTCETE-FAIG\#	Continous Evaporator Temperature Sensor Has Failed	3		$9.60 \mathrm{E}-05$		∞
				$1.00 \mathrm{E}-06 \mathrm{H}$			
30.	ALR-TLG-COMG\#	Common cause evaporator alarm failure (level, temperature)	5	$\begin{array}{r} 6 \dot{M} \\ 3.00 \mathrm{E}-06 \mathrm{H} \end{array}$	6.45E-03	1.30E-11	100.0
	CAVCESTMFOWG\#	Pneumatic steam control valve fails open	3	$\begin{array}{r} 6 \mathrm{H} \\ 2 \mathrm{H} \end{array}$	6.00E-06		
	FRE-PMP-ADJG +	Pump speed is adjusted	4	$\left\|\begin{array}{r} 3.00 \mathrm{E}-06 \mathrm{H} \\ 0.25 \mathrm{H} \end{array}\right\|$	5.00E-01		
	LOW-CE-FEED	Low Feed Flow is Not Detected or Corrected		1.0N	$1.00 \mathrm{E}+00$		

Cutset Report for 8.5E Evaporator (CONT.)

Set No.	Event Name						
			C	B. E. Input	Calc. Result	Cutset Freq. (/yr)	CUM ${ }^{\text {\% }}$
	LSITK906FAIA\#	Tank 906 level sensor failure	5	6M	1.08E-03		
	PER8.50P013\#	Continuous Evaporator is in Operation		$5.00 \dot{E}-07 \mathrm{H}$			
	TBPTK---PREA\#	Process upset causes excess organic in feed	1	$\begin{array}{r} 1 \mathrm{~N} \\ 1.30 \mathrm{E}-01 \mathrm{~N} \end{array}$	$1.30 \mathrm{E}-01 \mathrm{~N}$		
		Press organic in feed	3	12H	$1.37 \mathrm{E}-04$		

Calculation No. S-CLC-F-00140 Sheet No. 69 of 130
Rev. B
Basic Event Data for 8.5E Evaporator

Event	C	Input	Calc.	Description	Source
ALR-TLG-COMG\#	5	$\begin{array}{r} 6 \mathrm{M} \\ 3.00 \mathrm{E}-06 \mathrm{H} \end{array}$	$6.45 \mathrm{E}-03$	Common cause evaporator alarm failure (level, temperature)	COG: 6 Month, ,., Use Beta factor
ALRHL906NRIG\#	5	6 M	6.21E-02	High level alarm in tank 906 tank	Assumes discovered during Level
		$3.00 \mathrm{E}-05 \mathrm{H}$		fails	Sensor Calibration: FR 3E-5/hr
ALRTK906NRIG\#	5	$\begin{array}{r} 6 M \\ 300 F-05 H \end{array}$	6.21E-02	Low level alarm in tank 906 fails	Assumes discovered during Level
CAVCESTMFOWG\#	3	$\begin{array}{r} 3.00 \mathrm{E}-05 \mathrm{H} \\ 2 \mathrm{H} \end{array}$			Sensor Calibration: FR 3E-5/hr
CAVCESTMFOWG	3	$3.00 \mathrm{E}-06 \mathrm{H}$	6.00E-06	open	discovered in 2 hours (round sheet every hour)
CAVCESTMFOWG +	4	$3.00 \mathrm{E}-06 \mathrm{H}$	6.00E-06	Pneumatic steam control valve fails open	discovered in 2 hours (round sheet every hour)
FRE-PMP-ADJG+	4	俍 0.25 H	$5.00 \mathrm{E}-01$	Pump speed is adjusted	Adjusted 4 times per hour, discovered within 15 Minutes
FREBATCH-2WG +		48 Y	$4.80 \mathrm{E}+01 \mathrm{Y}$	Frequency of a batch	48 times a year, Maximum Starts .
JPRFEED-RECG +	4	$\begin{array}{r} 96 \mathrm{H} \\ 1.00 \mathrm{E}-08 \mathrm{H} \end{array}$	9.60E-07	Large leak in jumper causes failure to feed evaporator	Would Discover by End of Cycle
LOW-CE-FEED		1.0 N	$1.00 \mathrm{E}+00$	Low Feirl Flow is Not Detected or Corrected	Assumed to Occur
LST-CE--EAIG\#	5	$\left\lvert\, \begin{array}{r} 8 \mathrm{H} \\ 5.00 \mathrm{E}-07 \end{array}\right.$	2.00E-06	Continous evaporator level instrument fails high	Assume 8 hours for repair: $5 \mathrm{E}-7 / \mathrm{hr}$ for failure
LST-CE--FAIG+	4	5.00E-07 ${ }^{8 \mathrm{H}}$	4.00E-06	Continous evaporator level instrument fails high	Assume 8 hours for repair: $5 \mathrm{E}-7 / \mathrm{hr}$ for failure
LSTCEHATFAIG+	4	5.00E-07 ${ }^{3 \mathrm{H}} \mathrm{H}$	$1.08 \mathrm{E}-03$	Level instrument in hackman hat fails high	Discovered in 3 months (when calib.)
LSTLE-CECALG+	4	$\begin{array}{r} 4 \mathrm{H} \\ 2.0 \mathrm{Y} \end{array}$	9.12E-04	Frequency of continous evaporator level instrumetation calibration	Assume 4 hour for calibration:Calibrated $2 / y r$, discovered before next cycle
LSTTK906FAIA\#	5	$5.00 \mathrm{E}-07 \mathrm{H}$	1.08E-03	Tank 906 level sensor failure	Assume discovered during calibration: $\text { FR } 5 \mathrm{E}-7 / \mathrm{hr}$
MDPTK8.7FRCG+	4	$\begin{array}{r} 96 \mathrm{H} \\ 1.00 \mathrm{E}-04 \mathrm{H} \end{array}$	9.51E-03	Continous evaporator feed pump fails	Would Discover by End of Cycle (4 days)
OPR17.5-ACNA\#	1	$5.0 \mathrm{E}-3 \quad \mathrm{~N}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	Second consecutive transfer containing TBP from tank 17.5 is fed to same batch	sump receipt tank transfer procedure does not allow a 2nd transfer
OPR87EM1ACNA\#	1	5.0E-3 $\begin{array}{rr}1 \mathrm{~N} \\ \mathrm{~N}\end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	operator fails to feed remaining tank contents at end of 1st interval-clean out	Typical Circumstances
OPR87EM2ACNA\#	1	$\begin{array}{cr} & 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 & \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	operator fails to feed remaining tank contents at end of 2nd interval-clean out	typical circumstances
OPR87EM3ACNA\#	1	$\begin{array}{lr} & 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 & \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	operator fails to feed remaining tank contents at end of 3rd interval-clean	Typical Circumstances
OPR906LEMCNA\#	1	$\begin{array}{lr} & 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 & \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	out Calibration Error - Level instrument is calibrated to give a false reading	Typical Circumstances
OPRCELE-MCNA\#	1	$\left\lvert\, \begin{array}{rr} & 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 & \mathrm{~N} \end{array}\right.$	$5.00 \mathrm{E}-03 \mathrm{~N}$	Calibration Error - Level Instrument is calibrated to give a high signal	Typical Circumstances
OPRGBLOCDENA\#	1	$1.0 \mathrm{E}-2 \quad \begin{array}{rr} 1 \mathrm{~N} \\ \mathrm{~N} \end{array}$	1.00E-02N	Operator fails to respond to 8.5E temp., level alarms (close block valve)	Several Competing Signals

Basic Event Data for 8.5E Evaporator (CONT.)

Event	C	Input	Calc.	Description	Source
OPRGCETEIRNA\#	1	1.0E-2 $\begin{array}{r}1 \mathrm{~N} \\ \end{array}$	1.00E-02N		
OPRLV906ACNA\#	1	1.0E-2	5.00E-03N	of Calibration Operator over fills tank 906 (Level	Until Next Calibration
		5.0E-3 N	5.00E-03N	Procedurally Controlled)	Typical Circumstances, Level kept low
OPRTK906CSNA\#	1		1.00E-02N	Operator fails to respond to level	Typical Circumstances, Further Loss
PER-COLD03 5G\#	1	1N	$3.50 \mathrm{E}-01 \mathrm{~N}$	alarm in tank 906 Cold streams sent to 8.7	could shut down process
		3.50E-01N			1.5 Days of cold streams Out of 4 days of running
PER8.50P013\#	1	1.30E-01N	1.30E-01N	Continuous Evaporator is in Operation	Operated 4 days/Month (2.5 Hot \& 1.5
PER87ORG100A\#	1	1.30E-1N	$1.00 \mathrm{E}+00 \mathrm{~N}$	organic remains in feed tank	
PERACCUMINC\#	1	1.00E+00N	1.00E-32N	$30,000 \mathrm{lbs}$ of organic	contents to the adequate mixing point
		$1.00 \mathrm{E}-32 \mathrm{~N}$		8.7 lbs or organic accumulates	mpossibl
PERCESPG100G\#	1	1N	1.00E+00N	Low SPG Not Detected	No Credit for SPG
PERFBLININC\#	1		$1.00 \mathrm{E}-32 \mathrm{~N}$	Excess TBP is Received in 8.7 From 9.7	impossible event, (no planned B-Line
PERTK175.20A\#	1	$2.00 \mathrm{E}-03 \mathrm{~N}$	$2.00 \mathrm{E}-03 \mathrm{~N}$	Sufficient TBP present in tank 17.5	processing) a: 1 in 5 years (1/500 Batches)
PERTR175002A\#	1	2.00E-03N	$2.00 \mathrm{E}-02 \mathrm{~N}$	Material Is Being Received From 17	
PSTSTEAMFAIG+	4	$2.00 \mathrm{E}-02 \mathrm{~N}$ 4 D	$9.60 \mathrm{E}-05$	Steam pressure switch fai	Pu Recovery, Assume 1 out of 50 batches Assume would be discovered by next
RLPPUMP-NREG\#	1	1.00E-06 H (${ }^{1} \mathrm{~N}$	$1.00 \mathrm{E}-03 \mathrm{~N}$	Pump switch fails to open	Assume would be discovered by next cycle: FR 1E-6/hr Per Demand, Generic Data
TBP17.5-INCG\#		1.0E-32N	1.00E-32	Several batches containing excess TBP are received from 17.5 (30,000 lbs total)	impossible - 3 consecutive transfers from 17.5 during a batch
TBPDENS1PREA\#		1.0E-32N	$1.00 \mathrm{E}-32$	Process upsets causes dilute 2AW or high density in 11.7 S	COG: impossible (would involve phase inversion, can't get 10,000 lbs
TBPDENS2 PREA\#		1.0E-32H	8.76E-29Y	Process upsets causes dilute 2 W or high density in 11.7 s	organic) COG: impossible (would involve phase inversion, can't get $10,000 \mathrm{lbs}$
TBPTK---PREA\# TBPTK2EPPREA\#	3	12 H 0.1 Y	1.37E-04	Process upset causes excess organic in feed	organic) Estimated as $1 / 10 y e a r s$ - Not detect for 12 hours
TBPTK2BPPREA\#	3	12 H 0.1 Y	$1.37 \mathrm{E}-04$	Process upset causes excess TBP in canyon product	Estimated as 1/10years - Not detect for 12 hours
		1N	$1.00 \mathrm{E}+00$		Assumed to be present and always
TSTCETE-FAIG\#	3	$1.00 \mathrm{E}-06{ }^{4 \mathrm{D}} \mathrm{H}$	9.60E-05	Continous Evaporator Temperature Sensor Has Failed	transferred Assumes Discovered by next cycle: FR 1E-6/hr

Type Code Data for 8.5E Evaporator

Type Code	Rate	Description	Source	EF	D	
ALR COM	$3.00 \mathrm{E}-06 \mathrm{H}$	Alarm/Annunciator, Fails to alarm (Instr. \& Control)	WSRC-TR-93-262, ALR-NR-I			
ALR NRI	$3.00 \mathrm{E}-05 \mathrm{H}$	Alarm/Annunciator, Fails to alarm (Instr. \& Control)	WSRC-TR-93-262, ALR-NR-I	10	L	
CAV FOW	$3.00 \mathrm{E}-06 \mathrm{H}$	Valve (Control), Air-Operated, Fails open (Water)	WSRC-TR-93-262, CAV-FO-W	10	L	
FRE ADJ	4H	Speed of Feed Pump Adjusted 4 Times per hour	Operations personnel			
JPR REC	$1.00 \mathrm{E}-08 \mathrm{H}$	Jumper, Rupture (external) (Chemical)	WSRC-TR-93-262, JPR-RE-C	30	L	
LST CAL	2.008-2.0Y	Level Instrument Calibration Frequency	Assumed Value			
LST FAI	5.00E-07 H	Sensor/Transmitter/, Transducer/Proc. Switch, Level, Failure (Instr. \& Control)	WSRC-TR-93-262, LST-FA-I	3	L	
MDP FRC	$1.00 \mathrm{E}-04 \mathrm{H}$	Pump, Motor-Driven, Fails to run (Chemical)	WSRC-TR-93-262, MDP-FR-C	10	L	
OPR ACN	5.0E-3 N	Failure of Administrative Control (Nominal)	WSRC-TR-93-581, Table 4, Item 1, Nominal	10	L	
OPR CSN	1.0E-2 N	Failure to respond to compelling signal (Nominal)	WSRC-TR-93-581, Table 4, Item 2, Nominal	5	L	
OPR DEN	1.0E-2 N	Diagnosis error (Nominal)	WSRC-TR-93-581, Table 4, Item 30, Nominal		L	
OPR IRN	1.0E-2 N	Incorrect reading or recording of data (Nominal)	WSRC-TR-93-581, Table 4, Item 11, Nominal	5	L	
OPR MCN PER 20	$5.0 \mathrm{E}-3 \mathrm{~N}$ $2.00 \mathrm{E}-03 \mathrm{~N}$	Miscalibration (Nominal)	WSRC-TR-93-581, Table 4, Item 12, Nominal	10	L	
$\begin{array}{ll}\text { PER } \\ \text { PER } & 002\end{array}$	$2.00 \mathrm{E}-03 \mathrm{~N}$ $2.00 \mathrm{E}-02 \mathrm{~N}$	- 2 \% chance				
PER 013	$1.30 \mathrm{E}-01 \mathrm{~N}$	13\% Chance				
PER 035	$3.50 \mathrm{E}-01 \mathrm{~N}$	35\% chance				
PER 100	$1.00 \mathrm{E}+00 \mathrm{~N}$	100\% chance				
PER INC	$1.00 \mathrm{E}-32 \mathrm{~N}$	Incredible Event				
PST FAI	$1.00 \mathrm{E}-06 \mathrm{H}$	Sensor/Transmitter/, Transducer/Proc. Sw., Press., Failure (Instr. \& Control)	WSRC-TR-93-262, PST-FA-I	3	L	
RLP NRE	$1.0 \mathrm{E}-3 \mathrm{~N}$	Relay fails to open	WSRC-TR-93-262m RLP-NRE			
TBP PRE	$0.1 Y$	Process upset causes excess organic in feed	Never Seen, Estimated as Once in Ten Years			
TST FAI	$1.00 \mathrm{E}-06 \mathrm{H}$	Sensor/Transmitter/, Transducer/Proc. Switch, Temp., Failure (Instr. \& Control)	WSRC-TR-93-262, TST-FA-I	3		0 $0 \sim 3$

APPENDIX E-9.3E EVAPORATOR FAULT TREE AND DATA

The following abbreviations appear on the fault tree print out and in the basic event file for the fault tree:
FR=Failure Rate
a:= assumption
COG= cognizant engineer estimate/information
TRUNC $=$ Truncation limit of cutset evaluator
The Beta Factor method used to estimate common cause alarm failure is explained in Reference 15.
NOTE: Events in this tree with a probability of " $1 \mathrm{E}-32$ " are incredible. They do not contribute to the top event frequency and were included only to show that they had been considered. The number " $1 E-32$ " was used because it is the smallest number CAFTA is capable of handling.

Fault Tree (Page 72)
Gate/Event Cross Reference (Page 91)
Cutset Report (Page 92)
Basic Event Data (Page 99)
Type Code Data (Page 101)

Cutset Report for 9.3E Evaporator

Cutset Report for 9.3E Evaporator (CONT.)

$\begin{aligned} & \text { Set } \\ & \text { No. } \end{aligned}$	Event Name	Description	c	$\begin{aligned} & \text { B.E. } \\ & \text { Input } \end{aligned}$	Calc. Result	Cutset Freq. (/yr)	CUM \%
4.	OPRQCETEIRNA\#	Evaporator Temperature Sensor is Out of Calibration		1.0E-2 ${ }^{1 \mathrm{~N}}$	$1.00 \mathrm{E}-02 \mathrm{~N}$		
	ORRQCEIEIRNA			1.0E-2 $\begin{gathered}\text { N } \\ 1 \mathrm{~N}\end{gathered}$	5.00E-03N		
	OPRQELE-MCNA\#	Calibration Error - Level Instrument is calibrated to give a high signal		$5.0 \mathrm{E}-3 \mathrm{~N}$	5.00E-03N		
	PER9.30P013Q\#	continuous evaporator 9.3E is in operation		1.30E-01N	30E-01		
	PERCOL83025Q\#	cold streams sent to 8.3	1	- 1 N	$2.50 \mathrm{E}-01 \mathrm{~N}$		
			1	$2.50 \mathrm{E}-01 \mathrm{~N}$	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERFEEDF100Q\#	low feed flow is not detected or corrected		$1.00 \mathrm{E}+00 \mathrm{~N}$	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERFLOW-100Q\#	pump speed is set too low	1		$1.00 \mathrm{E}+00 \mathrm{~N}$		
		Excess TBP is transferred to evaporator 9.3E from 8.3	1	$1.00 \mathrm{E}+0 \mathrm{~N}$	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERTR8.3100Q\#	Excess TBP is transferred to evaporator 9.3E from 8.3		$1.00 \mathrm{E}+00 \mathrm{~N}$			
	TBP1BP--PREA\#	process upset from 1BP during cold streams	3	[12H	1.37E-04		
			4	. 25 H	5.00E-01	$1.95 \mathrm{E}-08$	100.0
	FRE-PMP-ADJQ+	Pump speed is adjusted		4H			
	OPR147LEMCNA\#	Calibration Error - Level instrument is calibrated to	1	5.0E-31N N	5.00E-03N		
		give a false reading-14.7		$\left[\begin{array}{lr}5.0 \mathrm{E}-3 & \mathrm{~N} \\ 1 \mathrm{~N}\end{array}\right.$	$1.00 \mathrm{E}-02 \mathrm{~N}$		
	OPRQCETEIRNA\#	Evaporator Temperature Sensor is out or Callbration		$1.0 \mathrm{E}-2 \mathrm{~N}$			
	OPRQELE-MCNA\#	Calibration Error - Level Instrument is calibrated to		$5.0 \mathrm{E}-3 \mathrm{~N}$	5.00E-03N		
		give a high signal ${ }^{\text {g }}$, 3E is in operation		5.0E-3 1 N	$1.30 \mathrm{E}-01 \mathrm{~N}$		
	PER9.30P013Q\#	continuous evaporator 9.3E is in operation		$1.30 \mathrm{E}-01 \mathrm{~N}$			
	PERCOL83025Q\#	cold streams sent to 8.3	1	2, $50 \mathrm{E}-01 \mathrm{~N}$	$2.50 \mathrm{E}-01 \mathrm{~N}$		
	PERFEEDF100Q\#	low feed flow is not detected or corrected	1	2.50E 1N	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERFEEDF1000\#	low feed flow is not detected or		$1.00 \mathrm{E}+00 \mathrm{~N}$			
	PERFLOW-100Q\#	pump speed is set too low		$1.00 \mathrm{E}+0 \mathrm{NN}$	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERTR8.3100Q\#	Excess TBP is transferred to evaporator 9.3E from 8.3	1	1.02 N	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	TBP1CU--PREA\#	process upset from 1CU during cold streams	3	$1.00 \mathrm{E}+12 \mathrm{H}$	$1.37 \mathrm{E}-04$		\checkmark
	FRE-PMP-ADJQ+	Pump speed is adjusted		. 25 H	5.00E-01	$1.68 \mathrm{E}-08$	
	LSTTK147FAIA\#	Tank 14.7 level sensor failure	5	-07 ${ }^{6 \mathrm{M}}$	$1.08 \mathrm{E}-03$		
		Evaporator Temperature Sensor is Out of Calibration		-00E-07 1 N	$1.00 \mathrm{E}-02 \mathrm{~N}$		
	OPRQCETEIRNA\#	Evaporator Temperature sensor is Out of Callbration		$1.0 \mathrm{E}-2 \mathrm{~N}$			
	OPRQELE-MCNA\#	Calibration Error - Level Instrument is calibrated to		5.0E-31 N	$5.00 \mathrm{E}-03 \mathrm{~N}$		
	PER9.30P013Q\#	give a high signal continuous evaporator 9.3E is in operation		$\begin{array}{rr} 2.0 \mathrm{E}-3 \\ 1.30 \mathrm{E}-01 \mathrm{~N} \end{array}$	$1.30 \mathrm{E}-01 \mathrm{~N}$		

Cutset Report for 9.3E Evaporator (CONT.)

Cutset Report for 9.3E Evaporator (CONT.)

Set No.	Event Name	Description ${ }^{\text {a }}$	c	B.E. Input	$\begin{gathered} \text { Calc. } \\ \text { Result } \end{gathered}$	Cutset Freq. (/yr)	CUM \%
8.	TBP1CU--PREA\#	process upset from 1CU during cold streams		12 H 0.1 Y	$1.37 \mathrm{E}-04$		
		Pump speed is adjusted		. 25 H	5.00E-01	$4.21 \mathrm{E}-09$	100.0
	FRE-PMP-ADJQ+			4H	$1.08 \mathrm{E}-03$		
	LSTTK147FAIA\#	Tank 14.7 level sensor failure		$5.00 \mathrm{E}-07 \mathrm{H}$	1.08E-03		
	OPRQCETEIRNA\#	Evaporator Temperature Sensor is Out of Calibration		$1.0 \mathrm{E}-2 \begin{array}{r}1 \mathrm{~N} \\ \mathrm{~N}\end{array}$	$1.00 \mathrm{E}-02 \mathrm{~N}$		
	OPRQELE-MCNA\#	Calibration Error - Level Instrument is calibrated to		1.0E-2	5.00E-03N		
	OPRQELE-MCNA	give a high signal		$5.0 \mathrm{E}-3 \mathrm{~N}$	$1.30 \mathrm{E}-01 \mathrm{~N}$		
	PER9.30P013Q\#	continuous evaporator 9.3E is in operation		1.30E-01N		-	
	PERCOL83025Q\#	cold streams sent to 8.3		2, $\begin{array}{r}1 \mathrm{~N} \\ \hline\end{array}$	2.50E-01N		
		low feed flow is not detected or corrected	1	2.50 N	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERFEEDF100Q\#	low feed flow is not detected or correcter		$1.00 \mathrm{E}+00 \mathrm{~N}$			
	PERFLOW-100Q\#	pump speed is set too low	1	1.00E +00 N	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERTR8.3100Q\#	Excess TBP is transferred to evaporator 9.3E from 8.3	1	$1.00 \mathrm{E}+1 \mathrm{~N}$	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERTR8.3100Q\#			1.00E+00N	$1.37 \mathrm{E}-04$		
	TBPIBP--PREA\#	process upset from 1BP during cold streams					
9.			1	1H	5.48E-03	$1.63 \mathrm{E}-09$	100.0
	FREBATCH48YQ*	Frequency of a batch		48 Y			
	OPR147LEMCNA\#	Calibration Error - Level instrument is calibrated to		5.0E-31 N	$5.00 \mathrm{E}-03 \mathrm{~N}$		
		give a false reading-14.7		$\|$$5.0 \mathrm{E}-3$ 1 N	$1.00 \mathrm{E}-02 \mathrm{~N}$		
	OPRQCETEIRNA\#	Evaporator Temperature sensor is out or Calibration		$1.0 \mathrm{E}-2 \mathrm{~N}$			
	OPRTK147ACNA\#	operator overfills tank 14.7 (level procedurally		5.0E-3 $\begin{gathered}\text { 1 } \\ \mathrm{N}\end{gathered}$	$5.00 \mathrm{E}-03 \mathrm{~N}$		
	PERSPG-100\%	controlled)		5.0E-3 1 N	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERSPG--100Q\#	SpG readings fail to detect excess TBP		$1.00 \mathrm{E}+00 \mathrm{~N}$			
	PERTR8.3100Q\#	Excess TBP is transferred to evaporator 9.3E from 8.3		$\begin{array}{r} 1 \mathrm{~N} \\ 1.00 \mathrm{E}+00 \mathrm{~N} \end{array}$	$1.00 \mathrm{E}+00 \mathrm{~N}$		$\stackrel{4}{4}$
	TBP1ABNKPREA\#	excess TBP to 8.3 from 1A bank	3	1.00E 12 H	$1.37 \mathrm{E}-04$		0
10.					$6.21 \mathrm{E}-02$	$9.69 \mathrm{E}-10$	10
	ALRTK147NRIQ\#	Low level alarm in tank 14.7 fails		$3.00 \mathrm{E}-05 \mathrm{H}$			
	FRE-PMP-ADJQ+	Pump speed is adjusted		. 25 H	5.00E-01		
				- 1 H	$1.00 \mathrm{E}-02 \mathrm{~N}$		
	OPRQCETEIRNA\#	Evaporator Temperature Sensor is Out of Calibration		$1.0 \mathrm{E}-2 \mathrm{~N}$			
	OPRQELE-MCNA\#	Calibration Error - Level Instrument is calibrated to give a high signal		$\left\lvert\, 5.0 \mathrm{E}-3 \begin{array}{rr}1 N \\ N\end{array}\right.$	5.00E-03N		

Cutset Report for 9.3E Evaporator (CONT.)

Set No.	Event Name	Description	C	$\begin{aligned} & \text { B.E. } \\ & \text { Input } \end{aligned}$	Calc. Result	Cutset Freq. $/ / \mathrm{yr}$)	CUM \%
11.	PER9 . 30P013Q\#	continuous evaporator 9.3E is in operation	1	1 N	1.30E-01N		
	PERFEEDF100Q\#	low feed flow is not detected or corrected	1	1.30E-01N	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERFLOW-100Q\#	pump speed is set too low	1	$1.00 E+00 N$ 1 N	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERELON-1008	pump speed is set too low		$1.00 \mathrm{E}+00 \mathrm{~N}$	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERTR8.3100Q\#	Excess TBP is transferred to evaporator 9.3E from 8.3	1	- 1 N	1.00E+00N		
	RLPPUMP1NREQ\#	failure to stop 14.7 pump (protective relay fails)	1	$1.00 \mathrm{E}+00 \mathrm{~N}$ 1 N	1.00E-03N		
	TBP1ABNKPREA\#	excess TBP to 8.3 from 1A bank	3	$1 \mathrm{E}-3 \mathrm{~N}$ 12 H	1.37E-04		
				0.19			
	FRE-PMP-ADJQ+	Pump speed is adjusted	4	. 25 H	5.00E-01	$7.49 \mathrm{E}-10$	100.0
	OPR147LEMCNA\#	Calibration Error - Level instrument is calibrated to	1	$\begin{aligned} & 4 \mathrm{H} \\ & 1 \mathrm{~N} \end{aligned}$	5.00E-03N		
		give a false reading-14.7		5.0E-3 ${ }^{\text {N }}$	5.00E-03N		
	OPRQELE-MCNA\#	Calibration Error - Level Instrument is calibrated to give a high signal	1	$5.0 \mathrm{E}-3 \mathrm{~N}$	5.00E-03N		
	PER9.30P013Q\#	continuous evaporator 9.3E is in operation	1	1-20 1 N	1.30E-01N		
	PERFEEDF100Q\#	low feed flow is not detected or corrected		$1.30 \mathrm{E}-01 \mathrm{~N}$ 1 N	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERFLOW-100Q\#	pump speed is set too low	1	$1.00 \mathrm{E}+00 \mathrm{~N}$ 1 N	$1.00 \mathrm{E}+00 \mathrm{~N}$		
		pump speed is set too low		$1.00 \mathrm{E}+00 \mathrm{~N}$	1.00E+00N		
	PERTR8.3100Q\#	Excess TBP is transferred to evaporator 9.3E from 8.3	1		$1.00 \mathrm{E}+00 \mathrm{~N}$		
	TBP1ABNKPREA\#	excess TBP to 8.3 from 1A bank	3	1.00E+00N	1.37E-04		
	TSTCETE-FAIQ\#	Continous Evaporator Temperature Sensor Has Failed	3	0.1 Y 4 D	9.60E-05		
				$1.00 \mathrm{E}-06 \mathrm{H}$			
12.	FRE-PMP-ADJQ+	Pump speed is adjusted	4	. 25 H	5.00E-01	$5.47 \mathrm{E}-10$	100.0
	OPRQ7.3-ACNA\#	Second consecutive transfer containing TBP from tank	1	4 H 1 N	5.00E-03N		$\left\|\begin{array}{l} \infty \\ 0 \end{array}\right\|$
	OPROELE-MCNA	7.3 is fed to same batch Calibration Error - Level Instrument is calibrated to	1	$5.0 \mathrm{E}-3 \mathrm{~N}$			4
	OPRQELE-MCN	give a high signal		$5.0 \mathrm{E}-3 \mathrm{~N}$	5.00E-03N		∞
	PER73SMP100Q\#	excess TBP is transferred from 7.3 to 8.3	1	$1 \mathrm{~N}$	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PER9.30P013Q\#	continuous evaporator 9.3E is in operation	1	$\begin{array}{r} 1.00 \mathrm{E}+00 \mathrm{~N} \\ 1 \mathrm{~N} \end{array}$	1.30E-01N		
	PERFEEDF100Q\#	low feed flow is not detected or corrected	1	$\begin{array}{r} 1.30 \mathrm{E}-01 \mathrm{~N} \\ 1 \mathrm{~N} \end{array}$	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERFLOW-100Q\#	pump speed is set too low	1	$\begin{array}{r} 1.00 \mathrm{E}+00 \mathrm{~N} \\ 1 \mathrm{~N} \end{array}$	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERFR7.3005Q\#	transfer is from tank 7.3	1	$1.00 \mathrm{E}+00 \mathrm{~N}$ 1 N	5.00E-02N		
				$5.00 \mathrm{E}-02 \mathrm{~N}$	5.00E-02N		

Cutset Report for 9.3E Evaporator (CONT.)

Set No.	Event Name	Description	c	$\begin{aligned} & \text { B.E. } \\ & \text { Input } \end{aligned}$	Calc. Result	Cutset Freq. $/ / \mathrm{yr}$)	CUM $\%$
	OPRTK147ACNA\# PERSPG--100Q\# PERTR8.31000\# TBP1ABNKPREA\#	```operator overfills tank 14.7 (level procedurally controlled) SpG readings fail to detect excess TBP Excess TBP is transferred to evaporator 9.3E from 8.3 excess TBP to 8.3 from 1A bank```	$1 \begin{aligned} & 1 \\ & 1 \\ & 3\end{aligned}$	1 N $5.0 \mathrm{E}-3 \mathrm{~N}$ 1 N $1.00 \mathrm{E}+00 \mathrm{~N}$ 1 N $1.00 \mathrm{E}+00 \mathrm{~N}$ 12 H 0.1 Y	$\begin{aligned} & 5.00 \mathrm{E}-03 \mathrm{~N} \\ & 1.00 \mathrm{E}+00 \mathrm{~N} \\ & 1.00 \mathrm{E}+00 \mathrm{~N} \\ & 1.37 \mathrm{E}-04 \end{aligned}$		

Rev. B
Basic Event Data for 9.3E Evaporator

Event	C	Input C	Calc. ${ }^{\text {c }}$	Description	Source
Event				Common cause evaporator alarm failure	single alarm failure * 0.1 beta
ALR-TLG-COMG\#	5	$3.00 \mathrm{E}-06 \mathrm{H} \mid$	$6.45 \mathrm{E}-03$	(level, temperature)	factor
ALRHL147NRIQ\#	5	3.00E-06H	6.21E-02 h	high level alarm in tank 14.7 fails	Assumes discovered during 6 month calibration: FR 3E-5/hr
ALRHLI47NRIQ		$3.00 \mathrm{E}-05 \mathrm{H}$			Assumes discovered during 6 month
ALRTK147NRIQ\#	5	$\|3.00 \mathrm{E}-05 \mathrm{H}\|$	6.21E-02	Low level alarm in tank 14.7 fails	calibration: FR 3E-5/hr
CAVCESTMFOWQ\#	5	($\begin{array}{r}3.00 \mathrm{E}-05 \mathrm{H} \\ 2 \mathrm{H} \\ 3.00 \mathrm{E}-06 \mathrm{H}\end{array}$	3.00E-06	Pneumatic steam control valve fails open	2 hours to restore, round sheet every hour: FR 3E-6/hr
CAVCESTMFOWQ*	1	-3.00E-06 1 H	3.00E-06	Pneumatic steam control valve fails	FR 3E-6/hr
DOPRA 147 CSNA		$\left\lvert\, \begin{array}{r}3.00 \mathrm{E}-06 \mathrm{H} \\ 0.15 \mathrm{~N}\end{array}\right.$		open Operator fails to respond to level	assumes moderate dependence
DOPRA147CSNA\#		$0.15 \mathrm{~N}$	1.50E-01	alarm in tank 14.7	
FRE-PMP-ADJQ+	4	. 254 H	5.00E-01	Pump speed is adjusted	discovered within 15 minutes
FREBATCH48YQ*	1	4H	$5.48 \mathrm{E}-03$	Frequency of a batch	48 max. \# of starts of process per year
FREBATCH48Y		48Y		P to 8.3 from 7.3-1arge	year impossible because would involve
GE-CE-7.3-Q2\#		$1 \mathrm{E}-32 \mathrm{~N}$	$1.00 \mathrm{E}-32$	amount	transfer of over 4 tanks full
JPRFEED-RECQ*	1	1H	$1.00 \mathrm{E}-08$	Large leak in jumper causes failure to	FR: 1E-8/hr
-ST-CE-FAIO\#		$1.00 \mathrm{E}-08 \mathrm{H}$ 8 H	2.00E-06	feed evaporator continous evaporator level instrument	Assume 8 hours for repair: FR 5E-7/hr
LST-CE--EAIQ\#		$5.00 \mathrm{E}-07 \mathrm{H}$	$2.00 \mathrm{E}-06$	fails high	FR:
LST-CE--FAIQ*	1	5.008 ${ }^{1 \mathrm{H}}$	$5.00 \mathrm{E}-07$	Continous evaporator level instrument	FR:
		5.00E-07 ${ }^{\text {H }}$	5.00E-07	fails high Level instrument in hackman hat fails	FR: 5E-7/hr
LSTCEHATFAIQ*		$5.00 \mathrm{E}-07 \mathrm{H}$		high	calibrated
LSTLE-CECALQ*	1	1 H	2.28E-04	Frequency of continous evaporator	
	5	2 Y 6 M	$1.08 \mathrm{E}-03$	Tank 14.7 level sensor failure	discovered during 2/yr calibration:
LSITK147FAIAH		5.00E-07 H			FR $5 \mathrm{E}-7 / \mathrm{hr}$ FR: 1E-4/hr
MDPTK8 . $3 \mathrm{FRCQ}{ }^{\text {* }}$	1		$1.00 \mathrm{E}-04$	Continous evaporator feed pump	
OPR147LEMCNA\#	1	$1.00 \mathrm{E}-04 \mathrm{H}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	Calibration Error - Level instrument	typical circumstances
OPR14TLEMCNA		$\|5.0 \mathrm{E}-3 \mathrm{~N}\|$		is calibrated to give a false reading-14.7	
OPR83EM1ACNA\#	1	$1 \begin{aligned} & \\ & 5.0 \mathrm{E}-3 \\ & \mathrm{~N} \\ & \mathrm{~N}\end{aligned}$	5.00E-03N	operator fails to feed remaining tank contents after 1st interval-clean tank	typical circumstances
OPR83EM2ACNA\#		1$5.0 \mathrm{E}-3$ N 1 N	5.00E-03N	operator fails to feed remaining tank	typical circumstances
OPR83EM2ACNA		${ }^{5.0 \mathrm{E}-3} \mathrm{~N}$		contents after 2nd interval-clean tank operator fails to feed remaining tank	typical circumstances
OPR83EM3ACNA\#		$1 \begin{array}{llr} & \\ 5.0 \mathrm{E}-3 & 1 \mathrm{~N} \\ \mathrm{~N}\end{array}$	5.00E-03N	operator fails to feed remaining tank contents after 3rd interval-clean tank	sump receipt could not collect enou
OPRQ7.3-ACNA\#		$1 \left\lvert\, \begin{array}{lr}5.0 \mathrm{E}-3 & \mathrm{~N} \\ 5.0 \mathrm{E}-3 & \mathrm{~N}\end{array}\right.$	5.00E-03N	Second consecutive transfer containing TBP from tank 7.3 is fed to same	sump receipt could not collect enou TBP during 1 feed tank run time
		$1 \begin{array}{rr}5.0 \mathrm{E}-3 & \mathrm{~N} \\ & 1 \mathrm{~N}\end{array}$		batch operator fails to respond to 9.3E	knowledge based, 10 to 30 minutes
OPRQBLOCDENA\#		$1 \begin{array}{lr} \\ 1.0 \mathrm{E}-2 & 1 \mathrm{~N} \\ \mathrm{~N}\end{array}$	N $1.00 \mathrm{E}-02 \mathrm{~N}$	operator fails to respond to 9.3E temp, level alarms (close block valve)	good display (graph)
OPRQCETEIRNA\#		$1 \begin{array}{ll} \\ 1.0 \mathrm{E}-2 & 1 \mathrm{~N} \\ 1.0 \mathrm{~N}\end{array}$	N	Evaporator Temperature Sensor is Out of Calibration	good display (graph)

Basic Event Data for 9.3E Evaporator (CONT.)

Type Code Data for 9.3E Evaporator

Type Code	Rate	Description	Source	EF	D
ALR COM	$3.00 \mathrm{E}-06 \mathrm{H}$	common cause alarm failure (single * 0.1	WSRC-TR-93-262, ALR-NR-I * 0.1 beta	10	L
AHR COM		beta factor)	factor for common cause WSRC-TR-93-262, ALR-NR-I	10	1
ALR NRI	$3.00 \mathrm{E}-05 \mathrm{H}$	Alarm/Annunciator, Fails to alarm (Instr. \& Control)			
CAV FOW	$3.00 \mathrm{E}-06 \mathrm{H}$	Valve (Control), Air-Operated, Fails open (Water)	WSRC-TR-93-262, CAV-FO-W		
FRE 48Y	$48 Y$	frequency of a batch	operations personnel operations personnel		
FRE ADJ	4H	Speed of Feed Pump Adjusted 3 Times per shift	WSRC-TR-93-26.2, JPR-RE-C	30	L
JPR REC LST CAL	$1.00 \mathrm{E}-08 \mathrm{H}$	Jumper, Rupture (external) (Chemical) level instrument calibration	operations personnel		
LST FAI	$5.00 \mathrm{E}-07 \mathrm{H}$	Sensor/Transmitter/, Transducer/Proc. Switch, Level, Failure (Instr. \& Control)	WSRC-TR-93-262, LST-FA-I		L
MDP FRC	$1.00 \mathrm{E}-04 \mathrm{H}$	Pump, Motor-Driven, Fails to run (Chemical)	$\begin{aligned} & \text { WSRC-TR-93-262, MDP-FR-C } \\ & \text { WSRC-TR-93-581, Table 4, Item 1, Nominal } \end{aligned}$	10 10	L
OPR ACN	$5.0 \mathrm{E}-3 \mathrm{~N}$	Failure of Administrative Control (Nominal)			
OPR CSN	1E-2N	failure to respond to compelling signal (nominal)			
OPR DEN	$1.0 \mathrm{E}-2 \mathrm{~N}$	Diagnosis error (Nominal)	WSRC-TR-93-581, Table 4' Item 11, Nominal	5	L
OPR IRN OPR MCN	$\begin{array}{ll}1.0 \mathrm{E}-2 & \mathrm{~N} \\ 5.0 \mathrm{E}-3 & \mathrm{~N}\end{array}$		WSRC-TR-93-581, Table 4, Item 12, Nominal	10	L
PER . 20	$2.00 \mathrm{E}-03 \mathrm{~N}$	0.2\% chance			
PER 005	$5.00 \mathrm{E}-02 \mathrm{~N}$	5\% chance			
PER 013	$1.30 \mathrm{E}-01 \mathrm{~N}$	13\% chance			
PER 025	$2.50 \mathrm{E}-01 \mathrm{~N}$	25\% chance			
PER 100	$1.00 \mathrm{E}+00 \mathrm{~N}$	Sensor/Transmitter/, Transducer/Proc.	WSRC-TR-93-262, PST-FA-I		L
PST FAI	1.00E-06 H	Sw., Press., Failure (Instr. \& Control) Relay, protective, fails to open/close	WSRC-TR-93-262,RLE-NR-E	10	1
RLPP PRE	0.19	Process upset causes excess organic in feed	Never Seen, Estimated as Once in Ten Years	3	
TST FAI	$1.00 \mathrm{E}-06 \mathrm{H}$	Sensor/Transmitter/, Transducer/Proc. Switch, Temp., Failure (Instr. \& Control)			\%

APPENDIX F - 7.6E \& 7.7 EVAPORATOR FAULT TREE AND DATA

The following abbreviations appear on the fault tree print out and in the basic event file for the fault tree:
FR=Failure Rate
a:= assumption
COG= cognizant engineer estimate/information
TRUNC $=$ Truncation limit of cutset evaluator
The Beta Factor method used to estimate common cause alarm failure is explained in Reference 15.
NOTE: Events in this tree with a probability of " $1 \mathrm{E}-32$ " are incredible. They do not contribute to the top event frequency and were included only to show that they had been considered. The number " $1 \mathrm{E}-32$ " was used because it is the smallest number CAFTA is capable of handling.

Fault Tree (Page 103)

Gate/Event Cross Reference (Page 115)
Cutset Report (Page 116)
Basic Event Data (Page 126)
Type Code Data (Page 128)

Runaway TBP Rxn in F Batch Evaporators \quad C:ICAFTAIREDOILISCI76B.CAF

Cutset Report for $7.6 \mathrm{E} \& 7.7 \mathrm{E}$ Evaporators

Set No.	Event Name	Description	c	B.E. Input	Calc. Result	Cutset Freq. (/yr)	CUM \%
1.	G1					$3.83 \mathrm{E}-07$	
	ALRHL906NRIG\#	High level alarm in tank 906 tank fails	5	6M	6.21E-02	2.13E-07	55.5
	EVPBEVAPON-G+	Batch Evaporator is Used		$3.00 \mathrm{E}-05 \mathrm{H}$ 100 Y	1.00E+02Y		
	OPRG7.8-ACHA\#	Operator fails to assure SPG is within range (10,000	1	1 N	5.00E-02N		
	OPRLV906ACNA\#	lbs TBP Operator over fills tank 906 (Level Procedurally		5.0E-2			
		Operator over fills tank 906 (Level Procedurally Controlled)	1	$\begin{array}{rr} & 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 & \mathrm{~N} \end{array}$	5.00E-03N		
	PER78-76100G\#	TBP Transferred From 7.8 to Batch Evaporator 7.6E	1	-1N 1 N	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERBESPG100G\#	Failure to Detect SPG Out of Range	1	$1.00 \mathrm{E}+00 \mathrm{~N}$ 1 N	$1.00 \mathrm{E}+00 \mathrm{~N}$		
				$1.00 \mathrm{E}+00 \mathrm{~N}$			
	TBPTK---PREA\#	Process upset causes excess organic in feed	3	$\begin{aligned} & 12 \mathrm{H} \\ & 0.1 \mathrm{Y} \end{aligned}$	$1.37 \mathrm{E}-04$		
2.	ALRHL906NRIG\#	High level alarm in tank 906 tank fails	5	6M	6.21E-02	$7.44 \mathrm{E}-08$	74.9
	EVPBEVAPON-G+	Batch Evaporator is Used		$3.00 \mathrm{E}-05 \mathrm{H}$ 100 Y	$1.00 \mathrm{E}+02 \mathrm{Y}$		
	OPRG7.8-ACHA\#	Operator fails to assure SPG is within range 10,000 lbs TBP	1	- $r^{10 \mathrm{E}-2} 1 \mathrm{~N}$	5.00E-02N		
	OPRLV906ACNA\#	Operator over fills tank 906 (Level Procedurally	1	$.0 \mathrm{E}-2$ N 1 N	5.00E-03N		
	PER-COLD035G\#	Controlled) Cold streams sent to 8.7	1	5.0E-3	3.50E-01N		
				$3.50 \mathrm{E}-01 \mathrm{~N}$	3.50E-01N		
	PER78-76100G\#	TBP Transferred From 7.8 to Batch Evaporator 7.6E	1	1N	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERBESPG100G\#	Failure to Detect SPG Out of Range	1	$1.00 \mathrm{E}+00 \mathrm{~N}$	1.00E+00N		
				$1.00 \mathrm{E}+00 \mathrm{~N}$			
	TBPTK2BPPREA\#	Process upset causes excess TBP in canyon product	3	$\begin{aligned} & 12 \mathrm{H} \\ & 0.1 \mathrm{Y} \end{aligned}$	1.3n! i4		
3.	EVPBEVAPON-G+ OPRG7.8-ACHA\#	Batch Evaporator is Used Operator fails to assure SPG is within range $(10,000$		100Y	$1.00 \mathrm{E}+02 \mathrm{Y}$	$3.42 \mathrm{E}-08$	83.8
	OPRG7.8-ACHA\#	Operator fails to assure SPG is within range (10,000 lbs TBP		5.0E-2 $\begin{gathered}\text { 1 } \\ \mathrm{N} \\ \mathrm{N}\end{gathered}$	5.00E-02N		\%
	OPRLV906ACNA\#	Operator over fills tank 906 (Level Procedurally Controlled)	1	5.0E-2 1 N	5.00E-03N		-
	OPRTK906CSNA\#	Operator fails to respond to level alarm in tank 906	1	$\begin{array}{r} \mathrm{N} \\ 1 \mathrm{~N} \end{array}$	1.00E-02N		∞
	PER78-76100G\#	TBP Transferred From 7.8 to Batch Evaporator 7.6E	1	1.0E-2N 1 N	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERBESPG100G\#	Failure to Detect SPG Out of Range		$1.00 \mathrm{E}+00 \mathrm{~N}$			
	PERBESPG100G\#	Failure to Detect SPG Out of Range	1	$\begin{array}{r} 1 \mathrm{~N} \\ 1.00 \mathrm{E}+00 \mathrm{~N} \end{array}$	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	TBPTK-- - PREA\#	Process upset causes excess organic in feed	3	\cdots	1.37E-04		
				$0.1 Y$			
4.	EVPBEVAPON-G+	Batch Evaporator is Used		100Y	1.00E+02Y	$1.71 \mathrm{E}-08$	83.3

Cutset Report for $7.6 \mathrm{E} \& 7.7 \mathrm{E}$ Evaporators (CONT.)

Cutset Report for 7.6E\& 7.7E Evaporators (CONT.)

Cutset Report for 7.6 E \& 7.7E Evaporators (CONT.)

Cutset Report for $7.6 \mathrm{E} \& 7.7 \mathrm{E}$ Evaporators (CONT.)

Cutset Report for 7.6E \& 7.7E Evaporators (CONT.)

$\begin{aligned} & \text { Set } \\ & \text { No. } \end{aligned}$	Event Name	Description	c	B.E. Input	$\begin{gathered} \text { Calg. } \\ \text { Result } \end{gathered}$	Cutset Freq. (/yr)	CUM \%
17.	$\begin{aligned} & \text { TR-17.5-TO-8.7 } \\ & \text { TSTBETE-FAIG\# } \end{aligned}$	Transfer Excess TBP From 17.5 to 8.7 Batch Evaporator Temperature Sensor Fails		$\begin{array}{\|r\|} \hline 1.0 \mathrm{~N} \\ 4 \mathrm{D} \\ 1.00 \mathrm{E}-06 \mathrm{H} \end{array}$	$\begin{aligned} & 1.0 .00 \\ & 4.8 \mathrm{i}=55 \end{aligned}$		
	EVPBEVAPON-G+ LSTTK906FAIA\#	Batch Evaporator is Used Tank 906 level sensor failure		$\left\|\begin{array}{r} 100 \mathrm{Y} \\ 6 \mathrm{M} \\ 5.00 \mathrm{E}-07 \mathrm{H} \end{array}\right\|$	$\begin{aligned} & 1.00 \mathrm{E}+02 \mathrm{Y} \\ & 1.08 \mathrm{E}-03 \end{aligned}$	7.10E-10	99.5
	PER78-76100G\#	TBP Transferred From 7.8 to Batch Evaporator 7.6E		$\left\|\begin{array}{r} 1 \mathrm{~N} \\ 1.00 \mathrm{E}+00 \mathrm{~N} \end{array}\right\|$	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERBESPG100G\#	Failure to Detect SPG Out of Range	1	1.008 1 N	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	TBPTK---PREA\#	Process upset causes excess organic in feed	3	1.00E+ 12 H	1.37E-04		
	TSTBETE-FAIG\#	Batch Evaporator Temperature Sensor Fails		$1.00 \mathrm{E}-06$	4.80E-05		
18.	EVPBEVAPON-G+ OPR87EM1ACNA\#	Batch Evaporator is Used operator fails to feed remaining tank contents after 1st interval- clean tank		$\left\|\begin{array}{r} 100 \mathrm{Y} \\ 5.0 \mathrm{~N}-3 \\ 1 \mathrm{~N} \end{array}\right\|$	$\begin{aligned} & 1.00 \mathrm{E}+02 \mathrm{Y} \\ & 5.00 \mathrm{E}-03 \mathrm{~N} \end{aligned}$	6.00E-10	99.7
	OPR87EM2ACNA\#\#	operator fails to feed remaining tank contents after 2nd interval- clean tank		$5.0 \mathrm{E}-3 \mathrm{~N}$	$5.00 \mathrm{E}-03 \mathrm{~N}$		
	OPR87EM3ACNA \#	operator fails to feed remaining tank contents after 3rd interval- clean tank		$\left\|\begin{array}{ll} 1 \mathrm{~N} \\ 5.0 \mathrm{~N}-3 & \mathrm{~N} \end{array}\right\|$	5.00E-03N		
	PER78-76100G\#	TBP Transferred From 7.8 to Batch Evaporator 7.6E		$\left\lvert\, \begin{array}{r} 1 \mathrm{~N} \\ 1.00 \mathrm{E}+00 \mathrm{~N} \end{array}\right.$	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PER870RG100A\#	organic remains in feed tank		$\begin{array}{r} 1 \mathrm{~N} \\ 1.00 \mathrm{E}+00 \mathrm{~N} \end{array}$	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERBESPG100G\#	Failure to Detect SPG Out of Range	1		$1.00 \mathrm{E}+00 \mathrm{~N}$		
	TSTBETE-FAIG\#	Batch Evaporator Temperature Sensor Fails		$\left\|\begin{array}{r} 1.00 \mathrm{E}+4 \mathrm{~N} \\ 1.00 \mathrm{E}-06 \mathrm{H} \end{array}\right\|$	4.80E-05		
19.	EVPBEVAPON-G+ LSTTK906FAIA\#	Batch Evaporator is Used Tank 906 level sensor failure		$\begin{aligned} & 100 \mathrm{Y} \\ & 6 \mathrm{M} \end{aligned}$	$\begin{aligned} & 1.00 \mathrm{E}+02 \mathrm{Y} \\ & 1.08 \mathrm{E}-03 \end{aligned}$	5.17E-10	99 各
	OPRGBETEMCNA\#	Tank Temperature Sensor is Miscalibrated	1	5.00E-07 ${ }^{\text {H }}$	5.00E-03N		$\stackrel{0}{6}$
	PER-COLD035G\#	Cold streams sent to 8.7	1	$5.0 \mathrm{E}-3 \mathrm{~N}$	$3.50 \mathrm{E}-01 \mathrm{~N}$		-
				$3.50 \mathrm{E}-01 \mathrm{~N}$			
	PER78-76100G\#	TBP Transferred From 7.8 to Batch Evaporator 7.6E		$\left\|\begin{array}{r} 1 \mathrm{~N} \\ 1.00 \mathrm{E}+00 \mathrm{~N} \end{array}\right\|$	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERBESPG100G\#	Failure to Detect SPG Out of Range	1		$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERBETEM002A\#	Temperature sensor calibrated just before this batch	1		$2.00 \mathrm{E}-02 \mathrm{~N}$		
	TBPTK2BPPREA\#	Process upset causes excess TBP in canyon product	3	$\begin{array}{r} 2.00 \mathrm{E}-02 \mathrm{~N} \\ 12 \mathrm{H} \\ 0.1 \mathrm{Y} \end{array}$	1.37E-04		
				0.1 Y			

Cutset Report for $7.6 \mathrm{E} \& 7.7 \mathrm{E}$ Evaporators (CONT.)

Cutset Report for 7.6E \& 7.7E Evaporators (CONT.)

Set No.	Event Name	Description	c	B.E. Input	Calc. Result	Cutset Freq. (/yr)	CUM \%
24.	PER78-76100G\#	TBP Transferred From 7.8 to Batch Evaporator 7.6E	1	1.00E +00 N	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERBESPG100G\#	Failure to Detect SPG Out of Range	1	$1.00 \mathrm{E}+1 \mathrm{~N}$	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	RLPPUMP-NREG\#	Pump switch fails to ope	1	$1.00 \mathrm{E}+00 \mathrm{~N}$ 1 N	$1.00 \mathrm{E}-03 \mathrm{~N}$		
				$1.0 \mathrm{E}-3 \mathrm{~N}$			
	TBPTK---PREA\#	Process upset causes excess organic in feed	3	0	$1.37 \mathrm{E}-04$		
	TSTBETE-FAIG\#	Batch Evaporator Temperature Sensor Fails	5	$1.00 \mathrm{E}-06 \mathrm{HD}$	4.80E-05		
	ALR-PGT-COMG\#	Common cause batch evaporator alarm failure (temp, pres.)	5	$\begin{array}{r} 6 \mathrm{M} \\ 3.00 \mathrm{E}-06 \mathrm{H} \end{array}$	6.45E-03	3.18E-11	100.0
	CAVBESTMFOGG\#	Pneumatic steam control valve fails open (batch evaporator)	3	$\begin{array}{r} 24 \mathrm{H} \\ 3.00 \mathrm{E}-06 \mathrm{H} \end{array}$	7.20E-05		
	EVPBEVAPON-G+	Batch Evaporator is Used		100 Y	1.COE+02Y		
	OPR906LEMCNA\#	Calibration Error - Level instrument is calibrated to give a false reading		$5.0 \mathrm{E}-3 \mathrm{~N}$	5.00E-03N		
	PER78-76100G\#	TBP Transferred From 7.8 to Batch Evaporator 7.6E	1	$\begin{array}{r} 1 \mathrm{~N} \\ 1.00 \mathrm{E}+00 \mathrm{~N} \end{array}$	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERBESPG100G\#	Failure to Detect SPG Out of Range	1	1 N	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	TBPTK---PREA\#	Process upset causes excess organic in feed	3	1.00E+00N	1.37E-04		
				$0.1 Y$			
25.	ALRTK906NRIG\#	Low level alarm in tank 906 fails	5	$\begin{array}{r} 6 \mathrm{M} \\ 3.00 \mathrm{E}-05 \mathrm{H} \end{array}$	6.21E-02	$2.98 \mathrm{E}-11$	100.0
	EVPBEVAPON-G+	Batch Evaporator is Used		$100 \mathrm{Y}$	$1.00 E+02 Y$		
	OPRGBETEMCNA\#	Tank Temperature Sensor is Miscalibrated	1	$\begin{array}{lr} & \text { IN } \\ 5.0 \mathrm{E}-3 & \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$		
	PER-COLD035G\#	Cold streams sent to 8.7	1	$3.50 \mathrm{E}-01 \mathrm{~N}$	$3.50 \mathrm{E}-01 \mathrm{~N}$		
	PER78-76100G\#	TBP Transferred From 7.8 to Batch Evaporator 7.6E	1	1 N	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERBESPG100G\#	Failure to Detect SPG Out of Range	1	$1.00 \mathrm{E}+00 \mathrm{~N}$ 1 N	$1.00 \mathrm{E}+00 \mathrm{~N}$		
				$1.00 \mathrm{E}+00 \mathrm{~N}$			$\stackrel{4}{4}$
	PERBETEM002A\#	Temperature sensor calibrated just before this batch	1	$2.00 \mathrm{E}-02 \mathrm{~N}$	2.Curi-02N		-
	RLPPUMP-NREG\#	Pump switch fails to ope	1	$1 \mathrm{~N}$	$1.00 \mathrm{E}-03 \mathrm{~N}$		
	TBPTK2BPPREA\#	Process upset causes excess TBP in canyon product	3	$1.0 \mathrm{E}-3 \mathrm{~N}$ 12 H	1.37E-04		
				0.1 Y			
26.	CAVBESTMFOGG\#	Pneumatic steam control valve fails open (batch evaporator) Batch Evaporator is Used	3	$\begin{array}{r} 24 \mathrm{H} \\ 3.00 \mathrm{E}-06 \mathrm{H} \\ 100 \mathrm{Y} \end{array}$	$7.20 \mathrm{E}-05$ $1.00 \mathrm{E}+02 \mathrm{Y}$	$1.73 \mathrm{E}-11$	100.0
	OPR906LEM'CNA\#	Calibration Error - Level instrument is calibrated to give a false reading	1	$5.0 \mathrm{E}-3 \mathrm{~N}$	5.00E-03N		

Set No.	Event Name	Description	c	$\begin{aligned} & \text { B.E. } \\ & \text { Input } \end{aligned}$	Calc. Result	Cutset Freq. (/yr)	CUM
27.	OPRBBLOCDENAA	Operator fails to respond to alarm(s) (906, temp., pres) (Close valve)		$1.0 \mathrm{E}-2 \begin{array}{r}1 \mathrm{~N} \\ \mathrm{~N} \\ \hline\end{array}$	$1.00 \mathrm{E}-02 \mathrm{~N}$		
	PER-COLD035G\#	Cold streams sent to 8.7	1	3. $50 \mathrm{E}-01 \mathrm{~N}$	$3.50 \mathrm{E}-01 \mathrm{~N}$		
	PER78-76100G\#	TBP Transferred From 7.8 to Batch Evaporator 7.6E	1	-508-01N	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERbESPG100G\#	Failure to Detect SPG Out of Range	1	$1.00 \mathrm{E}+00 \mathrm{~N}$ 1 N	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	TBPTK2BPPREA.\#	Process upset causes excess TBP in canyon product	3	$1.00 \mathrm{E}+00 \mathrm{~N}$ 12 H	1.37E-04		
				0.1 Y			
	CAVBESTMFOGG\#	Pneumatic steam control valve fails open (batch evaporator)	3	随 $\begin{array}{r}24 \mathrm{H} \\ 3.00 \mathrm{E}-06 \mathrm{H}\end{array}$	7.20E-05	1.44E-11	100.0
	EVPBEVAPON-G+ OPR17.5-ACNA\#	Batch Evaporator is Used Second consecutive transfer containing TBP fr		$\begin{array}{r}100 \mathrm{Y} \\ \hline 1\end{array}$	1.00E+02Y		
		17.5 is fed to same batch		5.0E-3 ${ }^{\text {N }}$	5.00E-03N		
	OPRBBLOCDENA\#	Operator fails to respond to alarm(s) (906, temp., pres) (Close valve)	1	1.0E-2 $\begin{gathered}\text { 1/ } \\ \text { N }\end{gathered}$	1.00E-02N		
	PER78-76100G\#	TBP Transferred From 7.8 to Batch Evaporator 7.6E	1	$1.0 \mathrm{~N}-1 \mathrm{~N}$	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERBESPG100G\#	Failure to Detect SPG Out of Range	1	1.00E+00N 1 N	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	PERTK175.20A\#	Sufficient		$1.00 \mathrm{E}+00 \mathrm{~N}$			
	PERTK175.20AH	Uficient TBP present in tank 17.5	1	1N	$2.00 \mathrm{E}-03 \mathrm{~N}$		
	PERTR175002A\#	Material Is Being Received From 17.5	1	2.008-03N	$2.00 \mathrm{E}-02 \mathrm{~N}$		
	TR-17.5-T0-8.7	Transfer Excess TBP From 17.5 to 8.7		$2.00 \mathrm{E}-02 \mathrm{~N}$ 1.0 N	$1.00 \mathrm{E}+00$		
28.	ALRTK906NRIG\#	Low level alarm in tank 906 fails	5		6.21E-02		
				$3.00 \mathrm{E}-05 \mathrm{H}$		$1.43 \mathrm{E}-11$	100.0
	EVPBEVAPON-G+ PER-COLDO 35 G \#	Batch Evaporator is Used Cold streams sent to 8.7	1	100 Y 1 N	${ }_{3}^{1.00 \mathrm{E}+02 \mathrm{Y}}$		
				$3.50 \mathrm{E}-01 \mathrm{~N}$			
	PER78-76100G\#	TBP Transferred From 7.8 to Batch Evaporator 7.6E	1	$\begin{array}{r} 1 \mathrm{~N} \\ 1.00 \mathrm{E}+00 \mathrm{~N} \end{array}$	$1.006+00 \mathrm{~N}$		
	PERBESPG100G\#	Failure to Detect SPG Out of Range	1	1.00E+00N	$1.00 \mathrm{E}+00 \mathrm{~N}$		
	RLPPUMP-NREG\#	Pump switch fails to	1	$1.00 \mathrm{E}+00 \mathrm{~N}$ N	1.00E-03N		∞
	TBPTK2BPPREA\#	Process upset causes excess TBP in canyon product	3	$1.0 \mathrm{E}-3 \mathrm{~N}$ 12 H	1.37E-04		
	TSTBETE-FAIG\#	Batch Evaporator Temperature Sensor Fails		0.1 Y			
				$\|1.00 \mathrm{E}-06 \mathrm{H}\|$	4.80E-05		
29.	EVPBEVAPON-G+ OPRGBETEMCNA\#	Batch Evaporator is Used Tank Temperature Sensor is Miscalibrated	1	100 Y 1 N	$\begin{aligned} & 1.00 \mathrm{E}+02 \mathrm{Y} \\ & 5.00 \mathrm{E}-03 \mathrm{~N} \end{aligned}$	1.37E-11	100
				$5.0 \mathrm{E}-3 \mathrm{~N}$			

Cutset Report for $7.6 \mathrm{E} \& 7.7 \mathrm{E}$ Evaporators (CONT.)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& \text { Set } \\
\& \text { No. }
\end{aligned}
\] \& Event Name \& Description \& c \& B.E. Input \& Calc. Result \& \[
\begin{gathered}
\text { Cutset } \\
\text { Freq. (/yr) }
\end{gathered}
\] \& CUM \% \\
\hline 30. \& \begin{tabular}{l}
OPRTK906CSNA\# \\
PER78-76100G\# \\
PERBESPG100G\# \\
PERBETEM002A\# \\
RLPPUMP-NREG\# \\
TBPTK---PREA\# \\
ALR-PGT-COMG\# \\
CAVBESTMFOGG\# \\
EVPBEVAPON-G+ OPR906LEMCNA\# \\
PER-COLD035G\# \\
PER78-76100G\# \\
PERBESPG100G\# \\
TBPTK2BPPREA\#
\end{tabular} \& \begin{tabular}{l}
Operator fails to respond to level alarm in tank 906 \\
TBP Transferred From 7.8 to Batch Evaporator 7.6E \\
Failure to Detect SPG Out of Range \\
Temperature sensor calibrated just before this batch \\
Pump switch fails to open \\
Process upset causes excess organic in feed \\
Common cause batch evaporator alarm failure (temp, pres.) \\
Pneumatic steam control valve fails open (batch evaporator) \\
Batch Evaporator is Used \\
Calibration Error - Level instrument is calibrated to \\
give a false reading \\
Cold streams sent to 8.7 \\
TBP Transferred From 7.8 to Batch Evaporator 7.6E \\
Failure to Detect SPG Out of Range \\
Process upset causes excess TBP in canyon product
\end{tabular} \& 1
1
1
1
1
1
3

5
3
1
1
1
1
1
1

3 \& \& $$
\begin{aligned}
& 1.00 \mathrm{E}-02 \mathrm{~N} \\
& 1.00 \mathrm{E}+00 \mathrm{~N} \\
& 1.00 \mathrm{E}+00 \mathrm{~N} \\
& 2.00 \mathrm{E}-02 \mathrm{~N} \\
& 1.00 \mathrm{E}-03 \mathrm{~N} \\
& 1.37 \mathrm{E}-04 \\
& 6.45 \mathrm{E}-03 \\
& 7.20 \mathrm{E}-05 \\
& 1.00 \mathrm{E}+02 \mathrm{Y} \\
& 5.00 \mathrm{E}-03 \mathrm{~N} \\
& 3.50 \mathrm{E}-01 \mathrm{~N} \\
& 1.00 \mathrm{E}+00 \mathrm{~N} \\
& 1.00 \mathrm{E}+00 \mathrm{~N} \\
& 1.37 \mathrm{E}-04
\end{aligned}
$$ \& $1.11 \mathrm{E}-11$ \& 100.0

\hline
\end{tabular}

Basic Event Data for 7.6E \& 7.7E Evaporators

Event	c	Input	Calc.	Description	Source
PERTK175.20A\#	1	2.00E-03N ${ }^{\text {1N }}$	2.00E-03N	Sufficient TBP present in tank 17.5	a: 1 in 5 years (1/500 Batches)
PERTR175002A\#	1		$2.00 \mathrm{E}-02 \mathrm{~N}$	Material Is Being Received From 17.5	Recovery, Assume 1 out of 50
RLPPUMP-NREG\#	1	$2.00 \mathrm{E}-02 \mathrm{~N}$ 1 N	1.00E-03N	Pump switch fails to ope	Per Demana, Generic Data
TBP17.5-INCG\#		$1.0 \mathrm{E}-3 \mathrm{~N}$ $1.0 \mathrm{E}-32 \mathrm{~N}$	1.00E-32	Several batches containing excess TBP are received from 17.5 ($30,000 \mathrm{lbs}$ total)	impossible - : consecutive transfers from 17.5 durins a batch
TBPDENS1PREA\#		$1.0 \mathrm{E}-32 \mathrm{~N}$	1.00E-32	Process upsets causes dilute 2AW or high density in 11.7 s	COG: impossible (would involve phase inversion, can't get 10,000 lbs organic)
TBPDENS2 PREA\#		$1.0 \mathrm{E}-32 \mathrm{H}$	8.76E-29Y	Process upsets causes dilute 2 W or high density in 11.7 S	COG: impossible (would involve phase inversion, can't get 10,000 lbs organic)
TBPTK---PREA\#	3	0.12 H	1.37E-04	Process upset causes excess organic in feed	Estimated as 1/10years - Not detected for 12 hours
TBPTK2EPPREA\#	3	12 H 0.1 Y	1.37E-04	Process upset causes excess TBP in canyon product	for 12 hours
TR-17.5-TO-8.7		1.0 N	$1.00 \mathrm{E}+00$	Transfer Excess TBP From 17.5 to 8.7	Assumed to be present and always
TSTBETE-FAIG\#	5	$1.00 \mathrm{E}-06 \mathrm{HD} \mathrm{H} \mid$	4.80E-05	Batch Evaporator Temperature Sensor Fails	Temp Sensor, Discovered within 4 days: FR1E-6/hr

Rev. B
Type Code Data for $7.6 \mathrm{E} \& 7.7 \mathrm{E}$ Evaporators

Type Code	Rate	Description	Source	EF	D
ALR COM	$3.00 \mathrm{E}-06 \mathrm{H}$	Alarm/Annunciator, Fails to alarm (Instr. \& Control)	WSRC-TR-93-262, ALR-NR-I		
ALR NRI	$3.00 \mathrm{E}-05 \mathrm{H}$	Alarm/Annunciator, Fails to alarm (Instr. \& Control)	WSRC-TR-93-262، ALR-NR-I	10	L
CAV FOG	$3.00 \mathrm{E}-06 \mathrm{H}$	Valve (Control), Air-Operated, Fails open (Compressed Gas)	WSRC-TR-93-262, CAV-FO-G	10	L
LST FAI	5.00E-07 H	Sensor/Transmitter/, Transducer/Proc. Switch, Level, Failure (Instr. \& Control)	WSRC-TR-93-262, LST-FA-I	3	L
OPR ACH	5.0E-2	Failure of Administrative Control (High)	WSRC-TR-93-581, Table 4, Item 1, High	5	L
OPR ACN	5.0E-3 N	Failure of Administrative Control (Nominal)	WSRC-TR-93-581, Table 4, Item 1, Nominal	10	L
OPR CSN	1.0E-2 N	Failure to respond to compelling signal (Nominal)	WSRC-TR-93-581, Table 4, Item 2, Nominal	5	L
OPR DEN	$1.0 \mathrm{E}-2$ 5	Diagnosis error (Nominal)	WSRC-TR-93-581, Table 4, Item 30, Nominal	5	L
OPR MCN	$5.0 \mathrm{E}-3 \mathrm{~N}$	Miscalibration (Nominal)	WSRC-TR-93-581, Table 4, Item 12, Nominal	10	L
$\begin{array}{ll}\text { PER } \\ \text { PER } & 20 \\ 002\end{array}$	$2.00 \mathrm{E}-03 \mathrm{~N}$	0.2\% chance			
PER 002 PER 035	$2.00 \mathrm{E}-02 \mathrm{~N}$	2\% chance			
PER 035 PER 100	$3.50 \mathrm{E}-01 \mathrm{~N}$	35\% chance			
$\begin{array}{ll}\text { PER } & 100 \\ \text { PER } & \text { INC }\end{array}$	$1.00 \mathrm{E}+00 \mathrm{~N}$ $1.00 \mathrm{E}-32 \mathrm{~N}$	100\% chance			
RLP NRE	$1.0 \mathrm{E}-3 \mathrm{~N}$	Relay fails to open	WSRC-TR-93-262m RLP-NRE		
TBP PRE	0.1Y	Process upset causes excess organic in feed	Never Seen, Estimated a ise in Ten Years		
TST FAI	$1.00 \mathrm{E}-06 \mathrm{H}$	Sensor/Transmitter/, Transducer/Proc. Switch, Temp., Failure (Instr. \& Control)	WSRC-TR-93-262, TST-FA-I	3	L

Calculation Cover Sheet

$\begin{aligned} & \text { Project } \\ & \text { F-Canyon BIO } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Calculation No. } \\ & \text { S-CLC-F- } 00100 \end{aligned}$	$\begin{aligned} & \text { Project Number } \\ & \text { NA } \end{aligned}$
Title	Functional Classification NS	Sheet 1 of 135
Frequency Determination for Runaway TBP/Nitric Acid Reactions in Support of the F-Canyon BIO (U)	Discipline Risk Analysis Group	
Preliminary x Committed _ Confirmed		
Computer Program No. _CAFTA (Computer Applied Fault Tree A	$. \operatorname{sis})$ Ver	ele: 'No. 2.2c

The purpose of this Calc-Note is to determine the frequency of runaway TBP/Nitric Acid reactions in FCanyon.

Summary of Conclusion

The frequency for runaway TBP reactions and explosions in various tanks in F-Canyon are given in the table below. All of these tanks represent an acceptable frequency considering the proposed two years of operation.

\qquad	Frequency of \therefore Reaction $\because \because^{\prime}(/ \mathrm{yr})$	Mean Time Between Failures (yrs)	Frequency of Explosion (y r)	Mean Time: Between Failures家 (yेrs)
Sump Receipt $\quad \ldots$				
17.5	1.69E-04	5,900	3.38E-07	3,000,000
7.3	$1.88 \mathrm{E}-04$	5,000	3.77E-07	2,600,000
Feed Tank				
12.5	5.83E-06	170,000	5.83E-07	1,700,000
Mixer Settler				
2 Pu	-	-	9.74E-07	1,000,000

Revision				
Rev. No.	Revision Description			
Rev. 0	Initial Issue			
Rev. 1	Revised to include explosion frequencies and the 2nd Pu Mixer Settler			
Sign Off				
Rev. No.	$\begin{aligned} & \text { Originator (Print) } \\ & \text { Sign/Date } \end{aligned}$	Verification/ Checking Method	Verifier /Checker (Print) Sign/Date	Manager (Print) Sign/Date
Rev. 1	C. Ray Lux Lance Christiansen Kathy Marshall Terri Slaven			.

Classification

Table of Contents

Section Sheet
1.0 Open Items 4
2.0 Introduction 4
3.0 Input4
3.1 General Assumptions 4
3.2 Additional Sump Receipt Tank Assumptions 5
4.0 Analysis Method and Calculations 5
5.0 Results and Conclusions 7
6.0 References 8
7.0 Appendices 9

1.0 OPEN ITEMS

The potential for criticality and a fire in the cell as potential initiators for runaway reactions needs to be studied. The evaporators and tanks in re-run are not included as a part of t^{2} report Present plans do no ${ }^{+}$:all for the operation of the re-run tanks and the evaporators will be operated a ustic porators to avoid runaway TBP/nitric reactions. Since the evaporators will be operated using ustic ...lutions, the bottom will also necessarily be caustic and therefore have no TBP/Nitric concerns.

Full QA certification of CAFTA pends resolution of NCR 94-11-005.

2.0 INTRODUCTION

A very small potential exists in the SRS separations operations for an uncontrolled reaction between tri-nbutyl phosphate (TBP) and nitric acid that could result in unacceptable damage to separations facilities and a significant release of radioactive materials.

The recent TBP and nitric acid accident in Tomsk, Russia, resulted in considerable damage and radioactive release. Explosions have also occurred at SRS during the early years of operations. While the SRS separations facilities have operated without incident for many years since the last accident, it is prudent to revisit the SRS defense in depth approach to preventing such an accident and to upgrade preventive procedures and hardware if appropriate.

This study examines the current SRS licensing position with respect to this potential incident. It gives the administrative, procedural, and hardware controls that should result in the frequency of a potential incident being acceptable (less than once in a hundred thousand years) considering the limited planned operational period of these facilities. The frequencies calculated here include a number of changes that were identified as a part of this red oil analysis effort.

As previously stated this is the current position. Experimental and analytical evaluations have not been completed; therefore, the possibility exists of new information and revisions to these fault trees.

3.0 INPUT

Basic data used to quantify the fault tree came from four primary sources: WSRC-TR-93-581, "Savannah River Site Generic Data Base Development"(Ref. 1), WSRC-TR-93-581, "Savannah River Site Human Error Data Base Development for Nonreactor Nuclear Facilities", (Ref. 2), DPSTSY-200-1F, Systems Analysis, FCanyon Operations (Ref. 3), and DPSTSA-200-10, Sup-4, Safety Analysis, F-Canyon Operations (Ref. 4.). In a few cases the Separation Facilities Fault Tree Data Bank (Ref. 5) or judgment by knowledge personnel was used. Complete sources for the basic events in the fault tree are listed in the "Type Code" Report, which is part of this Calc-Note.

3.1 General Assumptions

- It is assumed that a red oil explosion will not occur with less than 3,000 pounds of TBP.
- There is a 10 percent chance that if TBP is present in the feed tanks due to operational errors, it will exceed 3,000 pounds (Ref. 6).

Calculation No.
S-CLC-F-00100
Sheet No. 4 of 135
Rev. 1

- There is 1 chance in 500 that if TBP is present in the sump receipt tanks that it will exceed 3,000 pounds (Ref. 7 , Appendix 1).
- The operator is able to determine by some positive means that the agitator is functioning (e.g. specific gravity meter or ammeter read out).
- No HAN will be used in the process to eliminate the possibility of uncontrolled reactions betwsen HAN and nitric acid.
- Combining nitric acid-and water can not create enough heat to raise a tank at ambient canyon temperature to the red oil reaction temperature range.
- Cooling water and agitation will be provided during all transfers.
- Since no data could be located for agitator blade/shaft failure, they were assumed to occur at a rate of 10% of the agitator failure rate.
- Based on some preliminary heat transfer calculations, it is assumed that sufficient cooling can be supplied to a tank by the combination of the agitator and either the canyon exhaust or the cooling water system.
- All transfers and additions will cease during a power failure.
- Temperature is monitored on a routine basis for all tanks.
- Steam jet transfers are carefully monitored from the control room (Warm canyon transfers are also monitored in the gang valve corridor).
- All analyses were performed for full operation of the canyon only (start-up, shutdown, \& maintenance modes were not addressed).

3.2 Additional Sump Receipt Tank Assumptions

- Both sump receipt tanks have dedicated head tanks (17.5 presently does not have one).
- The uncontrolled reactions for re-run represent a conservative estimate for the sump receipt tanks. Of these reactions, 10% were due to valving errors. The remaining frequency can be assumed to be split equally between HAN/FS reactions and transfers from sumps.
- Approximately 100 batches per year are received in each sump receipt tank.
- Tank 7.3 has no cooling coils.
- Tank 7.3 has no procedural requirement to monitor temperature during additions or during rounds checks.
- It is assumed that an ammonium nitrate reaction in the 7.2 process vessel vent filter will generate enough heat to cause a runaway TBP reaction in 7.3 if the canyon exhaust is inoperative.
- There is a procedural requirement to vacuum test the filter once a month, and flush the filter on a periodic and as needed basis.

Calculation No.
S-CLC-F-00100

Sheet No. 5 of 135

Rev. 1

3.3 Additional Mixer Settler Assumptions

- For a runaway TBP reaction to occur in the 2 nd Pu Mixer Settler, the following three events would have to occur:

1. 2nd Pu M rSettler is overheated.
2. Undetect dilure of the Canyon Exhaust System.
3. Failure to . ovide sufficient mixing.

- It is assumed that in order to overheat the 2nd Pu Mixer Settler, two of the three inlet streams (2AF, 2 AS , and 2 AX) to the 2 nd Pu Mixer Settler are required to be overheated. The 2AF stream is always designated as one of the two that is required to be overheated. This is due to the larger volumetric flow of this stream in comparison to the 2AS and the 2AX streams.
- It is assumed that undetected failure of the Canyon Exhaust System constitutes the loss of normal and emergency power or failure of the Canyon Exhaust System.
- It is assumed that failure to provide mixing for the 2nd Pu Mixer Settler constitutes either two adjacent impellers failing in the Mixer Settler, the impeller drive (Variable Frequency Drive) not in normal position, or undetected failure of the Variable Frequency Drive.
- It is conservatively assumed that the 2 AF stream can be overheated in the heat exchanger by sufficient volumetric flow of steam and water provided by the mix valve for the 2 AF stream.
- It is assumed that flow control valves are calibrated once every eight months.
- It is assumed that it takes approximately one hour to fill the tank that feeds the 2 AF stream for the 2nd Pu Mixer Settler.
- It is assumed that a strong acid addition will not overheat the 2nd Pu Mixer Settler. This assumption is based on chemical analysis results provided by SRTC.
- It is assumed that an uncontrolled reaction in the 2nd Pu Mixer Settler is incredible. Chemicals are added to the mixer settlers only through the head tanks and all additions are to a constantly moving solution, making a large uncontrolled reaction which significantly raises the temperature of a mixer settler an incredible event.

4.0 ANALYSIS METHOD AND CALCULATIONS

The logic for modeling a red oil explosion in F-Canyon was developed with the assistance of knowledgeable separations personnel (Ronnye Eubanks and Dave Chostner). To simplify the task, the F-Canyon tanks were divided into 6 categories: feed tanks, sump receipt tanks, the mixer settlers, evaporators, and evaporator bottoms tanks. Only the first three categories are addressed as a part of this study.

Due to several distinct differences between the sump receipt tanks, a fault tree had to be drawn for each tank. However, for the feed tanks and the mixer settlers, tank 12.5 and the 2 nd Pu mixer settler, respectively, were identified as having the greatest potential consequences and a high frequency. Once constructed, the fault trees were evaluated using the fault tree evaluation code CAFTA, Version 2.2c (Ref. 8). The appendices contain copies of the fault trees, the associated cutsets, and copies of the data base used in the evaluation.

For the feed tanks, three different categories of tanks could be identified. Tanks which provided no red oil concerns, tanks for which the frequency would be less than that for 12.5 , and tanks requiring further investigation. The tanks which fit into each of these categories are listed in the tables below. The reason for not having a red oil concern is listed in the first table. The reasons for having a frequency less than tank 12.5 is fewer heat sources and chemicals available for addition. Items were placed in the last table if there was uncertainty as to the availability of heat sources and/or chemicals compared to Tank 12.5. This last group of tanks will be evaluated as a part of a later study and will not be used for processing until then.

Calculation No.
S-CLC-F-00100
Sheet No. 7 of 135
Rev. 1

Feed Tanks Which Present No Red Oil Concern

Tank No.	Reason for No Concern
5.2	No Organic Present
5.3	No Organic Present
6.1 D	No Organic Present
6.4 D	No Organic Present
6.8	Evaporator Overheads, No TBP
8.1	No Organic Present
8.3	No Heat Source, Dilute
8.5 C	Evaporator Overheads, No TBP
9.1 BT	Evaporator Overheads, No TBP
9.1 C	Evaporator Overheads, No TBP
9.1 E	Evaporator Overheads, No TBP
10.2	No Organic Present
10.3	No Organic Present
10.4	No Organic Present
11.1 C	No Organic Present
11.2	No Organic Present
11.4	Evaporator Overheads, No TBP
12.1	Evaporator Overheads, No TBP
12.2	No Organic Present
13.1	No Organic Present
13.3	No Organic Present
14.7	No Heat Source
16.1 E	Not Used
17.1	No Organic Present
17.5	Evaporator Overheads, No TBP
17.7 C	Evaporator Overheads, No TBP
18.5	No Heat Source
18.6 E	Basic, No Acid
18.7	Basic, No Acid
18.8	Evaporator Overheads, No TBP

Feed Tanks Which Have a "Red Oil"
Frequency \leq to Tank 12.5

Tank No.	Tank No.
7.8	12.8
8.7	13.5
9.5	13.7
9.6	13.8
9.8	$14.5-1$
10.1	$14.5-2$
11.8	14.8

B-7

Calculation No.
Sev. 0
Sheet No. 8 of 135
Rev. 1

12.6	Decanters

Feed Tanks Which Require Further Evaluation

Tank No.	Tank No.
6.6	16.3
15.4	16.4
16.2	17.2

One fault tree was drawn for the Mixer Settlers in F-Canyon to explore the possibilities of a Runaway TBP Reaction. The 2nd Pu Mixer Settler was selected for analysis in comparison to the other Mixer Settlers, due to the radiological consequences the 2 nd Pu Mixer Settler posed and the possibility that the streams could be overheated.

Two separate frequencies were calculated for each of the tanks. One was the frequency with which a runaway reaction would occur. The second was the frequency with which an explosion would occur. The difference between these two trees was the amount of TBP in these tanks. The frequency for obtaining more than 3,000 pounds, the amount necessary for an explosion, was provided by Tom Campbell of regulatory programs (Ref. 6 and Ref. 7 , contained in Appendix 1) for all except the mixer-settlers. The mixer-settlers were assumed to always contain more than 3,000 pounds of TBP and therefore if a reaction occurred, it would be an explosion.

5.0 RESULTS AND CONCLUSIONS

The frequency for runaway and explosive TBP reactions in various tanks in F-Canyon are given in the table below. All of these tanks represent an acceptable frequency considering the proposed two years of operation.

		Meanतime Between Failures (yrs)	Frequency of Explosion (iỳ)	Mean Time Between Failures
Sump Receipt				
17.5	1.69E-04	5,900	3.38E-07	3,000,000
7.3	1.88E-04	5,000	3.77E-07	2,600,000
Feed Tank				
12.5	5.83E-06	170,000	5.83E-07	1,700,000
Mixer Settler				
2 Pu	-	-	9.74E-07	1,000,000

6.0 REFERENCES

1 Blanton, C. H., S. A. Eide. Savannah River Site Generic Data Base Development(U). WSRC-TR-93262. Westinghouse Savannah River Co. Aiken, SC. June, 1993.

2 Benhardt, H. C., S. A. Eide, et. al. Savannah River Site Human Error Data Base Development for Nonreactor Nuclear Facilities. WSRC-TR-93-581. Westinghouse Savannah River Co. Aiken, SC. Feb. 1994.

3 Durant, W. S., W. C. Perkins, and T. F. Severynse. Systems Analysis - 200 Area, Savannah River Plant, F-Canyon Operations. DPSTSY-200-1F. E. I. du Pont de Nemours \& Co. Savannah River Laboratory. Aiken, SC. December 1983.

4 Safety Analysis - 200 Area, Savannah River Plant F-Canyon Operations. DPSTSA-200-10, Sup-4. E. I. du Pont de Nemours \& Co. Savannah River Laboratory. Aiken, SC. February 1986.

5 Durant, W. S., D. F. Baughman, and C. S. Townsend. Separation Facilities Fault Tree Data Bank (SEPR) 1992 Status Report (U). WSRC-TR-93-309. Westinghouse Savannah River Co. Aiken, SC. May 31, 1993.

6 Memo from T. G. Campbell to C. R. Lux, Probability for Large Mass of TBP in Canyon Vessels. NMP-SDG-94-0079. May 24, 1994.

7 Memo from T. G. Campbell to Lance W. Christiansen, Probability for Accumulation of TBP in Canyon Sumps., June 3, 1994.

8 CAFTA User's Manual. Science Applications International Corporation. Los Altos, CA. May 29, 1992.

7.0 APPENDICES

Appendix 1 Tom Campbell Memo for Sumps

Calculation No.
S-CLC-F-00100
Sheet No. 11 of 135
Rev. 1

INTER-OFFICE MEMOPRNDUM Sauannah River Site

03-Jun-1994 04:30pm EDT

To: See Below

From: Thomas G. Campbell
(CAMPBELL-TG-05094 AT A1 AT SASRS2)

Dept: NPSR

Tel: 2-3319

Probabillty for ficcumulation of TBP In Canyon Sumps

Process solvent is espected to be received in canyon sump receipt tanks from time to time due to overflows and leaks from canyon tanks and piping. Procedures require that accumulated solvent be remoued from receipt tanks before amounts (about 3088 pounds of TBP) are reached that could be a concern from a "red oil" reaction standpoint. The only way an amount can be received that is large enough to be of concern is from a single sump transfer. Esperience indicates that the frequency of receiving such a large mass of organic material unespectedly into a canyon vessel is very low. Myself, Ronnye Eubanks, and Dave Chostner conseruatively estimate that a receipt of soluent, containing more than 3000 pounds of IBP, can be espected in the sump receipt tanks less than once every flue years. This value is considered conservative because loss of such a large volume would be detected during operations. Actions other than transfer to sump receipt would be erpected in these situations. Also, in our collective esperience in the canyons (more than 40 years) we can recall of no occasion when such a large volume of organic material was received into a sump receipt tank from a leak, spill, or transfer error. please incorporate this value fonce in 5 years for receipt of large volumes of solvent in sump receipt) into the sump receipt tank fault trees for "red oil".

Distribution:

To: Lance W. Christiansen
(CHRISTIANSEN-LW-LB489 @RI@SLSRP1)

CC: CC: CC: CC:	ONELIO M. EBRA-LIMA	(EBRALIMA-0M-T5452 @A1@SLSRP (LUH-CR-T7244@R1@SLSRP1)
	Ray Lux	
	William E. Harris	(HARRIS-WE-05596 AT A1 AT SASRS2
	Dauid F. Chostner	
	HOSTNER-DF-03090 AT	T SASRS2 J
	Ronnye f. L. Eubanks	
	UBANRS-RA-06258 AT	SASR
C:	Sandra H. Marek	(MAREK-SH-07923 AT AI AT SASRS2)

| WSRC-RP-95-910

 Rev. 0 |
| :--- | ---: |
| Calculation No. |
| S-CLC-F-00100 |
| Sheet No. 13 of 135 |
| Rev. 1 |

Appendix 2
Basic Event Data for Feed Tanks (Tank 12.5)
Basic Event Report for Feed Tanks (Tank 12.5) (CONT.)

Event	c	Input	Calc.	Description	Source
OPRFSJETACLA\#	1	5.0E-4N	$5.00 \mathrm{E}-04 \mathrm{~N}$	Operator in Gang Valve Corridor Fails to Complete Transfer to 12.5	Present Throughout Transfer so should be low
OPRFSPG-ACNA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	Operator Fails to Check for Fluctuation in SpG Instrument (Agitator Failure)	Use TC Value
OPRFTEMPMCNA\#	1	$5.0 \mathrm{E}-3 \mathrm{~N}$	5.00E-03N	Miscalibration of Temperature Sensor for 12.5	Single person, Operator Check
OPRFTEMPVRHA\#	1	5.0E-2N	5.00E-02N	Operator Fails to Notice Temperature Increase During Transfer to 12.5	Scanning Effort Only
PERBETEMTWOA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 0.02 \mathrm{~N} \end{array}$	2.00E-02N	Temperature sensor calibrated just before this batch	Calibrated every 6 months \& 96 batches a year
PERFBEMATHEA\#	1	1 N	$3.80 \mathrm{E}-01 \mathrm{~N}$	Maintenance is Performed Just Before This Batch	Assumes 3 Maintenance Activities/Month and 8 Batches/Month
PERFTCALHLFA\#	1	- 10.005 N	5.00E-03N	Temperature Sensor for 12.5 Calibrated Just Before Required	Estimated Used 6/Day and Calibrated Every 6 Months
PNVBECWSFCLF\#	5	1.0E-06H	8.40E-05	Supply Control Valve on Cooling Water Fails closed	Assumes Discovered within a week
RAHRIVERSPRF\#	3	24 H $5.0 \mathrm{E}-06 \mathrm{H}$	$1.20 \mathrm{E}-04$	Spurious radiation alarms forces shut off cooling water	Fails during 24 hour cooling period
SJ-FT125PREF+	4	$\begin{aligned} & 1 \mathrm{H} \\ & 4 \mathrm{D} \end{aligned}$	$1.43 \mathrm{E}-01$	Transfer to Tank 12.5 is Required	Use Frequency From TC File, 6/Day
SW-DG292BFLA\#	1	[$\begin{array}{r}\text { 1N } \\ 5 \mathrm{E}\end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	switch gear failure causes failure of 292 diesel generator to supply power	Demand Failure From Systems Analysis
TA-F----BFLA\#	5	3.0E-05 ${ }^{6 \mathrm{M}}$	$6.21 \mathrm{E}-02$	Temperature Alarm for 12.5 Fails	Assume not discovered until 6 month calibration cycle
TBP3000-PR3F\#		0.1 N	$1.00 \mathrm{E}-01$	TBP Present in Feed Exceeds 3000 Pounds	NMP-SDG-94-0079, 5/24/94 Campbell to Lux Based on data bank runs
TBPTK---PREF\#	3	$7 D$ 0.14	$1.92 \mathrm{E}-03$	Process upset causes excess organic in feed	1st Cycle Process Upset Not Discovered for 1 Week (1/10 yr None Seen)
TE-BETE-BFLF\#	5	$\begin{array}{r} 7 \mathrm{D} \\ 1.0 \mathrm{E}-06 \mathrm{H} \end{array}$	8.40E-05	Tank 12.5 Temperature Sensor Fails	Assumes Discovered within a week
TE-FT125BFLA\#	3	$\begin{array}{r} 1.0 \mathrm{E} \\ 2 \mathrm{H} \\ 1.0 \mathrm{E}-06 \mathrm{H} \end{array}$	$2.40 \mathrm{E}-05$	Temperature Sensor for Tank 12.5 Fails	Required 24 hours during Cooling \& Discovered at Next Use

Rev. 1
Type Codes for Feed Tanks (Tank 12.5)

Type Code	Rate	Description	Source
AG- BFL A	5.0E-06H	Agitator Fails	WSRC-TR-93-262, page 19, AGI-FA-C, Agitator Failure
AG- BLA A	5.0E-07H	Agitator Blades/Shaft Fail	WSRC-TR-93-262, page 19, AGI-FA-C, Agitator
CHM FIR F	$1.0 \mathrm{E}-7 \mathrm{H}$	Large fire in cell causes pyrolysis of TBP	Failure, Less Likely /10 Bounds DPSTSA-200-10, SUP-4
CHM UNR F	1.6E-05H	Uncontrolled Reaction in Solvent Extraction	DPSTSY-200-1F
DCS INA F	$3.0 \mathrm{E}-06 \mathrm{H}$	Common cause failure of DCS temperature and agitation equipment	WSRC-TR-93-262
DG- FTR A	3.0E-04H	Emergency diesel fail run	DPSTSY-200-1F vol. $2 \mathrm{p} \mathrm{P}-32$
DG- FIS A	3. OE-02N	Emergency diesel fail start	DPSTSY-200-1F vol. $2 \mathrm{p} \mathrm{P}-32$
DG- MSC A	$2 \mathrm{E}-3 \mathrm{~N}$	operator error/misc. causes diesel generator failure	DPSTSY-200-1F vol. $2 \mathrm{p} \mathrm{P}-32$
EXH BFL A	$0.03 Y$	Failure of F-Canyon Ventilation System	SRT-SEP-93-009, Fault Tree Analysis of Diesel Generators in F-Canyon, 1/39yr
EXM CRI F	2.0E-07H	Heat from criticality causes secondary "red oil" reaction	DPSTSA-200-10, SUP-4, Table 5-7
FPW BFL A	1. $0 \mathrm{E}-04 \mathrm{H}$	Failure of utility power	DPSTSY-200-1F
HCV FCL F	3. $0 \mathrm{E}-07 \mathrm{H}$	Spurious Operation of Motor Operated Valve	WSRC-TR-93-262, page 12, MOV-OC-W, Spurious Operation of Motor Operated Valve
HX- LKS F	1.0E-07H	Heat Exchanger Tube Leaks	WSRC-TR-93-262, page 15, HTX-LI-W, Heat Exchanger Tube Leakage
HX- PLG F	3. $0 \mathrm{E}-08 \mathrm{H}$	Heat Exchanger Tube Plugs	WSRC-TR-93-262, page 15, HTX-PG-W, Heat Exchanger Tube Plugs
NCW BFL A	1.0E-05H	"Normal* Cooling Water Fails at Header Level	DPSTSY-200-1F
OPR ACH A	$5.0 \mathrm{E}-2 \mathrm{~N}$	Failure of Administrative Control (High)	WSRC-TR-93-581, Table 4, Item 1, High
OPR ACL A	$5.0 \mathrm{E}-4 \mathrm{~N}$	Failure of Administrative Control	WSRC-TR-93-581, Table 4, Item 1, Low
OPR ACN A	$5.0 \mathrm{E}-3 \mathrm{~N}$ 5	Failure of Administrative Control (Nominal)	WSRC-TR-93-581, Table 4, Item 1, Nominal
OPR MCN A	$5.0 \mathrm{E}-3 \mathrm{~N}$	Miscalibration (Nominal) .	WSRC-TR-93-581, Table 4, Item 12, Nominal
OPR RMN A	5.0E-3N	Failure to restore following maintenance (Nominal)	WSRC-TR-93-581, Table 4, Item 14, Nominal
OPR TEH A	3.0E-5H	Transfer error (per Tank) (High)	WSRC-TR-93-581, Table 4, Item 17, High
OPR VIN A	1.0E-1N	Failure of visual inspection (Nominal)	WSRC-TR-93-581, Table 4, Item 31, Nominal
OPR VRH A	5.0E-2N	Failure to verify within control room (High)	WSRC-TR-93-581, Table 4, Item 3, High
PER HLF A	0.005 N	One Half of One Percent Chance	Probability of Occurrence
PER THE A	0.38 N	38%	Probability of occurrence
PER TWO A	1.0.02N	Two Percent Chance	Probability of Occurrence
PNV FCL F	1.0E-06H	Air-Operated Valve Fails Closed	WSRC-TR-93-262, page 12, AOV-CC-W, Air
RAH SPR F SJ- PRE F	5.0E-06H	SPURIOUS ALARM FAILURE	Operated Valve Spurious Operation WSRC-TR-93-262, page 30, ALR-SO-I, Alarm/Annunciator Fails to AlarmInternal)
SW- BFL A	5E-3N	switch gear failure	DPSTSY-200-1F vol. 2 p P-32
TA- BFL A	3.0E-05H	Alarm / Annunciator Fails to Alarm	WSRC-TR-93-262, page 30, ALR-NR-I,
$\begin{aligned} & \text { TBP PRE F } \\ & \text { TE- BFL A } \end{aligned}$	$0.1 Y$ $1.0 \mathrm{E}-06 \mathrm{H}$	Process upset causes excess organic in feed (recycle) Temperature Sensor Fails	Conservatie estimate, loss of weir contro., bank flooding, etc WSRC-TR-93-262, page 30, TST-FA-I, Temperature Sensor Failure

Calculation No.
S-CLC-F-00100
Sheet No. 16 of 135
Rev. 1

Type Codes for Feed Tanks (Tank 12.5) (CONT.)

Type Code	Rate	Description	Source
TE- BFL F	$1.0 \mathrm{E}-06 \mathrm{H}$	Temperature Sensor Fails	WSRC-TR-93-262, page 30, TST-FA-I, Temperature Sensor Failure

Rev. 1

Calculation No.
S-CLC-F-00100
Sheet No. 17 of 135
Rev. 1

Appendix 3
 Fault Tree and Cutsets for Feed Tanks (Tank 12.5)

Rev.

Calculation No.
S-CLC-F-00100
Sheet No 26 of 135

Calculation No.
S-CLC-F-00100

Cutsets for Red Oil Explosions in Feed Tanks (Tank 12.5)

Cutsets for Red Oil Explosions in Feed Tanks (Tank 12.5) (CONT.)

Cutsets for Red Oil Explosions in Feed Tanks (Tank 12.5) (CONT.)

Cutsets for Red Oil Explosions in Feed Tanks (Tank 12.5) (CONT.)

Cutsets for Red Oil Explosions in Feed Tanks (Tank 12.5) (CONT.)

Cutsets for Red oil Explosions in Feed Tanks (Tank 12.5) (CONT.)

Set No.	Event Name	Description	C	B.E. Input	$\begin{aligned} & \text { Calc } \\ & \text { Result } \end{aligned}$	Cutset Freq. (/yr)
24.	$\begin{aligned} & \text { CHMSOLEXUNRF+ } \\ & \text { OPRFSPG-ACNA\# } \\ & \text { TBP3000-PR3F\# } \\ & \text { TBPTK---PREF\# } \end{aligned}$	Uncontrolled Chemical Reaction in Solvent Extraction Operator Fails to Check for Fluctuation in SpG Instrument (Agitator Failure) TBP Present in Feed Exceeds 3000 Pounds Process upset causes excess organic in feed	4 1 3	$\begin{array}{r} 1 \mathrm{H} \\ 1.6 \mathrm{E}-05 \mathrm{H} \\ 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 \mathrm{~N} \\ 0.1 \mathrm{~N} \\ 7 \mathrm{D} \\ 0.1 \mathrm{Y} \end{array}$	$\begin{aligned} & 1.60 \mathrm{E}-05 \\ & 5.00 \mathrm{E}-03 \mathrm{~N} \\ & 1.00 \mathrm{E}-01 \\ & 1.92 \mathrm{E}-03 \end{aligned}$	
	AG-FT125BLAA\#	Shaft/Blade Fails to Provide Mixing for Tank 12.5	3	$5.0 \mathrm{E}-07 \mathrm{H} \mid$	3.60E-04	$9.06 \mathrm{E}-12$
	OPR-----TEHA +	Transfer Error to Tank 12.5	1	$\begin{array}{r} 1 \mathrm{H} \\ 3.0 \mathrm{E}-5 \mathrm{H} \end{array}$	$3.00 \mathrm{E}-05$	
	OPRFSJCRACLA\#	Operator in Control Room Fails to Complete Transfer to 12.5	1	$\begin{array}{r} 1 N \\ 5.0 \mathrm{E}-4 \mathrm{~N} \end{array}$	5.00E-04N	
	TBP3000-PR3F\#	TBP Present in Feed Exceeds 3000 Pounds		0.1 N	1.00E-01	
	TBPTK---PREF\#	Process upset causes excess organic in feed	3	$\begin{array}{r} 7 D \\ 0.1 Y \end{array}$	1.92E-03	
25.	CHMSOLEXUNRF+	Uncontrolled Chemical Reaction in Solvent Extraction	4	$1.6 \mathrm{E}-05 \mathrm{H}$	1.60E-05	5.29E-12
	EXHCANYNBFLA\#	Canyon Exhaust System Fails	3	$24 \mathrm{H}$	8.22E-05	
	FPW----BFLA\#	utility power fails	3	$\begin{array}{r} 24 \mathrm{H} \\ 1.0 \mathrm{E}-04 \mathrm{H} \end{array}$	2.40E-03	
	TBP3000-PR3F\#	TBP Present in Feed Exceeds 3000 Pounds		0.1N	1.00E-01	
	TBPTK---PREF\#	Process upset causes excess organic in feed	3	$\begin{array}{r} 7 D \\ 0.19 \end{array}$	1.92E-03	
26.	AG-FT125BFLA\#	Agitator Motor on Tank 12.5 Fails	3	$\begin{array}{r} 24 \mathrm{H} \\ 5.0 \mathrm{E}-06 \mathrm{H} \end{array}$	1.20E-04	$3.02 \mathrm{E}-12$
	OPR-----TEHA +	Transfer Error to Tank 12.5	1	$3.0 \mathrm{E}-5 \mathrm{H}$	3.00E-05	
	OPRFSJCRACLA\#	Operator in Control Room Fails to Complete Transfer to 12.5	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-4 \mathrm{~N} \end{array}$	5.00E-04N	
	TBP3000-PR3F\#	TBP Present in Feed Exceeds 3000 Pounds		0.1 N	1.00E-01	
	TBPTK---PREF\#	Process upset causes excess organic in feed	3	$\begin{array}{r} 7 D \\ 0.1 Y \end{array}$	1.92E-03	
27.	FPW-----BFLA\#	utility power fails	3	$\begin{array}{r} 24 \mathrm{H} \\ 1.0 \mathrm{E}-04 \mathrm{H} \end{array}$	$2.40 \mathrm{E}-03$	$3.02 \mathrm{E}-\frac{1}{2}$
	OPR----TEHA+	Transfer Error to Tank 12.5	1	$3.0 \mathrm{E}-5 \mathrm{H} \mid$	3.00E-05	
	OPREPOW-ACHA\#	Operator Fails to Stop Transfer During Power Failure	1	$\begin{array}{r} 1 N \\ 5,0 E-2 N \end{array}$	5.00E-02N	
	OPRESJCRACLA\#	Operator in Control Room Fails to Complete Transfer to 12.5	1	$\begin{array}{r} 1 N \\ 5.0 E-4 N \end{array}$	$5.00 \mathrm{E}-04 \mathrm{~N}$	
	TBP3000-PR3F\#	TBP Present in Feed Exceeds 3000 Pounds		0.1 N	$1.00 \mathrm{E}-01$	

Cutsets for Red Oil Explosions in Feed Tanks (Tank 12.5) (CONT.)

set No.	Event Name	Description	C	B.E. Input	Calc. Result	Cutset Freq. (/yr)
28.	TBPTK---PREF\#	Process upset causes excess organic in feed	3	7 D 0.1 Y	$1.92 \mathrm{E}-03$	
	EXHCANYNBFLA\#	Canyon Exhaust System Fails	3	24 H 0.03 Y	8.22E-05	$2.46 \mathrm{E}-12$
	OPRFBECWACNA\#	Operator Fails to Turn Tank 12.5 Cooling Water On or Stop Addition	1	OE-3N	5.00E-03N	
	OPRFBETEVRHA\#	Operator Fails to Monitor Tank 12.5 Temperature During	1		5.00E-02N	
	OPRFSJETACLA\#	Operator in Gang Valve Corridor Fails to Complete Transfer to 12.5	1	1 N $5.0 \mathrm{E}-4 \mathrm{~N}$	$5.00 \mathrm{E}-04 \mathrm{~N}$	
	SJ-FT125PREF+	Transfer to Tank 12.5 is Required	4	1H	$1.43 \mathrm{E}-01$	
	TBP3000-PR3F\#	TBP Present in Feed Exceeds 3000 Pounds		0.1 N	1.00E-01	
	TBPTK---PREF\#	Process upset causes excess organic in feed	3		$1.92 \mathrm{E}-03$	
29.	EXHCANYNBFLA\#	Canyon Exhaust System Fails	3	24 H 0.03 Y	8.22E-05	2.36E-12
	NCW-----BFLA\#	"Normal" Cooling Water Lost at the Main Header Level	3		2.40E-04	
	OPRFSJETACLA\#	Operator in Gang Valve Corridor Fails to Complete Transfer to 12.5	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-4 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-04 \mathrm{~N}$	
	SJ-FT125PREF+	Transfer to Tank 12.5 is Required	4		$1.43 \mathrm{E}-01$	
	TBP3000-PR3F\#	TBP Present in Feed Exceeds 3000 Pounds		0.1 N	$1.00 \mathrm{E}-01$	
	TBPTK---PREF\#	Process upset causes excess organic in feed	3	7D	$1.92 \mathrm{E}-03$	
				0.1 Y		
30.	DG-POWERFTSA\#	292 emergency diesel generator fails to start	1	1N	3.00E-02N	$1.81 \mathrm{E}-12$
	FPW----BFLA\#	utility power fail	3	- $3.0 \mathrm{E}-02 \mathrm{~N}$	$2.40 \mathrm{E}-03$	
	OPR-----TEHA	Transfer Error to Tank	1	$1.0 \mathrm{E}-04 \mathrm{H}$	3.00E-05	
	OPR			$3.0 \mathrm{E}-5 \mathrm{H}$		
	OPRFSJCRACLA\#	Operator in Control Room Fails to Complete Transfer to 12.5	1	$1 \mathrm{~N}$	$5.00 \mathrm{E}-04 \mathrm{~N}$	
	TBP3000-PR3F\#	TBP Present in Feed Exceeds 3000 Pounds		$5.0 \mathrm{E}-4 \mathrm{~N}$ 0.1 N	1.00E-01	\%
	TBPTK---PREF\#	Process upset causes excess organic in feed	3	.7D	$1.92 \mathrm{E}-03$	\checkmark
				$0.1 Y$		

Appendix 4

Basic Event Data for Sump Receipt Tanks
Basic Event Report for Sump Receipt Tank 17.5 (S175-2.BE)

Basic Event Report for Sump Receipt Tank 17.5 (S175-2.BE) (CONT.)

Event	c	Input	Calc.	Description	Source
OPRSSJCRACLA\#	1	5.0E-4N	$5.00 \mathrm{E}-04 \mathrm{~N}$	oper. in CR fails to complete unintentional transfer to 17.5 (SJ left on)	present throughout transfer so use low
OPRSSPG-ACNA\#	1	$5.0 \mathrm{E}-3 \mathrm{~N}$	5.00E-03N	operator fails to read SpG indication (doesn't notice agitator failure)	wsrc-tr-93-581 T4 \#1 nominal
OPRSTEMPMCNA\#	1		$5.00 \mathrm{E}-03 \mathrm{~N}$	temp. sensor is miscalibrated for 17.5	1
OPRSTEMPVRHA\#	1	$5.0 \mathrm{E}-3 \mathrm{~N}$ 1 N	5.00E-02N	operator fails to notice temperature	wsrc-tr-93-581 T4 \#3 high (no
		$5.0 \mathrm{E}-2 \mathrm{~N}$		increase during addition to 17.5	
PERCHMLK045A\#	1	1 N .45 N	4.50E-01N	uncontrolled rxn is a result of transfer of sumps	assume 45\% based on databank valving error, $1 / 2$ remainder for trans)
PERS--MA038A\#	1	1 N 0.38 N	3.80E-01N	17.5-Maintenance is Performed Just Before This Batch	Assumes 3 Maintenance Activities/Month and 8 Batches/Month
PERSCWONO20A\#	1	1 N .1 N .2 N	$2.00 \mathrm{E}-01 \mathrm{~N}$	cooling water for tank 17.5 is not on during unplanned add' n	est not on 20% of time (on during $\&$ after transfers to cool down)
PERSTCALHLFA\#	1	(1N $\begin{array}{r}\text { 12 } \\ 5 \mathrm{E}-3 \mathrm{~N}\end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	temperature sensor for 17.5 calibrated just before required	est from calib. every 2 years \& 200 batches in that time
PNVS-CWSFCLA\#	5		8.40E-05	Supply Control Valve on Cooling Water Fails Closed	Assumes Discovered within a week
RAHRIVERSPRS\#	3	24 H	.20E-04	Spurious radiation alarms forces shut	Fails during 24 hour cooling period
SJ-TK175 PRES +	4	$5.0 \mathrm{E}-06 \mathrm{H}$	2.22E-01	off cooling water transfer to tank is required	tank remains hot for 1 day/2 transfer
SW-DG292BFLAA		$1.19 \mathrm{E}-2 \mathrm{H}$ 1 N		switch gear failure causes failure of	per week Demand Failure From Systems Analysis
SW-DG292BFLA\#	1	5E-3N	5.00E-03N	switch gear failure causes fallure of 292 diesel generator to supply power	
TA-S----BFLA\#	5		2.22E-01	temperature alarm for 17.5 fails	discovered at 2 year calibration interval
TBPTK175PRES\#		$2.0 \mathrm{E}-03 \mathrm{~N}$	2.00E-03	Suff. solvent from canyon leaks received in sump receipt tank 17.5 causes rxn	a: need > 3,000 lbs TBP-happens once in 5 years $/ 500$ batches in that time
TE-S----BFLA\#	3	$\begin{array}{r} 7 \mathrm{D} \\ 1 \mathrm{E}-6 \mathrm{H} \end{array}$	1.68E-04	temperature sensor for 17.5 fails	1 week to discover

Calculation No.
S-CLC-F-00100
Sheet No. 42 of 135

Rev. 1
Type Codes for Sump Receipt Tank 17.5 (S175-2.TC)

Type Codes for Sump Receipt Tank 17.5 (S175-2.TC) (CONT.)

Type Code	Rate	Description	Source	EF	D
PER 045 A	.45N	45\% chance	databank uncontrolled reactions caused intentional add'n (90\%)/2		
PER HLF A	5E-3N	one half of one percent chance	prob. of occurrence 12 AOV-CC-W Air		
PNV FCL A	$1.0 \mathrm{E}-06 \mathrm{H}$	Air-Operated Valve Fails Closed	WSRC-TR-93-262, page 12, AOV-CC-W, Air Operated Valve Spurious Operation		
RAH SPR S	5.0E-06H	SPURIOUS ALARM FAILURE	WSRC-TR-93-262, page 30, ALR-SO-I, Alarm/Annunciator Fails to AlarmInternal)		
SJ- PRE D	$1.19 \mathrm{E}-2 \mathrm{H}$	transfer to tank req	2/wk est		
SJ- PRE S	$1.19 \mathrm{E}-2 \mathrm{H}$	transfer to tank reg	2/wk est		
SW- BFL A	$5 \mathrm{E}-3 \mathrm{~N}$	switch gear failure	DPSTSY-200-1F wsrc-tr-93-262 TIf		
TA- BFL A TE- BFL A	$3 \mathrm{E}-5 \mathrm{H}$ $1 \mathrm{E}-6 \mathrm{H}$	alarm fails to alarm temp. sensor failure	$\begin{aligned} & \text { wsrc-tr-93-262 T1f (ALR-NR-I) } \\ & \text { wsrc-tr-93-262 T-1f } \end{aligned}$		

Calculation No.
Basic Event Report for Sump Receipt Tank 7.3 (S73-1.BE)

Event	C	Input	Calc.	Description	Source
AG-D----ON-A\#	1	$1 N$ $.5 N$	5.00E-01N	agitator for 7.3 is intentionally off	does not run during settling \& transfers out of tank
AG-S----ON-A\#	1	1N	5.00E-01N	agitator for 17.5 is intentionally off	
AG-TK-73BLAA\#	3	5N 14 D	1.68E-04	7.3 agitator blade/shaft failure	transfers out of tank 14 days to detect (total failure rate.
		5.0E-07H			from wsrc-tr-93-262 T1b)/10
AG-TK-73FTSA\#	3	$5.00 \mathrm{E}-06 \mathrm{H}$	$1.68 \mathrm{E}-03$	agitator motor failure 7.3	2 wks to detect (total failure rate
AG-TK175BLAA\#	3	5.00E-06 H	1.68E-04	agitator blade/shaft failure 17.5	from wsrc-tr-93-262 T1b) 14 days to detect (total failure rate
		$5.0 \mathrm{E}-07 \mathrm{H}$			from wsrc-tr-93-262 T1b)/10
AG-TK175FTSA\#	3	$\begin{array}{r} 14 \mathrm{D} \\ 5.00 \mathrm{E}-06 \mathrm{H} \end{array}$	1.68E-03	agitator motor failure 17.5	2 wks to detect use (total failure rate from wsrc-tr-93-262 T1b)
AGITOFF		1 N	$1.00 \mathrm{E}+00$	agitator off	
ANGEQLABBFLA\#	3	5.00E 24 H	1.20E-03	Lab Equipment Malfunction, Sample	a: 24 hr restoration time
AQUDENS1PREA\#	3	$\begin{array}{r} 5.00 \mathrm{E}-05 \mathrm{H} \\ 1 \mathrm{M} \end{array}$	8.19E-03	Cannot be Run Process upsets causes dilute 2AW or	estimated as $1 / 10 y r$ - not discovered
		1.0E-01Y		high density in 11.7 S	for 1 month
AQUDENS2 PREA\#	3	$\begin{array}{r} 1 \mathrm{M} \\ 1.0 \mathrm{E}-01 \mathrm{Y} \end{array}$	8.19E-03	Process upsets causes dilute 2 W or high density in 11.7 S	estimated as $1 / 10 y r$ - not discovered for 1 month
BATB--- PREB +	4		$5.68 \mathrm{E}-03$	batch processed through 8.5	est. 50 times/year
BATE----PREE +	4	$\begin{array}{r} 2.71 \mathrm{E}-3 \mathrm{H} \\ 1 \mathrm{H} \\ 5.71 \mathrm{E}-3 \mathrm{H} \end{array}$	$5.68 \mathrm{E}-03$	batch processed through 17.7	est., 50 times/yr
CHMCELL-FIRD+	4	$\begin{array}{r} 1 \mathrm{Y} \\ 1.0 \mathrm{E}-07 \mathrm{H} \end{array}$	$8.75 \mathrm{E}-04$	Large fire in 7.3 cell causes pyrolysis of TBP	Bounds frequency in PLF canyon fire study
CHMCELL-FIRS +	4	$\begin{array}{r} 1 \mathrm{Y} \\ 1.0 \mathrm{E}-07 \mathrm{H} \end{array}$	$8.75 \mathrm{E}-04$	Large fire in 17.5 cell causes pyrolysis of TBP	Bounds frequency in PLF canyon fire study
CHMTK-73UNRD +	4	$5 .$	$5.00 \mathrm{E}-06$	excessive chemical reaction in tank 7.3	a: temp>80 C (rxns: (nitrite, carbonate, NaOH)/nitric , HAN/FS)
CHMTK175UNRS +	4	$\begin{array}{r} 1 \mathrm{H} \\ 5.0 \mathrm{E}-06 \mathrm{H} \end{array}$	5.00E-06	excessive chemical reaction in tank 17.5	```a: temp>80 C (rxns:(nitrite,carbonate,NaOH,water)/ nitric,HAN/FS)```
DCS-CC--PREA\#	3	$\begin{array}{r} 72 \mathrm{H} \\ 3.0 \mathrm{E}-06 \mathrm{H} \end{array}$	$2.16 \mathrm{E}-04$	Common cause DCS failure	WSRC-TR-93-262, Logic module failure 3 days to repair
DG-DG292MSCA\#	1	$\begin{array}{r} 1 N \\ 2 \mathrm{E}-3 \mathrm{~N} \end{array}$	$2.00 \mathrm{E}-03 \mathrm{~N}$	misc. /operator error causes failure of 292 diesel to supply power	Demand Failure From Systems Analysis
DG-POWERFTRA\#	3	$\begin{array}{r} 24 \mathrm{H} \\ 3.0 \mathrm{E}-04 \mathrm{H} \end{array}$	7.17E-03	292 diesel generator fails to run	must run 24 hrs
DG-POWERFTSA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 3.0 \mathrm{E}-02 \mathrm{~N} \end{array}$	3.00E-02N	292 emergency diesel generator fails to start	Demand Failure From Systems Analy
EXCESSTBP EXHCANYNBFLA\#		$\begin{array}{r} 1.05 \mathrm{e}-5 \mathrm{~N} \\ 24 \mathrm{H} \end{array}$	$\begin{aligned} & 1.05 \mathrm{E}-05 \\ & 8.22 \mathrm{E}-05 \end{aligned}$	excess TBP in 8.5BT	
EXHCANYNBFLA\#	3	$\begin{array}{r} 24 \mathrm{H} \\ 0.03 \mathrm{Y} \end{array}$	$8.22 \mathrm{E}-05$	canyon exhaust system fails	24 hr mission fault tree ???.CAF
EXMTK-73CRID +	4	1.8E-7H	1.57E-03	Criticality in 7.3 provides heat for runaway TBP reaction	F-Canyon SAR
EXMTK175CRIS +	4	$\begin{array}{r} 1 \mathrm{Y} \\ 1.8 \mathrm{E}-7 \mathrm{H} \end{array}$	1.57E-03	Criticality provides heat for runaway TBP reaction in 17.5	F-Canyon SAR

Basic Event Report for Sump Receipt Tank 7.3 (S73-1.BE) (CONT.)

Event	C	Input	Calc.	Description	Source
FLTRXN72UNRD +	4	$\begin{array}{r} 24 \mathrm{H} \\ 3.81 \mathrm{E}-5 \mathrm{H} \end{array}$	9.14E-04	ammonium nitrate builds up to dangerous amounts in 7.2 PVV filter	takes 3 years
FPW-----BFLA\#	3	24H	$2.40 \mathrm{E}-03$	utility power fails	a: Fails During 24 hour Cooling
GI-SR-ACID-D	4	1.0E-04H	$1.00 \mathrm{E}-32$		Period
		1E-32H		7.3 tank contents	
GI-SR-ACID-S	4	1H	$1.00 \mathrm{E}-32$	strong nitric acid adjustment heats	incredible <can only heat 10-20 C
GI-SR-WATER-D	4	1E-32H	$1.00 \mathrm{E}-3$	17.5 tank contents normal water addit	from acid add'n>
		$1 \mathrm{E}-32 \mathrm{H}$			
GI-SR-WATER-S	4	$1 \mathrm{E}-32 \mathrm{H}$	$1.00 \mathrm{E}-32$	sump flush or process water addition heats 17.5	incredible <heat of dilution can only cause 10 C rise>
GSK8WSECLKSG\#	5	24H	1.20E-06	One of Two Gaskets in Section 8 of	a: 24 hours to discover leak
HCV-10.8FTOG\#	1	$1.0 \mathrm{E}-07 \mathrm{H}$ 1 N	$1.00 \mathrm{E}-03 \mathrm{~N}$	Warm Canyon Leaks Air jet valve fails to open \& prev	
		1.0E-03N	1.	organic air lift	in a compressed gas system
HCV-11.7FTOG\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 1.0 \mathrm{E}-03 \mathrm{~N} \end{array}$	$1.00 \mathrm{E}-03 \mathrm{~N}$	Air jet valve fails to open \& prevents organic air lift	a: Manual Valve Equivalent to that in a compressed gas system
HCVB-CWSFCLA\#	3	$\begin{array}{r} 24 \mathrm{H} \\ 3.0 \mathrm{E}-07 \mathrm{H} \end{array}$	7.20E-06	Manual Isolation Valve on Cooling Water Supply Line Fails Closed	Assumes Fails During 24 hr . Cooling Period
HCVE-CWSFCLA\#	3	3.0E-07H	7.20E-06	Manual Isolation Valve on Cooling Water Supply Line Fails Closed	Assumes Fails During 24 hr . Cooling Period
HCVS-CWSFCLA\#	3	24 H $3.0 \mathrm{E}-07 \mathrm{H}$	7.20E-06	Manual Isolation Valve on Cooling Water Supply Line Fails Closed	Assumes Fails During 24 hr . Cooling Period
HX-B-TUBLKEA\#	3	1.0E-07H	2.40E-06	8.5 bottoms tank Cooling Coil Leaks	Assumes Fails During 24 hr . Cooling Period
HX-B-TUBPLGA\#	3	1.08 $\begin{array}{r}24 \mathrm{H} \\ 3.0 \mathrm{E}-08 \mathrm{H}\end{array}$	$7.20 \mathrm{E}-07$	8.5 Cooling Coil Plug	Assumes Fails During 24 hr . Cooling Period
HX-E-TUBLKSA\#	3	2.0E-07H	2.40E-06	17.7 bottoms tank Cooling Coil Leaks	Assumes Fails During 24 hr . Cooling Period
HX-E-TUBPLGA\#	3	24 H $3.0 \mathrm{E}-08 \mathrm{H}$	$7.20 \mathrm{E}-07$	17.7 Cooling Coil Plug	Assumes Fails During 24 hr . Cooling Period
HX-S-TUBLKSA\#	3	24H	2.40E-06	17.5 Cooling Coil Leak	Assumes Fails During 24 hr . Cooling
HX-S-TUBPLGA\#	3	24 H	$7.20 \mathrm{E}-07$	17.5 Cooling Coil Plug	Assumes Fails During 24 hr . Cooling
		$3.0 \mathrm{E}-08 \mathrm{H}$			Period $\mathrm{a}: 1$ week to restor
K108	5	$\begin{array}{r} 720 \mathrm{H} \\ 3.0 \mathrm{E}-06 \mathrm{H} \end{array}$		Interface Instrument in 10.8 Give False high Reading	a: 1 week to restore
INTTK117FHIG\#	5	$\begin{array}{r} 720 \mathrm{H} \\ 3.0 \mathrm{E}-06 \mathrm{H} \end{array}$	1.08E-03	Interface Instrument in 11.7 Gives False high Reading	a: 1 week to restore
LALA10.8BFLG\#	5		$3.60 \mathrm{E}-04$	10.85 level alarm instrumentation	a: 24 hours restoration time
11.7BF	5	3.0E-05H		fails to detect low level 11.7 s level alarm instrumentat	a: 24 hours to restore
11.7BF	5	$3.0 \mathrm{E}-05 \mathrm{H}$	3.	fails to detect	a: 24 hours to restore
LALO10.8BFLG\#	5		3.60E-04	Failure of organic level alarm in	a: 24 hours to restore
LALO11.7BFLG\#	5	$\begin{gathered} 3.0 \mathrm{E}-05 \mathrm{H} \\ 1 \mathrm{D} \\ 3.0 \mathrm{E}-05 \mathrm{H} \end{gathered}$	3.60E-04	decanter 10.8 Failure of organic level alarm in decanter 11.7	a: 1 day to detect or correct

Basic Event Report for Sump Receipt Tank 7.3 (S73-1.BE) (CONT.)

Event	C	Input	Calc.	Description	Source	
MOVGA137FTCG\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 3.0 \mathrm{E}-03 \mathrm{~N} \end{array}$	3.00E-03N	Gang valve fails too close	Use TC Value	
MOVGA175FTCG\#	1	$1 \mathrm{~N}$	$3.00 \mathrm{E}-03 \mathrm{~N}$	Gang valve from 17.5 fails too close	Use TC Value	
NCW-----BFLA	3	$\begin{array}{r} 3.0 \mathrm{E}-03 \mathrm{~N} \\ 24 \mathrm{H} \\ 1.0 \mathrm{E}-05 \mathrm{H} \end{array}$	2.40E-04	"Normal" Cooling Water Lost at the Main Header Level	a: Fails During 24 hr Cooling Period	
NCWTK-73BRKA\#		1.OE- 1 N	$1.00 \mathrm{E}+00$	cooling system for tank 7.3 is broken	no cooling for 7.3	
NCWTK175INAS\#		IN	$1.00 \mathrm{E}+00$	cooling water for tank 17.5 is not on	est not on 100% of time (not in procedure)	
NOCOOL		1N	$1.00 \mathrm{E}+00$	no cooling		
NOVENT		$1 \mathrm{~N}$	$1.00 \mathrm{E}+00$	no ventilation		
OPRAPDE-MCNA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	Filter Pressure Differential Sensor is Miscalibrated	Assumes Nominal Calibration	
OPRAPDE-VINA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 1.0 \mathrm{E}-1 \mathrm{~N} \end{array}$	$1.00 \mathrm{E}-01 \mathrm{~N}$	Operator Fails to Monitor Filter Pressure Differential Sensor	High Pressure Difference is Easy to Observe	
OPRBBEHSRMNA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 \mathrm{~N} \end{array}$	5.00E-03N	Cooling Water Manual Supply Valve is Left Closed Following Maintenance	Assumes Discovered After Next Use of The CW System	
OPRBCW--ACNA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	cooling water for tank 8.5 is not on during planned add'n -oper. error	wsrc-tr-93-581 T4 \#1 nominal	
OPRBRNDSACNA\#	1	$\begin{array}{r} 1 N \\ 5.0 \mathrm{E}-3 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	operator fails to notice temp. increase in 8.5 during rounds check	wsre-tr-93-581 T4 \#1 nominal (proceduralized on rounds sheet)	
OPRBTEMPMCNA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	temperature sensor for 8.5 miscalibrated	wsrc-tr-93-581 \#12 nominal	
OPRD----TEHA +	4	$\begin{array}{r} 1 \mathrm{H} \\ 3.0 \mathrm{E}-5 \mathrm{H} \end{array}$	$3.00 \mathrm{E}-05$	transfer error to tank 7.3	freq. in TC file	
OPRDAGITACNA\#	1	$\begin{array}{r} 1 N \\ 5.0 \mathrm{E}-3 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	Operator fails to agitate tank 7.3	wsrc-tr-93-581 T4 \#1 nominal	
OPRDCLN1ACLA\#	1	$\begin{array}{r} 1 N \\ 5.0 \mathrm{E}-4 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-04 \mathrm{~N}$	operator fails to flush. NH4NO3 from 7.2 filter once detected	wsrc-tr-93-581 T4 \#1 low	
OPRDDET1 IRNA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 1.0 \mathrm{E}-2 \mathrm{~N} \end{array}$	$1.00 \mathrm{E}-02 \mathrm{~N}$	operator fails to detect NH 4 NO 3 in 7.2 filter	wsrc-tr-93-581 T4 \#11 nominal	
OPRDFLUSACNA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 \mathrm{~N} \end{array}$	5.00E-03N	operator fails to perform scheduled periodic filter flush	wsrc-tr-93-581 T4 \#1 nominal	
OPRDINSIACNA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	operator fails to inspect 7.2 PVV filter (monthly vacuum test)	wsrc-tr-93-581 T4 \#1 nominal	
OPRDSJ--ACLA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-4 \mathrm{~N} \end{array}$	5.00E-04N	steam jet left on heats tank 7.3 (in control room)	wsrc-tr-93-581 T4 \#1 low	
OPRDSJ73SVLA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 1.0 \mathrm{E}-1 \mathrm{~N} \end{array}$	$1.00 \mathrm{E}-01 \mathrm{~N}$	control room supervisor fails to stop transfer to 7.3 (key)	wsrc-tr-93-581 T4 \#9 low	号
OPRDSJCRACLA\#	1	$5.0 \mathrm{E}-4 \mathrm{~N}$	$5.00 \mathrm{E}-04 \mathrm{~N}$	oper. in CR fails to complete unintentional transfer to 7.3 (SJ left on)	present throughout transfer so use low	
OPRDSPG-ACNA\#	1	$5.0 \mathrm{E}-3 \mathrm{~N}$	5.00E-03N	operator fails to read SpG indication (doesn't notice agitator failure)	wsrc-tr-93-581 T4 \#1 nominal	\pm
OPRDTEMPMCNA\#	1	$1 \mathrm{~N}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	temp. sensor is miscalibrated for 7.3	wsrc-tr-93-581 T4 \#12 nominal	\bigcirc
OPRDTEMPVRHA\#	1	$\begin{array}{r} 5.0 \mathrm{E}-3 \mathrm{~N} \\ 1 \mathrm{~N} \\ 5.0 \mathrm{E}-2 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-02 \mathrm{~N}$	operator fails to notice temperature increase during addition to 7.3	wsrc-tr-93-581 T4 \#3 high (no procedure)	H

Basic Event Report for Sump Receipt Tank 7.3 (S73-1.BE) (CONT.)

Event	C	Input	Calc.	Description	Source
OPRECLN-ACNA\#	1	5.0E-3N	5.00E-03N	Failure to clean causes accumulation and/or phase inversion of solvent	wsrc-tr-93-581 T4 \#1 nominal old: notclean---f+
OPRECW--ACNA\#	1	$5.0 \mathrm{E}-3 N$	$5.00 \mathrm{E}-03 \mathrm{~N}$	cooling water for tank 17.7 is not on during planned add'n -oper. error	wsrc-tr-93-581 T4 \#1 nominal
OPRERNDSACNA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	operator fails to notice temp. increase in 17.7 during rounds check	wsrc-tr-93-581 T4 \#1 nominal (proceduralized in rounds sheet)
OPRETEMPMCNA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	error in calibration of 17.7 temp sensor	wsrc-tr-93-581 T4 \#12 nominal
OPREU185VINA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 1.0 \mathrm{~N} \end{array}$	$1.00 \mathrm{E}-01 \mathrm{~N}$	operator fails to detect upset to 18.5 (1CU decanter)	wsrc-tr-93-581 T4 \#31 nominal
OPRG-9.7CVNA\#	1	1.0E-1N	1.00E-01N	Operator fails to visually check sample for solvent	Use TC Value
OPRG-9.7SONA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 1.0 \mathrm{E}-2 \mathrm{~N} \end{array}$	$1.00 \mathrm{E}-02 \mathrm{~N}$	Operator agitates tank	Use TC Value
OPRG10.8CSLA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 3.0 \mathrm{E}-3 \mathrm{~N} \end{array}$	$3.00 \mathrm{E}-03 \mathrm{~N}$	Operator fails to shut down process (compelling signal)	Use TC Value
OPRG108-ACHA\#	1	5.0E-2N	$5.00 \mathrm{E}-02 \mathrm{~N}$	operator fails to jet out contents in 10.8 (overflow)	Use 'TC Value
OPRG108-MCHA\#	1	$\left.\begin{array}{r} 3.0 \mathrm{E}-2 \mathrm{~N} \\ 1 \mathrm{~N} \\ 3.0 \mathrm{E} \end{array} \right\rvert\,$	3.00E-02N	Calibration Error - Interface instrument is calibrated to give false reading	Use TC Value
OPRG11.7CSLA\#	1	3.0E-3N	$3.00 \mathrm{E}-03 \mathrm{~N}$	Operator fails to shut down process (compelling signal)	Use TC Value
OPRG117-ACHA\#	1	5.0E-2N	$5.00 \mathrm{E}-02 \mathrm{~N}$	operator fails to jet out contents in 11.7 (overflow)	Use TC Value
OPRG1177MCHA\#	1	3. $\mathrm{OE}-2 \mathrm{~N}$	$3.00 \mathrm{E}-02 \mathrm{~N}$	Calibration Error - interface instrument is Calibrated to Give False Reading	Use TC Value
OPRG13.8VRHA\#	1	5.0E-2N	5.00E-02N	Operator fails to verify temperature reading	Use TC Value
OPRG1361SRHA\#	1	3. $\mathrm{OE}-1 \mathrm{~N}$	$3.00 \mathrm{E}-02 \mathrm{~N}$	Operator Selects Wrong Jet - TBP Transferred from 13.61 S to 13.7	Use TC Value
OPRG13 62SRHA\#	1	3. $\mathrm{OE}-2 \mathrm{~N}$	$3.00 \mathrm{E}-02 \mathrm{~N}$	Operator Selects Wrong Jet - TBP Transferred from 13.62 S to 13.7	Use TC Value
OPRG137-ACHA\#	1	5.0E-2N	$5.00 \mathrm{E}-02 \mathrm{~N}$	Operator fails to settle tank contents prior to transferring out	Use TC Value
OPRG137-IRNA\#	1	1.0E-2N	$1.00 \mathrm{E}-02 \mathrm{~N}$	Operator incorrectly reads spg display	Use TC Value
OPRG137-MCNA\#	1	5.0E-3N	5.00E-03N	Calibration Error - SPG Instrument is Calibrated to Give a False Reading	Use TC Value
OPRG137TACHA\#	1	5.0E-2N	$5.00 \mathrm{E}-02 \mathrm{~N}$	Operator transfer too much organic to 7.8 (procedure violation)	Use TC Value
OPRG137VDEHA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 1.0 \mathrm{E}-1 \mathrm{~N} \end{array}$	$1.00 \mathrm{E}-01 \mathrm{~N}$	Operator fails to recognize that too much TBP was transferred	Use TC Value
OPRG138-ACHA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-2 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-02 \mathrm{~N}$	Operator fails to settle tank contents prior to transferring out	Use TC Value
OPRG138-ACNA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 \mathrm{~N} \end{array}$	5.00E-03N	Operator Fails To Check Temperature Transfers Too Much	Use TC Value

Basic Event Report for Sump Receipt Tank 7.3 (S73-1.BE) (CONT.)

Event	C	Input	Calc.	Description	Source
OPRG138-MCHA \#	1	3.OE- ${ }^{1 N}$	3.00E-02N	Calibration Error - Temp. Instrument is Calibrated to Give a False Reading	Use TC Value
OPRG175-ACHA\#	1	5.0E-2N	$5.00 \mathrm{E}-02 \mathrm{~N}$	Operator fails to settle tank contents prior to tranferring out	Use TC Value
OPRG175-IRNA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 1.0 \mathrm{E}-2 \mathrm{~N} \end{array}$	$1.00 \mathrm{E}-02 \mathrm{~N}$	Operator incorrectly reads spg display	Use TC Value
OPRG175-MCNA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	Calibration Error - SPG Instrument is Calibrated to Give a False Reading	Use TC Value
OPRG175TACHA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-2 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-02 \mathrm{~N}$	Operator transfers too much TBP to 8.7	Use TC Value
OPRG17 5VDEHA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 1.0 \mathrm{E}-1 \mathrm{~N} \end{array}$	$1.00 \mathrm{E}-01 \mathrm{~N}$	Operator fails to recognize that too much TBP was transferred to 8.7	Use TC Value
OPRG8.7-ACHA\#	1	$\begin{array}{r} 2 \mathrm{~N} \\ 5.0 \mathrm{E}-2 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-02 \mathrm{~N}$	Operator fails to settle tank contents prior to tranferring out	Use TC Value
OPRG8.7-IRNA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 1.0 \mathrm{E}-2 \mathrm{~N} \end{array}$	1.00E-02N	Operator incorrectly reads spg display	Use TC Value
OPRG8.7-MCNA\#	1	$\begin{array}{r} 1 N \\ 5.0 \mathrm{E}-3 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	Calibration Error - SPG Instrument is Calibrated to Give a False Reading	Use TC Value
OPRG8.7TACHA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-2 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-02 \mathrm{~N}$	Operator transfers too much TBP to continous evaporator	Use TC Value
OPRG8.7VDEHA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 1.0 \mathrm{E}-1 \mathrm{~N} \end{array}$	$1.00 \mathrm{E}-01 \mathrm{~N}$	Operator fails to recognize that too much TBP was transferred	Use TC Value
OPRGINSUACHA \#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-2 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-02 \mathrm{~N}$	Insufficient sample pulled	Use TC Value
OPRGLOSEILNA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	Sample Accountability Error in Lab Causes Loss of Sample	Use TC Value
OPRGNOTRACHA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-2 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-02 \mathrm{~N}$	Sample Not Transported to Lab on a Timely Basis	Use TC Value
OPRGNROMCVLA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 1.0 \mathrm{E}-2 \mathrm{~N} \end{array}$	$1.00 \mathrm{E}-02 \mathrm{~N}$	Operations Fails to Recognize/Correct Omission of Sample	Use TC Value
OPRGOPCOACHA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-2 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-02 \mathrm{~N}$	Operations Violates Procedure and Continues Without Lab results	Use TC Value
OPRGOPCOACNA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	operations Violates Procedure and Continues Without Lab results	Use TC Value
OPRGS137ACNA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	Procedural violation results in no sample being taken for tank 13.7	Use TC Value
OPRGS137LANA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 3.0 \mathrm{E}-4 \mathrm{~N} \end{array}$	$3.00 \mathrm{E}-04 \mathrm{~N}$	Routine analysis gives false TBP result for tank 13.7	Use TC Value
OPRGS175ACHA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-2 \mathrm{~N} \end{array}$	5.00E-02N	Procedural violation results in sample being taken for tank 17.5	Use TC Value
OPRGS175LANA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 3.0 \mathrm{E}-4 \mathrm{~N} \end{array}$	$3.00 \mathrm{E}-04 \mathrm{~N}$	Routine analysis gives false TBP results for tank 17.5	
OPRGS8.7ACHA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-2 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-02 \mathrm{~N}$	Procedural violation results in sample being taken for tank 8.7	Use TC Value
OPRGS8.7LANA\#	1	$\begin{array}{r} 1 \mathrm{~N} \\ 3.0 \mathrm{E}-4 \mathrm{~N} \end{array}$	$3.00 \mathrm{E}-04 \mathrm{~N}$	Routine analysis gives false TBP results for tank 8.7	
OPRGSEPSSVNA*	1	$\begin{array}{r} 1 \mathrm{~N} \\ 3.0 \mathrm{E}-1 \mathrm{~N} \end{array}$	3.00E-01N	Supervisor approves transfer from either separator	Use TC Value

Basic Event Report for Sump Receipt Tank 7.3 (S73-1.BE) (CONT.)

Event	c	Input	Calc.	Description	Source
OPRPOWERACHA\#	1	5.0E-2N	5.00E-02N	operator fails to respond to power failure (shut down)	wsrc-tr-93-581 T4 \#1 high (competing activities)
OPRS----TEHA +	4	1H	3.00E-05	transfer error to tank 17.5	freq. in TC file
OPRSAGITACNA\#	1	1N	5.00E-03N	Operator fails to agitate tank 17.5	wsrc-tr-93-581 T4 \#1 nominal
OPRSBEHSRMNA\#	1	$5.0 \mathrm{E}-3 \mathrm{~N}$ 1 N	5.00E-03N	Cooling Water Manual Supply Valve is	Assumes Discovered After Next Use of
		$5.0 \mathrm{E}-3 \mathrm{~N}$		Left Closed Following Maintenance	The CW System
OPRSJ175ACLA\#	1		$5.00 \mathrm{E}-04 \mathrm{~N}$	operator in GV corridor not	wsrc-tr-93-581 T4 \#1 low
OPRSRNDSVINA\#	1	$5.0 \mathrm{E}-4 \mathrm{~N}$ 1 N	$1.00 \mathrm{E}-01 \mathrm{~N}$	operator fails to notice temp.	wsrc-tr-93-581 T4 \#31 nominal
		1.0E-1N		increase in 17.5 during rounds check	
OPRSSSJ--VRNA\#	1		$1.00 \mathrm{E}-02 \mathrm{~N}$	steam jet left on heats tank 17.5 (not	wsrc-tr-93-581 T4 \#3 nominal
OPRSSJCRACLA\#	1	$1.0 \mathrm{E}-2 \mathrm{~N}$ 1 N	5.00E-04N	verified in CR)	present throughout transfer so use
		$5.0 \mathrm{E}-4 \mathrm{~N}$		unintentional transfer to 17.5(SJ left on)	
OPRSSPG-ACNA\#	1	5.0E-3N	5.00E-03N	operator fails to read SpG indication (doesn't notice agitator failure)	wsrc-tr-93-581 T4 \#1 nominal
OPRSTEMPMCNA\#	1		5.00E-03N	temp. sensor is miscalibrated for 17.5	wsrc-tr-93-581 T4 \#12 nominal
OPRSTEMPVRHA\#	1	$5.0 \mathrm{E}-3 \mathrm{~N}$ 1 N	$5.00 \mathrm{E}-02 \mathrm{~N}$	operator fails to notice temperature	wsrc-tr-93-581 T4 \#3 high (no
OPRSTEMPRAA		$5.0 \mathrm{E}-2 \mathrm{~N}$		increase during addition to 17.5	procedure)
PDEFILT-FLOA\#	5	1 Y	$1.30 \mathrm{E}-02$	Filter Pressure Differential Sensor	Assumes Tested Annually
PDEFILT-PLGA\#	5	$3.0 \mathrm{E}-06 \mathrm{H}$ 1 Y	4.38E-05	Filter Pressure Differential sensor	umes Tested Ann
		1.0E-08H		Plugs	
PER-COLDTWFG\#	1		$2.50 \mathrm{E}-01 \mathrm{~N}$	Cold streams sent to 8.7	Use TC Value
PER138TBHUNA\#	1	$0.25 N$ 1 N	$1.00 \mathrm{E}+00 \mathrm{~N}$	Excess TBP is received or stored in	a: always (cog)
		1.0 N		tank 13.8	
PERB--MA006A\#	1		6.00E-02N	8.5-Maintenance is Performed Just	Assumes 3 Maintenance Activities/year
PERBTCAL001A\#	1	$.06 N$ 1 N	1.00E-02N	Before This Batch $\begin{aligned} & \text { temperature sensor for } 8.5 \text { calibrated }\end{aligned}$	and 50 Batches/year est from calib. every 2 years \& 100
PERbTCALO01A\#	1	.01N	$1.00 \mathrm{E}-02 \mathrm{~N}$	just before required	batches in that time
PERCEMAXTENA\#	1	1 N	1.00E-01N	Amount of TBP exceeds 3000 lbs	a: commitment to ensure < 3000 lbs of
		0.1 N			
PERCHMLK045A\#	1	. 1 NN	4.50E-01N	uncontrolled rxn is a result of transfer of sumps	assume 45% based on databank (10% trans)
PERCHMVL010A\#	1	1 N	1.00E-01N	uncontrolled rxn is a result of	assume 10\% based on databank \sim
		.1N		valving error	
PERCOL1F001G\#	1	1 N	$1.00 \mathrm{E}-03 \mathrm{~N}$	10.8S contents are tranferred to 10.8A	a: 1/1000
		1.0E-03N			-
PERCOLDF001G\#	1	1.0E-03N	1.00E-03N	11.7S contents are transferred to	a: 1/1000 O-
		$1.0 \mathrm{E}-03 \mathrm{~N}$		11.7A	
PERDTCALHLFA\#	1	$\begin{array}{r} 1 N \\ 5 \mathrm{E}-3 \mathrm{~N} \end{array}$	5.00E-03N	temperature sensor for 7.3 calibrated just before required	est from calib. every 2 years \& 200 ($\begin{aligned} & \text { un } \\ & \text { batches in that time }\end{aligned}$

Basic Event Report for Sump Receipt Tank 7.3 (S73-1.BE) (CONT.)

Basic Event Report for Sump Receipt Tank 7.3 (S73-1.BE) (CONT.)

Event	C	Input	Calc.	Description	Source
SJ-TK175PRES+	4	$\begin{array}{r} 24 \mathrm{H} \\ 1.19 \mathrm{E}-2 \mathrm{H} \end{array}$	2.22E-01	transfer to tank is required	tank remains hot for 1 day/2 transfer per week
SPGTK137FHIG\#	5	720H	$1.08 \mathrm{E}-03$	SPG Instrument in 13.7 Gives False	a: 1 week to restore
		3.0E-06H		High Reading	
SPGTK175FHIG\#	5	$\begin{array}{r} 3 \mathrm{D} \\ 3.0 \mathrm{E}-06 \mathrm{H} \end{array}$	$1.08 \mathrm{E}-04$	SPG Instrument in 17.5 Gives False High Reading	Would Discover on Next Transfer About 3 days
SPGTK8.7FHIG\#	5	3.0E 3D	$1.08 \mathrm{E}-04$	SPG Instrument in 8.7 Gives False High	Would Discover on Next Transfer -
		3.0E-06H		Reading	About 3 days Demand Failure From Systems Analysis
SW-DG292BFLA\#	1	$\begin{array}{r} 1 N \\ 5 E-3 N \end{array}$	5.00E-03N	switch gear failure causes failure of 292 diesel generator to supply power	Demand Failure From Systems Analysis
SW-TK8.7BFLG\#	3	5D	$1.20 \mathrm{E}-04$	Pump switch fails too close	a: 5 day mission time
		$1.0 \mathrm{E}-06 \mathrm{H}$			discovered at 2 year calibration
TA-B----BFLA\#	5	$\begin{array}{r} 2 \mathrm{Y} \\ 3 \mathrm{E}-5 \mathrm{H} \end{array}$	2.22E-01	temperature alarm for 8.5 fails	interval
TA-D----BFLA\#	5	2Y	$2.22 \mathrm{E}-01$	temperature alarm for 7.3 fails	discovered at 2 year calibration
TA-S----BFLA\#	5	$3 \mathrm{E}-5 \mathrm{H}$ 2 Y	2.22E-01	temperature alarm for 17.5 fails	discovered at 2 year calibration
		3E-5H			interval
TBP-----PREA\#	3	7D	$1.92 \mathrm{E}-03$	Process upset causes excess organic in	7 days to correct
TBPBLINEFHIA\#	3	$0.1 Y$ $1 H$	$1.14 \mathrm{E}-05$	feed B-Line annual flush received in tank	a: tranfer from B-Line takes 1 hour
		$0.1 Y$		9.7	
TBPROUBLPREG\#	3	.1H1	$1.14 \mathrm{E}-05$	TBP is Received From Routine B-Line Flushes	Receive about 8,000 lbs/trans, 1 hr to feed to evaporator
TBPTK---PREA\#	3	1 M 0.1 Y	8.19E-03	Process upset causes excess organic in feed	Estimated as 1/10years - Not detected for 1 month
TBPTK-73PRED\#		2E-3N	$2.00 \mathrm{E}-03$	Suff. solvent from canyon leaks received in sump receipt tank 7.3 causes unc rx	a: need > 3,000 lbs TBP-happens once in five years=500 batches
TBPTK175PRES\#		$2 \mathrm{E}-3 \mathrm{~N}$	2.00E-03	Suff. solvent from canyon leaks received in sump receipt tank 17.5 causes rxn	a: need > 3,000 lbs TBP-happens once in five years=500 batches
TBPTK2BPPREA\#	3	1 M 0.1 Y	8.19E-03	process upset causes excess TBP in canyon product	a: process upset exists for 1 month
TE-B----BFLA\#	3	7D	$1.68 \mathrm{E}-04$	high temp. sensor failure for 8.5	1 week to discover
TE-D----BFLA\#	3	1E-6H	$1.68 \mathrm{E}-04$	temperature sensor for 7.3 fails	1 week to discover
TE-D----BLAA		1E-6H			
TE-E----BFLA\#	3	$\begin{array}{r} 7 \mathrm{D} \\ 1 \mathrm{E}-6 \mathrm{H} \end{array}$	$1.68 \mathrm{E}-04$	high temp. sensor failure for tank 17.7	1 week to discover
TE-S----BFLA\#	3	7 D	1.68E-04	temperature sensor for 17.5 fails	1 week to discover
		1E-6H			a: 1 month to restore
TE-TK138FLOG\#	5	$\begin{array}{r} 1 \mathrm{M} \\ 1.0 \mathrm{E}-06 \mathrm{H} \end{array}$	3.60E-04	Temperature Instrument in 13.8 Gives False Low Reading	a: 1 month to restore
TNKTK185CLNE\#	3	1.0 E 24H	8.19E-03	tank 18.5 is cleaned	a: 3/yr cleaning 1 day to clean
		3 Y			

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC)

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type Code	Rate	Description	Source	EF	D
AOV LEC	5.00E-07 H	Valve (Standby or Safety), Air-Operated, Leakage (external) (Chemical)	WSRC-TR-93-262, AOV-LE-C	10	L
AOV LJEG	$1.00 \mathrm{E}-07 \mathrm{H}$	Valve (Standby or Safety), Air-Operated, Leakage (external) (Compressed Gas)	WSRC-TR-93-262, AOV-LE-G	10	L
AOV LEW	1.00E-08 H	Valve (Standby or Safety), Air-Operated, Leakage (external) (Water)	WSRC-TR-93-262, AOV-LE-W	10	L
AOV LIC	$1.00 \mathrm{E}-06 \mathrm{H}$	Valve (Standby or Safety), Air-Operated, Leakage (internal) (Chemical)	WSRC-TR-93-262, AOV-LI-C	10	L
AOV LIG	$1.00 \mathrm{E}-05 \mathrm{H}$	Valve (Standby or Safety), Air-Operated, Leakage (internal) (Compressed Gas)	WSRC-TR-93-262, AOV-LI-G	10	L
AOV LIW	$1.00 \mathrm{E}-06 \mathrm{H}$	Valve (Standby or Safety), Air-Operated, Leakage (internal) (Water)	WSRC-TR-93-262, AOV-LI-W	10	L
AOV OCC	$5.00 \mathrm{E}-08 \mathrm{H}$	Valve (Standby or Safety), Air-Operated, Plugs (Chemical)	WSRC-TR-93-262, AOV-OC-C	10	L
AOV OCG	$1.00 \mathrm{E}-06 \mathrm{H}$	Valve (Standby or Safety), Air-Operated, Spurious operation (Compressed Gas)	WSRC-TR-93-262, AOV-OC-G	10	L
AOV OCW	$1.00 \mathrm{E}-06 \mathrm{H}$	Valve (Standby or Safety), Air-Operated, Spurious operation (Water)	WSRC-TR-93-262, AOV-OC-W	5	L
AOV OOC	$1.00 \mathrm{E}-03 \mathrm{~N}$	Valve (Standby or Safety), Air-Operated, Fails to open/close (Chemical)	WSRC-TR-93-262, AOV-00-C	30	L
AOV OOG	$3.00 \mathrm{E}-03 \mathrm{~N}$	Valve (Standby or Safety), Air-Operated, Fails to open/close (Compressed Gas)	WSRC-TR-93-262, AOV-OO-G	30	L
AOV OOW	$1.00 \mathrm{E}-03 \mathrm{~N}$	Valve (Standby or Safety), Air-Operated, Fails to open/close (Water)	WSRC-TR-93-262, AOV-00-W	30	L
AOV PGG	$5.00 \mathrm{E}-07 \mathrm{H}$	Valve (Standby or Safety), Air-Operated, Plugs (Compressed Gas)	WSRC-TR-93-262, AOV-PG-G	10	L
AOV PGW	$5.00 \mathrm{E}-08 \mathrm{H}$	Valve (Standby or Safety), Air-Operated, Plugs (Water)	WSRC-TR-93-262, AOV-PG-W	10	L
AOV REC	$3.00 \mathrm{E}-08 \mathrm{H}$	Valve (Standby or Safety), Air-Operated, Rupture (external) (Chemical)	WSRC-TR-93-262, AOV-RE-C	30	L
AOV REG	5.00E-09 H	Valve (Standby or Safety), Air-Operated, Rupture (external) (Compressed Gas)	WSRC-TR-93-262, AOV-RE-G	30	L
AOV REW	$5.00 \mathrm{E}-10 \mathrm{H}$	Valve (Standby or Safety), Air-Operated, Rupture (external) (Water)	WSRC-TR-93-262, AOV-RE-W	30	L
AOV RIC	$5.00 \mathrm{E}-08 \mathrm{H}$	Valve (Standby or Safety), Air-Operated, Rupture (internal) (Chemical)	WSRC-TR-93-262, AOV-RI-C	30	L
AOV RIG	$5.00 \mathrm{E}-07 \mathrm{H}$	Valve (Standby or Safety), Air-Operated, Rupture (internal) (Compressed Gas)	WSRC-TR-93-262, AOV-RI-G		5
AOV RIW	$5.00 \mathrm{E}-08 \mathrm{H}$ $1.0 \mathrm{E}-01 \mathrm{Y}$	Valve (Standby or Safety), Air-operated, Rupture (internal) (Water) HIGH DENSITY AQUEOUS IN DECANTER	WSRC-TR-93-262, AOV-RI-W COG - AQUEOUS SITS TOO LONG TN TANK		冎
AQU PRE A ATS CCE	$1.0 \mathrm{E}-01 \mathrm{Y}$ $1.00 \mathrm{E}-06 \mathrm{H}$	HIGH DENSITY AQUEOUS IN DECANTER Switch, Automatic-Transfer, Fails to open/close (Electric Power)	COG - AQUEOUS SITS TOO LONG IN TANK WSRC-TR-93-262, ATS-CC-E	$=1$	Z
ATS COE	$1.00 \mathrm{E}-06 \mathrm{H}$	Switch, Automatic-Transfer, Spurious operation (Electric Power)	WSRC-TR-93-262, ATS-CO-E	10	¢
ATS NRE	$1.00 \mathrm{E}-06 \mathrm{H}$	Switch, Automatic-Transfer, Fails to open/close (Electric Power)	WSRC-TR-93-262, ATS-NR-E	10	-
ATS OCE	$1.00 \mathrm{E}-06 \mathrm{H}$	Switch, Automatic-Transfer, Spurious operation (Electric Power)	WSRC-TR-93-262, ATS-OC-E	0	0

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type Code	Rate	Description	Source	EF	D
ATS OOE	$1.00 \mathrm{E}-06 \mathrm{H}$	Switch, Automatic-Transfer, Fails to open/close (Electric Power)	WSRC-TR-93-262, ATS-OO-E	10	L
ATS SOE	$1.00 \mathrm{E}-06 \mathrm{H}$	Switch, Automatic-Transfer, Spurious operation (Electric Power)	WSRC-TR-93-262, ATS-SO-E	10	L
AVO COC	$5.00 \mathrm{E}-08 \mathrm{H}$	Valve (Standby or Safety), Air-Operated, Plugs (Chemical)	WSRC-TR-93-262, AVO-CO-C	10	L
BAG LIH	$3.00 \mathrm{E}-05 \mathrm{H}$	Filter, Baghouse, Leakage (internal) (HVAC)	WSRC-TR-93-262, BAG-LI-H	10	L
BAG PGH	$3.00 \mathrm{E}-05 \mathrm{H}$	Filter, Baghouse, Plugs (HVAC)	WSRC-TR-93-262, BAG-PG-H	10	L
BAG RIH	$5.00 \mathrm{E}-06 \mathrm{H}$	Filter, Baghouse, Rupture (internal) (HVAC)	WSRC-TR-93-262, BAG-RI-H	10	L
BAT FAE	$1.00 \mathrm{E}-05 \mathrm{H}$	Battery, Failure (Electric Power)	WSRC-TR-93-262, BAT-FA-E	3	L
BAT PRE B	$5.71 \mathrm{E}-3 \mathrm{H}$	batch through 8.5	$50 / \mathrm{yr}$ est		
BAT PRE E	5.71E-3H	batch through 17.7	$50 / \mathrm{yr}$ est		
BIS CCE	$1.00 \mathrm{E}-05 \mathrm{~N}$	Relay, Bistable, Fails to open/close (Electric Power)	WSRC-TR-93-262, BIS-CC-E	10	L
BIS COE	$3.00 \mathrm{E}-07 \mathrm{H}$	Relay, Bistable, Spurious operation (Electric Power)	WSRC-TR-93-262, BIS-CO-E	10	L
BIS NRE	$1.00 \mathrm{E}-05 \mathrm{~N}$	Relay, Bistable, Fails to open/close (Electric Power)	WSRC-TR-93-262, BIS-NR-E	10	L
BIS OCE	$3.00 \mathrm{E}-07 \mathrm{H}$	Relay, Bistable, Spurious operation (Electric Power)	WSRC-TR-93-262, BIS-OC-E	10	L
BIS OOE	$1.00 \mathrm{E}-05 \mathrm{~N}$	Relay, Bistable, Fails to open/close (Electric Power)	WSRC-TR-93-262, BIS-OO-E	10	L
BIS SOE	$3.00 \mathrm{E}-07 \mathrm{H}$	Relay, Bistable, Spurious operation (Electric Power)	WSRC-TR-93-262, BIS-SO-E	10	L
BKR SPR G	3.0E-07H	Breaker fails open	WSRC-TR-93-262, p. 27 CBR-CO-E		
BLD BFL G	$5.0 \mathrm{E}-07 \mathrm{H}$	Agitator blades fall off	a: ten times less likely to fail than agitator basic failure		
BUB FAE	1.00E-06 H	Bus, Bare, Failure (Electric Power)	WSRC-TR-93-262, BUB-FA-E	10	L
BUM FAE	$1.00 \mathrm{E}-07 \mathrm{H}$	Bus, Metal-Enclosed, Failure (Electric Power)	WSRC-TR-93-262, BUM-FA-E	5	L
CAD FCH	$3.00 \mathrm{E}-06 \mathrm{H}$	Damper (Control), Air-Operated, Fails closed (HVAC)	WSRC-TR-93-262, CAD-FC-H	10	L
CAD FOH	$3.00 \mathrm{E}-06 \mathrm{H}$	Damper (Control), Air-Operated, Fails open (HVAC)	WSRC-TR-93-262, CAD-FO-H	10	L
CAD LEH	1.00E-07 H	Damper (Control), Air-Operated, Leakage (external) (HVAC)	WSRC-TR-93-262, CAD-LE-H		c
CAD NRH	3.00E-06 H	Damper (Control), Air-Operated, Fails to respond (HVAC)	WSRC-TR-93-262, CAD-NR-H	76	定
CAD PGH	$5.00 \mathrm{E}-07 \mathrm{H}$	Damper (Control), Air-Operated, Plugs (HVAC)	WSRC-TR-93-262, CAD-PG-H	20	$\stackrel{+}{2}$
CAD REH	5.00E-09 H	Damper (Control), Air-Operated, Rupture (external) (HVAC)	WSRC-TR-93-262, CAD-RE-H	$\ddagger 0$	O
CAV FCC	$3.00 \mathrm{E}-06 \mathrm{H}$	Valve (Control), Air-Operated, Fails closed (Chemical)	WSRC-TR-93-262, CAV-FC-C	10	-
CAV FCG	$3.00 \mathrm{E}-06 \mathrm{H}$	Valve (Control), Air-Operated, Fails closed (Compressed Gas)	WSRC-TR-93-262, CAV-FC-G	10	い

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type Code	Rate	Description	Source	EF	D
CAV FCW	$3.00 \mathrm{E}-06 \mathrm{H}$	Valve (Control), Air-Operated, Fails closed (Water)	WSRC-TR-93-262, CAV-FC-W	10	L
CAV FOC	$3.00 \mathrm{E}-06 \mathrm{H}$	Valve (Control), Air-Operated, Fails open (Chemical)	WSRC-TR-93-262, CAV-FO-C	10	L
CAV FOG	$3.00 \mathrm{E}-06 \mathrm{H}$	Valve (Control), Air-Operated, Fails open (Compressed Gas)	WSRC-TR-93-262, CAV-FO-G	10	L
CAV FOW	$3.00 \mathrm{E}-06 \mathrm{H}$	Valve (Control), Air-Operated, Fails open (Water)	WSRC-TR-93-262, CAV-FO-W	10	L
CAV LEC	$5.00 \mathrm{E}-07 \mathrm{H}$	Valve (Control), Air-Operated, Leakage (external) (Chemical)	WSRC-TR-93-262, CAV-LE-C	10	1
CAV LEG	$1.00 \mathrm{E}-07 \mathrm{H}$	Valve (Control), Air-Operated, Leakage (external) (Compressed Gas)	WSRC-TR-93-262, CAV-LE-G	10	L
CAV LEW	$1.00 \mathrm{E}-08 \mathrm{H}$	Valve (Control), Air-Operated, Leakage (external) (Water)	WSRC-TR-93-262, CAV-LE-W	10	L
CAV NRC	$3.00 \mathrm{E}-06 \mathrm{H}$	Valve (Control), Air-Operated, Fails to respond (Chemical)	WSRC-TR-93-262, CAV-NR-C	10	L
CAV NRG	$3.00 \mathrm{E}-06 \mathrm{H}$	Valve (Control), Air-Operated, Fails to respond (Compressed Gas)	WSRC-TR-93-262, CAV-NR-G	10	L
CAV NRW	$3.00 \mathrm{E}-06 \mathrm{H}$	Valve (Control), Air-Operated, Fails to respond (Water)	WSRC-TR-93-262, CAV-NR-W	10	L
CAV PGC	$5.00 \mathrm{E}-08 \mathrm{H}$	Valve (Control), Air-Operated, Plugs (Chemical) (Chemical)	WSRC-TR-93-262, CAV-PG-C	10	L
CAV PGG	5.00E-07 H	Valve (Control), Air-Operated, Plugs (Compressed Gas)	WSRC-TR-93-262, CAV-PG-G	10	L
CAV PGW	$5.00 \mathrm{E}-08 \mathrm{H}$	Valve (Control), Air-Operated, Plugs (Water)	WSRC-TR-93-262, CAV-PG-W	10	L
CAV REC	$3.00 \mathrm{E}-08 \mathrm{H}$	Valve (Control), Air-Operated, Rupture (external) (Chemical)	WSRC-TR-93-262, CAV-RE-C	30	L
CAV REG	$5.00 \mathrm{E}-09 \mathrm{H}$	Valve (Control), Air-Operated, Rupture (external) (Compressed Gas)	WSRC-TR-93-262, CAV-RE-G	30	L
CAV REW	$5.00 \mathrm{E}-10 \mathrm{H}$	Valve (Control), Air-Operated, Rupture (external) (Water)	WSRC-TR-93-262, CAV-RE-W	30	L
CBL FAE	$3.00 \mathrm{E}-06 \mathrm{H}$	Termination/Jumper, Cable (Copper, 1000 ft), Failure (Electric Power)	WSRC-TR-93-262, CBL-FA-E	3	L
CBR CCE	5.00E-04 N	Circuit Breaker, General, Fails to open/close (Electric Power)	WSRC-TR-93-262, CBR-CC-E	5	L
CBR COE	$3.00 \mathrm{E}-07 \mathrm{H}$	Circuit Breaker, General, Spurious operation (Electric Power)	WSRC-TR-93-262, CBR-CO-E		
CBR NRE	5.00E-04 N	Circuit Breaker, General, Fails to open/close (Electric Power)	WSRC-TR-93-262, CBR-NR-E	多	容
CBR OCE	$3.00 \mathrm{E}-07 \mathrm{H}$	Circuit Breaker, General, Spurious operation (Electric Power)	WSRC-TR-93-262, CBR-OC-E	10	$\stackrel{\square}{3}$
CBR OOE	5.00E-04 N	Circuit Breaker, General, Fails to open/close (Electric Power)	WSRC-TR-93-262, CBR-OO-E		-
CBR SOE	$3.00 \mathrm{E}-07 \mathrm{H}$	Circuit Breaker, General, Spurious operation (Electric Power)	WSRC-TR-93-262, CBR-SO-E	0	-
$\begin{aligned} & \text { CHM FHI G } \\ & \text { CHM FIR } \end{aligned}$	$\begin{array}{r} 1.0 \mathrm{~N} \\ 1.0 \mathrm{E}-07 \mathrm{H} \end{array}$	Acid concentration is normally high Large fire in cell causes pyrolysis of TBP	assumed always high F-Canyon SAR		$\stackrel{\sim}{4}$

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type Code	Rate	Description	Source	EF	D
CHM FIR S	1.0E-07H	Large fire in cell causes pyrolysis of TBP	F-Canyon SAR		
CHM UNR D	5.0E-06H	Uncontrolled chemical reaction-7.3	DPSTSY-200-1F T 0-15 Unc. rxn in rerun		
CHM UNR S	5.0E-06H	Uncontrolled chemical reaction-17.5	DPSTSY-200-1F T O-15 Unc. rxn in rerun		
CKV CCC	5.00E-05 N	Valve (Standby or Safety), Check, Fails to open (Chemical)	WSRC-TR-93-262, CKV-CC-C	10	L
CKV CCG	$1.00 \mathrm{E}-04 \mathrm{~N}$	Valve (Standby or Safety), Check, Fails to open (Compressed Gas)	WSRC-TR-93-262, CKV-CC-G	10	L
CKV CCW	$5.00 \mathrm{E}-05 \mathrm{~N}$	Valve (Standby or Safety), Check, Fails to open (Water)	WSRC-TR-93-262, CKV-CC-W	10	L
CKV LEC	$5.00 \mathrm{E}-07 \mathrm{H}$	Valve (Standby or Safety), Check, Leakage (external) (Chemical)	WSRC-TR-93-262, CKV-LE-C	10	L
CKV LEG	1.00E-07 H	Valve (Standby or Safety), Check, Leakage (external) (Compressed Gas)	WSRC-TR-93-262, CKV-LE-G	10	L
CKV LEW	1.00E-08 H	Valve (Standby or Safety), Check, Leakage (external) (Water)	WSRC-TR-93-262, CKV-LE-W	10	L
CKV LIC	$1.00 \mathrm{E}-06 \mathrm{H}$	Valve (Standby or Safety), Check, Leakage (internal) (Chemical)	WSRC-TR-93-262, CKV-LI-C	10	L
CKV LIG	$1.00 \mathrm{E}-05 \mathrm{H}$	Valve (Standby or Safety), Check, Leakage (internal) (Compressed Gas)	WSRC-TR-93-262, CKV-LI-G	10	L
CKV LIW	$1.00 \mathrm{E}-06 \mathrm{H}$	Valve (Standby or Safety), Check, Leakage (internal) (Water)	WSRC-TR-93-262, CKV-LI-W	10	L
CKV OOC	$1.00 \mathrm{E}-03 \mathrm{~N}$	Valve (Standby or Safety), Check, Fails to close (Chemical)	WSRC-TR-93-262, CKV-OO-C	10	L
CKV OOG	$3.00 \mathrm{E}-03 \mathrm{~N}$	Valve (Standby or Safety), Check, Fails to close (Compressed Gas)	WSRC-TR-93-262, CKV-O0-G	10	L
CKV OOW	$1.00 \mathrm{E}-03 \mathrm{~N}$	Valve (Standby or Safety), Check, Fails to close (Water)	WSRC-TR-93-262, CKV-00-W	5	L
CKV PGC	5.00E-08 H	Valve (Standby or Safety), Check, Plugs (Chemical)	WSRC-TR-93-262, CKV-PG-C	10	L
CKV PGG	5.00E-07 H	Valve (Standby or Safety), Check, Plugs (Compressed Gas)	WSRC-TR-93-262, CKV-PG-G	10	L
CKV PGW	5.00E-08 H	Valve (Standby or Safety), Check, Plugs (Water)	WSRC-TR-93-262, CKV-PG-W	10	L
CKV REC	$3.00 \mathrm{E}-08 \mathrm{H}$	Valve (Standby or Safety), Check, Rupture (external) (Chemical)	WSRC-TR-93-262, CKV-RE-C	30	L
CKV REG	5.00E-09 H	Valve (Standby or Safety), Check, Rupture (external) (Compressed Gas)	WSRC-TR-93-262, CKV-RE-G	30	T 1
CKV REW	5.00E-10 H	Valve (Standby or Safety), Check, Rupture (external) (Water)	WSRC-TR-93-262, CKV-RE-W	$=10$	宮
CKV RIC	$5.00 \mathrm{E}-08 \mathrm{H}$	Valve (Standby or Safety), Check, Rupture (internal) (Chemical)	WSRC-TR-93-262, CKV-RI-C	30	$\stackrel{+}{4}$
CKV RIG	$5.00 \mathrm{E}-07 \mathrm{H}$	Valve (Standby or Safety), Check, Rupture (internal) (Compressed Gas)	WSRC-TR-93-262, CKV-RI-G	30	iv
CKV RIW	5.00E-08 H	Valve (Standby or Safety), Check, Rupture (internal) (Water)	WSRC-TR-93-262, CKV-RI-W	30	\bigcirc
CMD FCH	$3.00 \mathrm{E}-06 \mathrm{H}$	Damper (Control), Motor-Operated, Fails closed (HVAC)	WSRC-TR-93-262, CMD-FC-H	10	い

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type Code	Rate	Description	Source	EF	D
CRI PRE G	$2.0 \mathrm{E}-07 \mathrm{H}$	Heat from criticality causes secondary "red oil" reaction	DPSTSA-200-10, SUP-4, Table 5-7		
CSV FCC	$3.00 \mathrm{E}-06 \mathrm{H}$	Valve (Control), Solenoid-Operated, Fails closed (Chemical)	WSRC-TR-93-262, CSV-FC-C	10	L
$\operatorname{csV} \text { FCG }$	3.00E-06 H	Valve (Control), Solenoid-Operated, Fails closed (Compressed Gas)	WSRC-TR-93-262, CSV-FC-G	10	L
CSV FCW	$3.00 \mathrm{E}-06 \mathrm{H}$	Valve (Control), Solenoid-Operated, Fails closed (Water)	WSRC-TR-93-262, CSV-FC-W	10	L
CSV FOC	$3.00 \mathrm{E}-06 \mathrm{H}$	Valve (Control), Solenoid-Operated, Fails open (Chemical)	WSRC-TR-93-262, CSV-FO-C	10	L
CSV FOG	$3.00 \mathrm{E}-06 \mathrm{H}$	Valve (Control), Solenoid-Operated, Fails open (Compressed Gas)	WSRC-TR-93-262, CSV-FO-G	10	L
CSV FOW	$3.00 \mathrm{E}-06 \mathrm{H}$	Valve (Control), Solenoid-Operated, Fails to respond (Water)	WSRC-TR-93-262, CSV-FO-W	10	L
CSV LEC	$5.00 \mathrm{E}-07 \mathrm{H}$	Valve (Control), Solenoid-Operated, Leakage (external) (Chemical)	WSRC-TR-93-262, CSV-LE-C	10	L
CSV LEG	1.00E-07 H	Valve (Control), Solenoid-Operated, Leakage (external) (Compressed Gas)	WSRC-TR-93-262, CSV-LE-G	10	L
CSV LEW	$1.00 \mathrm{E}-08 \mathrm{H}$	Valve (Control), Solenoid-Operated, Leakage (external) (Water)	WSRC-TR-93-262, CSV-LE-W	10	L
CSV NRC	$3.00 \mathrm{E}-06 \mathrm{H}$	Valve (Control), Solenoid-Operated, Fails to respond (Chemical)	WSRC-TR-93-262, CSV-NR-C	10	L
CSV NRG	$3.00 \mathrm{E}-06 \mathrm{H}$	Valve (Control), Solenoid-Operated, Fails to respond (Compressed Gas)	WSRC-TR-93-262, CSV-NR-G	10	L
CSV PGC	$5.00 \mathrm{E}-08 \mathrm{H}$	Valve (Control), Solenoid-Operated, Plugs (Chemical)	WSRC-TR-93-262, CSV-PG-C	10	L
CSV PGG	$5.00 \mathrm{E}-07 \mathrm{H}$	Valve (Control), Solenoid-Operated, Plugs (Compressed Gas)	WSRC-TR-93-262, CSV-PG-G	10	L
CSV PGW	$5.00 \mathrm{E}-08 \mathrm{H}$	Valve (Control), Solenoid-Operated, Plugs (Water)	WSRC-TR-93-262, CSV-PG-W	10	L
CSV REC	$3.00 \mathrm{E}-08 \mathrm{H}$	Valve (Control), Solenoid-Operated, Rupture (external) (Chemical)	WSRC-TR-93-262, CSV-RE-C	30	L
CSV REG	5.00E-09 H	Valve (Control), Solenoid-Operated, Rupture (external)	WSRC-TR-93-262, CSV-RE-G	30	L
CSV REW	5.00E-10 H	Valve (Control), Solenoid-Operated, Rupture (external) (Water)	WSRC-TR-93-262, CSV-RE-W	30	L
CTF FAC	5.00E-06 H	Centrifuge, Failure (Chemical)	WSRC-TR-93-262, CTF-FA-C		
CYL LEG	$1.00 \mathrm{E}-07 \mathrm{H}$	Cylinder (Pressurized), Leakage (external) (Compressed Gas)	WSRC-TR-93-262, CYL-LE-G	\%	号
CYL REG	$5.00 \mathrm{E}-09 \mathrm{H}$	Cylinder (Pressurized), Rupture (external) (Compressed Gas)	WSRC-TR-93-262, CYL-RE-G	36	-
DCS PRE A	3.0E-06H	Common cause failure of DCS temperature and agitation equipment	WSRC-TR-93-262	\bigcirc	${ }_{0}{ }_{0}$
DCT LEH	3.00E-07 H	Ducting, Leakage (per ft.) (external) (HVAC)	WSRC-TR-93-262, DCT-LE-H	70	U
DCT PGH	$1.00 \mathrm{E}-08 \mathrm{H}$	Ducting, Plugs (per ft.) (HVAC)	WSRC-TR-93-262, DCT-PG-H	≥ 0	O,
DCT REH	$1.00 \mathrm{E}-08 \mathrm{H}$	Ducting, Rupture (per ft.) (external) (HVAC)	WSRC-TR-93-262, DCT-RE-H	10	い

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type Code	Rate	Description	Source	EF	D
DDF FRH	$5.00 \mathrm{E}-03 \mathrm{H}$	Fan/Blower, Diesel-Driven, Fails to run (HVAC)	WSRC-TR-93-262, DDF-FR-H	10	L
DDF FSH	$1.00 \mathrm{E}-02 \mathrm{~N}$	Fan/Blower, Diesel-Driven, Fails to start (HVAC)	WSRC-TR-93-262, DDF-FS-H	10	L
DDF LEH	$3.00 \mathrm{E}-07 \mathrm{H}$	Fan/Blower, Diesel-Driven, Leakage (external) (HVAC)	WSRC-TR-93-262, DDF-LE-H	10	L
DDF NSH	$1.00 \mathrm{E}-02 \mathrm{~N}$	Fan/Blower, Diesel-Driven, Fails to stop (HVAC)	WSRC-TR-93-262, DDF-NS-H	10	L
DDF OSH	$1.00 \mathrm{E}-03 \mathrm{H}$	Fan/Blower, Diesel-Driven, Overspeed (HVAC)	WSRC-TR-93-262, DDF-OS-H	10	L
DDF REH	$1.00 \mathrm{E}-08 \mathrm{H}$	Fan/Blower, Diesel-Driven, Rupture (external) (HVAC)	WSRC-TR-93-262, DDF-RE-H	10	L
DDG FRE	$5.00 \mathrm{E}-03 \mathrm{H}$	Generator, Diesel-Driven, Fails to run (Electric Power)	WSRC-TR-93-262, DDG-FR-E	3	L
DDG FSE	$1.00 \mathrm{E}-02 \mathrm{~N}$	Generator, Diesel-Driven, Fails to start (Electric Power)	WSRC-TR-93-262, DDG-FS-E	3	L
DDP FRC	$5.00 \mathrm{E}-03 \mathrm{H}$	Pump, Diesel-Driven, Fails to run (Chemical)	WSRC-TR-93-262, DDP-FR-C	10	L
DDP FRW	$5.00 \mathrm{E}-03 \mathrm{H}$	Pump, Diesel-Driven, Fails to run (Water)	WSRC-TR-93-262, DDP-FR-W	5	L
DDP FSC	$1.00 \mathrm{E}-02 \mathrm{~N}$	Pump, Diesel-Driven, Fails to start (Chemical)	WSRC-TR-93-262, DDP-FS-C	10	L
DDP FSW	$1.00 \mathrm{E}-02 \mathrm{~N}$	Pump, Diesel-Driven, Fails to start (Water)	WSRC-TR-93-262, DDP-FS-W	5	L
DDP LEC	$1.00 \mathrm{E}-06 \mathrm{H}$	Pump, Diesel-Driven, Leakage (external) (Chemical)	WSRC-TR-93-262, DDP-LE-C	10	L
DDP LEW	$3.00 \mathrm{E}-08 \mathrm{H}$	Pump, Diesel-Driven, Leakage (external) (Water)	WSRC-TR-93-262, DDP-LE-W	10	L
DDP NSC	$1.00 \mathrm{E}-02 \mathrm{~N}$	Pump, Diesel-Driven, Fails to stop (Chemical)	WSRC-TR-93-262, DDP-NS-C	10	L
DDP NSW	$1.00 \mathrm{E}-02 \mathrm{~N}$	Pump, Diesel-Driven, Fails to stop (Water)	WSRC-TR-93-262, DDP-NS-W	5	L
DDP OSC	$1.00 \mathrm{E}-03 \mathrm{H}$	Pump, Diesel-Driven, Overspeed (Chemical)	WSRC-TR-93-262, DDP-OS-C	10	
DDP OSW	$1.00 \mathrm{E}-03 \mathrm{H}$	Pump, Diesel-Driven, Overspeed (Water)	WSRC-TR-93-262, DDP-OS-W WSRC-TR-93-262, DDP-RE-C	30	L
DDP REC	$5.00 \mathrm{E}-08 \mathrm{H}$	Pump, Diesel-Driven, Rupture (external) (Chemical)	WSRC-TR-93-262, DDP-RE-C	30	
DDP REW	$1.00 \mathrm{E}-09 \mathrm{H}$	Pump, Diesel-Driven, Rupture (external) (Water)	WSRC-TR-93-262, DDP-RE-W	30	L
DG- FTR A	$3.0 \mathrm{E}-04 \mathrm{H}$	Emergency diesel fail run	DPSTSY-200-1F vol. 2 p P-32		L2
DG- FTS A	$3.0 \mathrm{E}-02 \mathrm{~N}$	Emergency diesel fail start	DPSTSY-200-1F vol. $2 \mathrm{p} \mathrm{P}-32$		\%
DG- MSC A	2E-3N	operator error/misc. causes diesel generator failure	DPSTSY-200-1F vol. 2 p P-32	-	$\stackrel{\square}{\square}$
DPS BFL G	3.0E-06H	Differential pressure sensor/transmitter/switch basic failure (high)	WSRC-TR-93-262 PAGE 30, DPS-FA-I		-
DPS FAI	$3.00 \mathrm{E}-06 \mathrm{H}$	Sensor/Transmit., Transdu./Proc. Sw., Differ. Pres., Failure (Instr. \& Control)	WSRC-TR-93-262, DPS-FA-I	0	\bigcirc
EVP ON- G	8M	Batch evaporator is used	a: 8 times per month		w
EVP ON1 G	52 Y	Continous evaporator is used	a: run 52 times per year		U

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type Code	Rate	Description	Source	EF	D
EXH BFL A	0.03 Y	Failure of F-Canyon Ventilation System	SRT-SEP-93-009, Fault Tree Analysis of		
EXM CRI D	1.8E-7H	heat from criticality causes red oil rxn	Diesel Generators in F-Canyon, 1/39yr F-Canyon SAR T5-7		
EXM CRI S	$1.8 \mathrm{E}-7 \mathrm{H}$	heat from criticality causes red oil rxn	F-Cany on SAR T5-7		
EXV CCC	$1.00 \mathrm{E}-04 \mathrm{~N}$	Valve (Standby or Safety), Explosive, Fails to open (Chemical)	WSRC-TR-93-262, EXV-CC-C	10	L.
EXV CCW	$1.00 \mathrm{E}-04 \mathrm{~N}$	Valve (Standby or Safety), Explosive, Fails to open (Water)	WSRC-TR-93-262, EXV-CC-W	10	L
EXV LEC	5.00E-07 H	Valve (Standby or Safety), Explosive, Leakage (external) (Chemical)	WSRC-TR-93-262, EXV-LE-C	10	L
EXV LEW	$1.00 \mathrm{E}-08 \mathrm{H}$	Valve (Standby or Safety), Explosive, Leakage (external) (Water)	WSRC-TR-93-262, EXV-LE-W	10	L
EXV LIC	$1.00 \mathrm{E}-06 \mathrm{H}$	Valve (Standby or Safety), Explosive, Leakage (internal) (Chemical)	WSRC-TR-93-262, EXV-LI-C	10	L
EXV LIW	1.00E-06 H	Valve (Standby or Safety), Explosive, Leakage (internal) (Water)	WSRC-TR-93-262, EXV-LI-W	10	L
EXV REC	$3.00 \mathrm{E}-08 \mathrm{H}$	Valve (Standby or Safety), Explosive, Rupture (external) (Chemical)	WSRC-TR-93-262, EXV-RE-C	30	L
EXV REW	5.00E-10 H	Valve (Standby or Safety), Explosive, Rupture (external) (Water)	WSRC-TR-93-262, EXV-RE-W	30	L
EXV RIC	5.00E-08 H	Valve (Standby or Safety), Explosive, Rupture (internal) (Chemical)	WSRC-TR-93-262, EXV-RI-C	10	L
EXV RIW	$5.00 \mathrm{E}-08 \mathrm{H}$	Valve (Standby or Safety), Explosive, Rupture (internal) (Water)	WSRC-TR-93-262, EXV-RI-W	30	L
FCU FRH	1.00E-05 H	Fan Cooler Unit, Fails to run (HVAC)	WSRC-TR-93-262, FCU-FR-H	3	L
FCU FSH	$1.00 \mathrm{E}-02 \mathrm{~N}$	Fan Cooler Unit, Fails to start (HVAC)	WSRC-TR-93-262, FCU-FS-H	5	L
FIR PRE G	1.0E-07H	Large fire in cell causes pyrolysis of TBP	Bounds DPSTSA-200-10, SUP-4		
FLG LEC	1.00E-07 H	Flange/Gasket, Leakage (external) (Chemical)	WSRC-TR-93-262, FLG-LE-C	10	L
FLG LEG	$1.00 \mathrm{E}-07 \mathrm{H}$	Flange/Gasket, Leakage (external) (Compressed Gas)	WSRC-TR-93-262, FLG-LE-G	10	L
FLG LEW	$1.00 \mathrm{E}-08 \mathrm{H}$	Flange/Gasket, Leakage (external) (Water)	WSRC-TR-93-262, FLG-LE-W	10	L
FLG REC	$1.00 \mathrm{E}-09 \mathrm{H}$	Flange/Gasket, Rupture (external) (Chemical)	WSRC-TR-93-262, FLG-RE-C	10	L
FLG REG	$1.00 \mathrm{E}-09 \mathrm{H}$	Flange/Gasket, Rupture (external) (Compressed Gas)	WSRC-TR-93-262, FLG-RE-G	10	L
FLG REW	$1.00 \mathrm{E}-10 \mathrm{H}$	Flange/Gasket, Rupture (external) (Water)	WSRC-TR-93-262, FLG-RE-W	湿0	$\stackrel{\sim}{\square}$
FLL LIH	$3.00 \mathrm{E}-06 \mathrm{H}$	Filter, Low-Efficiency, Leakage (internal) (HVAC)	WSRC-TR-93-262, FLL-LI-H	100	$\stackrel{\square}{8}$
FLL PGH	$3.00 \mathrm{E}-06$	Filter, Low-Efficiency, Plugs (HVAC)	WSRC-TR-93-262, FLL-PG-H	10	$\stackrel{\square}{\square}$
FLL RIH	5.00E-07 H	Filter, Low-Efficiency, Rupture (internal) (HVAC)	WSRC-TR-93-262, FLL-RI-H	10	-
FLS LIH	3.00E-06 H	Filter, Sand, Leakage (internal) (HVAC)	WSRC-TR-93-262, FLS-LI-H	10	a
FLS PGH	$3.00 \mathrm{E}-06 \mathrm{H}$	Filter, Sand, Plugs (HVAC)	WSRC-TR-93-262, FLS-PG-H	10	응
FLS RIH	$5.00 \mathrm{E}-07 \mathrm{H}$	Filter, Sand, Rupture (internal) (HVAC)	WSRC-TR-93-262, FLS-RI-H	30	$\stackrel{\square}{\square}$
FLT LIC	3.00E-06 H	Filter/Strainer, Leakage (internal) (Chemical)	WSRC-TR-93-262, FLT-LI-C	10	い

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type Code	Rate	Description	Source	EF	D
FLT LIG	$3.00 \mathrm{E}-06 \mathrm{H}$	Filter, Leakage (internal) (Compressed Gas)	WSRC-TR-93-262, FLT-LI-G	10	
FLT LIH	$3.00 \mathrm{E}-06 \mathrm{H}$	Filter, Normal, Leakage (internal) (HVAC)	WSRC-TR-93-262, FLT-LI-H	10	
FLT LIW	$3.00 \mathrm{E}-06 \mathrm{H}$	Filter/Strainer, Leakage (internal) (Water)	WSRC-TR-93-262, FLT-LI-W	10	
FLT PGC	$3.00 \mathrm{E}-06 \mathrm{H}$	Filter/Strainer, Plugs (Chemical)	WSRC-TR-93-262, FLT-PG-C	10	L
FLT PGG	$3.00 \mathrm{E}-06 \mathrm{H}$	Filter, Plugs (Compressed Gas)	WSRC-TR-93-262, FLT-PG-G	10	L
FLT PGH	$3.00 \mathrm{E}-06 \mathrm{H}$	Filter, Normal, Plugs (HVAC)	WSRC-TR-93-262, FLT-PG-H	10	L
FLT PGW	$3.00 \mathrm{E}-06 \mathrm{H}$	Filter/Strainer, Plugs (Water)	WSRC-TR-93-262, FLT-PG-W WSRC-TR-93-262, FLT-RI-C		L
FLT RIC	5.00E-07 H	Filter/Strainer, Rupture (internal) (Chemical)	WSRC-TR-93-262, FLT-RI-C	10	L
FLT RIG	5.00E-07 H	Filter, Rupture (internal) (Compressed Gas)	WSRC-TR-93-262, FLT-RI-G		
FLT RIH	$5.00 \mathrm{E}-07 \mathrm{H}$	Filter, Normal, Rupture (internal) (HVAC)	WSRC-TR-93-262, FLT-RI-H WSRC-TR-93-262, FLT-RI-W		L
FLT RIW	5.00E-07 H	Filter/Strainer, Rupture (internal) (Water) ammonium nitrate rxn in PVV filter	takes 3 years to build up		
FLT UNR FPW BFL	$3.81 \mathrm{E}-5 \mathrm{H}$ $1.0 \mathrm{E}-04 \mathrm{H}$	ammonium nitrate rxn in PVV filter Failure of utility power	DPSTSY-200-1F		
FRE 1MO G	1.0 Y	Frequency	a: adjusted once a month		
FRE 1WK G	4.0M	Frequency	a: adjusted 4 times a month (COC)		
FRE 2YR G	0.5 Y	Frequency	a: every 2 years (COG)		
FRE 3MO G	$3.0 Y$	Frequency	a: 3 times a year		
FRE 3YR G	0.333 Y	Frequency	a: every 3 years		
FRE 5YR G	0.2 Y	Frequency	a: every 5 yrs (cog) a: twice a year		
FRE 6MO G	$3.00 \mathrm{E}-06 \mathrm{H}$	Frequency	$\begin{aligned} & \text { a: twice a year } \\ & \text { WSRC-TR-93-262, FST-FA-I } \end{aligned}$	3	L
FST FAI	$3.00 \mathrm{E}-06 \mathrm{H}$	Sensor/Transmitter/, Transducer/Proc. Switch, Flow, Failure (Instr. \& Control)	WSRC-TR-93-262, FST-FA-I		
FUS CCE	$1.00 \mathrm{E}-07 \mathrm{H}$	Fuse, Fail to open (Electric Power)	WSRC-TR-93-262, FUS-CC-E WSRC-TR-93-262, FUS-SO-E	10	L
FUS SOE	$1.00 \mathrm{E}-08 \mathrm{H}$	Fuse, Premature opening (Electric Power)	WSRC-TR-93-262, FSR-SO-E	10	L
GCR FAI	$5.00 \mathrm{E}-05 \mathrm{H}$	Gas Chromatograph, Failure (Instr. \& Control)	WSRC-TR-93-262, GCR-FA-1	10	L
GI- ID- D GI- ID- S	$1 \mathrm{E}-32 \mathrm{H}$ $1 \mathrm{E}-32 \mathrm{H}$	acid add'n heats tank 17.5 acid add'n heats tank 17.5			
GI- ID-	$1 \mathrm{E}-32 \mathrm{H}$	normal water addition heats tank	incredible		
GSK LKS G	1.0E-07H	Gasket Leaks	WSRC-TR-93-262, page 19, FLG-LE-C, Flange/Gasket, Leakage		
GTG FRE	$3.00 \mathrm{E}-04 \mathrm{H}$	Generator, Gas-Turbine-Driven, Fails to run (Electric Power)	WSRC-TR-93-262, GTG-FR-E		c
GTG FSE	$3.00 \mathrm{E}-02 \mathrm{~N}$	Generator, Gas-Turbine-Driven, Fails to start (Electric Power)	WSRC-TR-93-262, GTG-FS-E		\%
HCC FAI	1.00E-05 H	Sensor/Transmit. /, Transdu./Proc. Sw., H2 Conc. Failure (Instr. \& Con.)	WSRC-TR-93-262, HCC-FA-I		\%
HCV FCL A	$3.0 \mathrm{E}-07 \mathrm{H}$	Spurious Operation of Motor Operated valve	WSRC-TR-93-262, page 12, MOV-OC-W, Spurious Operation of Motor Operated Valve		a
HCV FCL G	$3.0 \mathrm{E}-07 \mathrm{H}$	Spurious Operation of Motor Operated Valve	WSRC-TR-93-262, page 12, MOV-OC-W, Spurious Operation of Motor Operated Valve		-

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type Code	Rate	Description	Source	EF	D
HTE REW	$5.00 \mathrm{E}-09 \mathrm{H}$	```Heater (Electrical), Rupture (external) (Water)```	WSRC-TR-93-262, HTE-RE-W	30	L
HTG FHH	$1.00 \mathrm{E}-03 \mathrm{H}$	Heater (Gas), Fails to heat (HVAC)	WSRC-TR-93-262, HTG-FH-H	10	L
HTG OHH	$3.00 \mathrm{E}-04 \mathrm{H}$	Heater (Gas), Overheats (HVAC)	WSRC-TR-93-262, HTG-OH-H	10	L
HTX ELC	$1.00 \mathrm{E}-06 \mathrm{H}$	Heat Exchanger, Shell/Tube, Fouling (tubes) (Chemical)	WSRC-TR-93-262, HTX-FL-C	10	L
HTX FLG	$1.00 \mathrm{E}-05 \mathrm{H}$	Heat Exchanger, Shell/Tube, Fouling (tubes) (Compressed Gas)	WSRC-TR-93-262, HTX-FL-G	10	Is
HTX FLW	$1.00 \mathrm{E}-07 \mathrm{H}$	Heat Exchanger, Shell/Tube, Fouling (tubes) (Water)	WSRC-TR-93-262, HTX-FL-W	10	L
HTX LEC	1.00E-07 H	Heat Exchanger، Shell/Tube, Leakage (shell) (Chemical)	WSRC-TR-93-262, HTX-LE-C	10	L
HTX LEG	$1.00 \mathrm{E}-06 \mathrm{H}$	Heat Exchanger, Shell/Tube, Leakage (shell) (Compressed Gas)	WSRC-TR-93-262, HTX-LE-G	10	L
HTX LEW	$1.00 \mathrm{E}-08 \mathrm{H}$	Heat Exchanger, Shell/Tube, Leakage (shell) (Water)	WSRC-TR-93-262, HTX-LE-W	10	L
HTX LIC	1.00E-06 H	Heat Exchanger, Shell/Tube, Leakage (tubes) (Chemical)	WSRC-TR-93-262, HTX-LI-C	10	L
HTX LIG	$1.00 \mathrm{E}-05 \mathrm{H}$	Heat Exchanger, Shell/Tube, Leakage (tubes) (Compressed Gas)	WSRC-TR-93-262, HTX-LI-G	10	L
HTX LIW	$1.00 \mathrm{E}-07 \mathrm{H}$	Heat Exchanger, Shell/Tube, Leakage (tubes) (Water)	WSRC-TR-93-262, HTX-LI-W	10	L
HTX PGC	3.00E-07 H	Heat Exchanger, Shell/Tube, Plugs (tubes) (Chemical)	WSRC-TR-93-262, HTX-PG-C	10	L
HTX PGG	3.00E-06 H	Heat Exchanger, Shell/Tube, Plugs (tubes) (Compressed Gas)	WSRC-TR-93-262, HTX-PG-G	10	L
HTX PGW	3.00E-08 H	Heat Exchanger, Shell/Tube, Plugs (tubes) (Water)	WSRC-TR-93-262, HTX-PG-W	10	L
HTX REC	5.00E-09 H	Heat Exchanger, Shell/Tube, Rupture (shell) (Chemical)	WSRC-TR-93-262, HTX-RE-C	30	L
HTX REG	5.00E-08 H	Heat Exchanger, Shell/Tube, Rupture (shell) (Compressed Gas)	WSRC-TR-93-262, HTX-RE-G	30	L
HTX REW	$5.00 \mathrm{E}-10 \mathrm{H}$	Heat Exchanger, Shell/Tube, Rupture (shell) (Water)	WSRC-TR-93-262, HTX-RE-W	30	L
HTX RIC	$5.00 \mathrm{E}-08 \mathrm{H}$	Heat Exchanger, Shell/Tube, Rupture (tubes) (Chemical)	WSRC-TR-93-262, HTX-RI-C	30	L
HTX RIG	5.00E-07 H	Heat Exchanger, Shell/Tube, Rupture (tubes) (Compressed Gas)	WSRC-TR-93-262, HTX-RI-G		
HTX RIW	5.00E-09 H	Heat Exchanger, Shell/Tube, Rupture (tubes) (Water)	WSRC-TR-93-262, HTX-RI-W	73	¢
HX- LKS A	1.0E-07H	Heat Exchanger Tube Leaks	WSRC-TR-93-262, page 15, HTX-LI-W, Heat		$\stackrel{\text { ¢ }}{\substack{2 \\ \square \\ \hline}}$
HX- LKS G	$1.0 \mathrm{E}-07 \mathrm{H}$	Heat Exchanger Tube Leaks	Exchanger Tube Leakage WSRC-TR-93-262, page 15, HTX-LI-W, Heat		0
HX- PLG A	3.0E-08H	Heat Exchanger Tube Plugs	Exchanger Tube Leakage WSRC-TR-93-262, page 15, HTX-PG-W, Heat		-
HX- PLG G	3.0E-08H	Heat Exchanger Tube Plugs	Exchanger Tube Plugs WSRC-TR-93-262, page 15, HTX-PG-W, Heat Exchanger Tube Piugs	.	号

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type Codes for Sump Receipt Tank 7.3 （S73－1．TC）（CONT．）

Type Code	Rate	Description	Source	EF	D
MDF FSH	$5.00 \mathrm{E}-03 \mathrm{~N}$	Fan／Blower，Motor－Driven，Fails to start （HVAC）	WSRC－TR－93－262，MDF－FS－H	5	L
MDF LEH	$3.00 \mathrm{E}-07 \mathrm{H}$	Fan／Blower，Motor－Driven，Leakage （external）（HVAC）	WSRC－TR－93－262，MDF－LE－H	10	L
MDF NSH	$5.00 \mathrm{E}-03 \mathrm{~N}$	Fan／Blower，Motor－Driven，Fails to stop （HVAC）	WSRC－TR－93－262，MDF－NS－H	10	L
MDF OSH	5．00E－06 H	Fan／Blower，Motor－Driven，Overspeed （HVAC）	WSRC－TR－93－262，MDF－OS－H	10	L
MDF REH	$1.00 \mathrm{E}-08 \mathrm{H}$	Fan／Blower，Motor－Driven，Rupture （external）（HVAC）	WSRC－TR－93－262，MDF－RE－H	30	L
MDG FRE	$3.00 \mathrm{E}-05 \mathrm{H}$	Generator，Motor－Driven（ac to dc），Fails to run（Electric Power）	WSRC－TR－93－262，MDG－FR－E	10	L
MDG FSE	$1.00 \mathrm{E}-05 \mathrm{H}$	Generator，Motor－Driven（ac to dc），Fails to start（Electric Power）	WSRC－TR－93－262，MDG－FS－E	10	L
MDP FRC	$1.00 \mathrm{E}-04 \mathrm{H}$	Pump，Motor－Driven，Fails to run （Chemical）	WSRC－TR－93－262，MDP－FR－C	10	L
MDP FRW	$3.00 \mathrm{E}-05 \mathrm{H}$	Pump，Motor－Driven，Fails to run（Water）	WSRC－TR－93－262，MDP－FR－W	10	L
MDP FSC	$1.00 \mathrm{E}-02 \mathrm{~N}$	Pump，Motor－Driven，Fails to start （Chemical）	WSRC－TR－93－262，MDP－FS－C	10	L
MDP FSW	$3.00 \mathrm{E}-03 \mathrm{~N}$	Pump，Motor－Driven，Fails to start （Water）	WSRC－TR－93－262，MDP－FS－W	5	L
MDP LEC	$1.00 \mathrm{E}-06 \mathrm{H}$	Pump，Motor－Driven，Leakage（external） （Chemical）	WSRC－TR－93－262，MDP－LE－C	10	L
MDP LEW	$3.00 \mathrm{E}-08 \mathrm{H}$	Pump，Motor－Driven，Leakage（externai） （Water）	WSRC－TR－93－262，MDP－LE－W	10	L
MDP NSC	$1.00 \mathrm{E}-02 \mathrm{~N}$	Pump，Motor－Driven，Fails to stop （Chemical）	WSRC－TR－93－262，MDP－NS－C	10	L
MDP NSW	$3.00 \mathrm{E}-03 \mathrm{~N}$	Pump，Motor－Driven，Fails to stop（Water）	WSRC－TR－93－262，MDP－NS－W	5	L
MDP OSC	$3.00 \mathrm{E}-05 \mathrm{H}$	Pump，Motor－Driven，Overspeed（Chemical）	WSRC－TR－93－262，MDP－OS－C	10	L
MDP OSW	$5.00 \mathrm{E}-06 \mathrm{H}$	Pump，Motor－Driven，Overspeed（Water）	WSRC－TR－93－262，MDP－OS－W	10	L
MDP REC	$5.00 \mathrm{E}-08 \mathrm{H}$	Pump，Motor－Driven，Rupture（external） （Chemical）	WSRC－TR－93－262，MDP－RE－C	30	L
MDP REW	$1.00 \mathrm{E}-09 \mathrm{H}$	Pump，Motor－Driven，Rupture（external） （Water）	WSRC－TR－93－262，MDP－RE－W	30	L
MIX FAC	$5.00 \mathrm{E}-06 \mathrm{H}$	Mixer／Blender，Failure（Chemical）	WSRC－TR－93－262，MIX－FA－C	10	L
MOD CCH	$3.00 \mathrm{E}-02 \mathrm{~N}$	Damper（Standby or Safety）， Motor－Operated，Fails to open／close （HVAC）	WSRC－TR－93－262，MOD－CC－H	10	L
MOD COH	3．00E－06 H	Damper（Standby or Safety）， Motor－Operated，Spurious operation（HVAC）	WSRC－TR－93－262，MOD－CO－H		\％
MOD LEH	$1.00 \mathrm{E}-07 \mathrm{H}$	Damper（Standby or Safety），	WSRC－TR－93－262，MOD－LE－H		$\stackrel{8}{\square}$
MOD LIH	$1.00 \mathrm{E}-05 \mathrm{H}$	Motor－Operated，Leakage（external）（HVAC） Damper（Standby or Safety），	WSRC－TR－93－262，MOD－LI－H	0	－
MOD OCH	$3.00 \mathrm{E}-06 \mathrm{H}$	Motor－Operated，Leakage（internal）（HVAC） Damper（Standby or Safety）．	WSRC－TR－93－262，MOD－OC－H	10	ब ${ }^{\circ}$
MOD OCH	$3.00 \mathrm{E}-06 \mathrm{H}$	Motor－Operated，Spurious operation（HVAC）	WSRC－TR－93－262，MOD－OC－H	0	$\stackrel{\square}{\square}$
MOD OOH	$3.00 \mathrm{E}-02 \mathrm{~N}$	Damper（Standby or Safety）． Motor－Operated，Fails to open／close （HVAC）	WSRC－TR－93－262，MOD－00－H	0	べへ

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Type Code \& Rate \& Description \& Sọurce \& EF \& D \\
\hline MOV OcG \& \(3.00 \mathrm{E}-07 \mathrm{H}\) \& Valve (Standby or Safety). Motor-Operated, Spurious operation (Compressed Gas) \& WSRC-TR-93-262, MOV-OC-G \& 10 \& L \\
\hline mov ocw \& \(3.00 \mathrm{E}-07 \mathrm{H}\) \& Valve (Standby or Safety), Motor-Operated, Spurious operation (Water) \& WSRC-TR-93-262, MOV-OC-W \& \& L \\
\hline MOV OOC \& \(3.00 \mathrm{E}-03 \mathrm{~N}\) \& Valve (Standby or Safety), Motor-Operated, Fails to open/close (Chemical) \& WSRC-TR-93-262, MOV-00-C \& 10 \& \({ }^{\text {L }}\) \\
\hline MOV OOG \& \(1.00 \mathrm{E}-02 \mathrm{~N}\) \& Valve (Standby or Safety), Motor-Operated, Fails to open/close (Compressed Gas) \& WSRC-TR-93-262, MOV-00-G \& 10 \& L \\
\hline MOV OOW \& \(3.00 \mathrm{E}-03 \mathrm{~N}\) \& Valve (Standby or Safety), Motor-Operated, Fails to open/close (Water) \& WSRC-TR-93-262, MOV-00-W \& \& \({ }^{\text {L }}\) \\
\hline MOV PGC \& \(5.00 \mathrm{E}-08 \mathrm{H}\) \& \begin{tabular}{l}
Valve (Standby or Safety), \\
Motor-Operated, Plugs (Chemical)
\end{tabular} \& WSRC-TR-93-262, MOV-PG-C \& \& L \\
\hline MOV PGG \& 5.00E-07 H \& \begin{tabular}{l}
Valve (Standby or Safety), \\
Motor-operated, Plugs (Compressed Gas)
\end{tabular} \& WSRC-TR-93-262, MOV-PG-G \& \& L \\
\hline MOV PGW \& \(5.00 \mathrm{E}-08 \mathrm{H}\) \& \begin{tabular}{l}
Valve (Standby or safety), \\
Motor-Operated, Plugs (Water)
\end{tabular} \& WSRC-TR-93-262, MOV-PG-W \& \& L \\
\hline MOV REC \& \(3.00 \mathrm{E}-08 \mathrm{H}\) \& \begin{tabular}{l}
Valve (Standby or Safety), \\
Motor-Operated, Rupture (external) (Chemical)
\end{tabular} \& WSRC-TR-93-262, MOV-RE-C \& 30 \& L \\
\hline MOV REG \& 5.00E-09 H \& \begin{tabular}{l}
Valve (Standby or Safety), \\
Motor-Operated, Rupture (external) (Compressed Gas)
\end{tabular} \& WSRC-TR-93-262, MOV-RE-G \& 30 \& L \\
\hline MOV REW \& 5.00E-10 H \& \begin{tabular}{l}
Valve (Standby or Safety), \\
Motor-Operated, Rupture (external) (Water)
\end{tabular} \& WSRC-TR-93-262, MOV-RE-W \& \& L \\
\hline MOV RIC \& \(5.00 \mathrm{E}-08 \mathrm{H}\) \& \begin{tabular}{l}
Valve (Standby or Safety), \\
Motor-operated, Rupture (internal) (Chemical)
\end{tabular} \& WSRC-TR-93-262, MOV-RI-C \& \& L \\
\hline mov RIG \& 5.00E-07 H \& \[
\begin{aligned}
\& \text { Valve (Standby or Safety), } \\
\& \text { Motor-Operated, Rupture (internal) } \\
\& \text { (Compressed Gas) }
\end{aligned}
\] \& WSRC-TR-93-262, MOV-RI-G \& \& L \\
\hline MOV RIW \& 5.00E-08 H \& Valve (Standby or Safety), Motor-Operated, Rupture (internal) (Water) \& WSRC-TR-93-262, MOV-RI-W \& \& \\
\hline MRA FRE MRA FSE \& \(5.00 \mathrm{E}-06\)
\(3.00 \mathrm{E}-04\)

H \& Motor, $A C$, Fails to run (Electric Power)

Motor, ${ }^{\text {ac, }}$ Fails to start (Electric \& $$
\begin{aligned}
& \text { WSRC-TR-93-262; MRA-FR-E } \\
& \text { WSRC-TR-93-262; MRA-FS-E }
\end{aligned}
$$ \& \& + +

\hline \& \& \& \& \& \bigcirc

\hline MRD FRE

MRD FSE \& $$
\left\lvert\, \begin{aligned}
& 1.00 \mathrm{E}-05 \mathrm{H} \\
& 3.00 \mathrm{E}-04 \mathrm{~N}
\end{aligned}\right.
$$ \& DC Motor, DC, Fails to start (Electric power) \& WSRC-TR-93-262; MRD-FS-E \& \& +o

\hline | MTE FAH |
| :--- |
| NCW BFL A | \& \[

$$
\begin{array}{r}
1.00 \mathrm{E}-04 \mathrm{H} \\
1.0 \mathrm{E}-05 \mathrm{H}
\end{array}
$$

\] \& | Mist Eliminator, Failure (HVAC) |
| :--- |
| "Normal" Cooling Water Fails at Header Level | \& WSRC-TR-93-262, MTE-FA-H DPSTSY-200-1F \& \& 号

\hline
\end{tabular}

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type Code	Rate	Description	Source	EF	D
PIP REW	$1.00 \mathrm{E}-10 \mathrm{H}$	Piping, Rupture (external) (per ft.) (Water)	WSRC-TR-93-262, PIP-RE-W	30	L
PLC FAI	$3.00 \mathrm{E}-05 \mathrm{H}$	Programmable Logic Controller, Failure (Instr, \& Control)	WSRC-TR-93-262, PLC-FA-I	10	L
PNV FCL A	1.0E-06H	Air-operated Valve Fails Closed	WSRC-TR-93-262, page 12, AOV-CC-W, Air Operated Valve Spurious Operation		
PNV FCL G	3.0E-06H	Air-Operated Valve Fails Closed	WSRC-TR-93-262, page 13, CAV-FC-W, Air Operated Control Valve Fails Closed		
PNV FOP G	$3.0 \mathrm{E}-06 \mathrm{H}$	Air-Operated steam control valve fails open	WSRC-TR-93-262, page 13, CAV-FO-W, Air Operated Control Valve Fails Open		
PNV FTC G	1.0E-03N	Air-Operated Valve Fails to Open/Close	WSRC-TR-93-262, page 12, AOV-OO-W, Air Operated Valve Fails to Open/Close		
PNV LKS G	1.0E-06H	Air-Operated Valve Fails Has Through Leakage	WSRC-TR-93-262, page 12, AOV-LI-W, Air Operated Valve has Leakage (Internal)		
PST FAI	1.00E-06 H	Sensor/Transmitter/, Transducer/Proc. Sw., Press., Failure (Instr. \& Control)	WSRC-TR-93-262, PST-FA-I	3	I
RAH SPR G	$5.0 \mathrm{E}-06 \mathrm{H}$	SPURIOUS ALARM FAILURE	WSRC-TR-93-262, page 30, ALR-SO-I, Alarm/Annunciator Fails to AlarmInternal)		
RAH SPR S	$5.0 \mathrm{E}-06 \mathrm{H}$ $1.00 \mathrm{E}-05 \mathrm{H}$	SPURIOUS ALARM FAILURE Charger, Rectifier, Failure <Electric	WSRC-TR-93-262, page 30, ALR-SO-I, Alarm/Annunciator Fails to AlarmInternal) WSRC-TR-93-262, RCT-FA-E	3	L
RCT FAE	1.00E-05 H	Charger, Rectifier, Failure (Electric Power)	WSRC-TR-93-262, RCT-FA-E	3	L
REC FAI	$3.00 \mathrm{E}-05 \mathrm{H}$	Recorder, Failure (Instr. \& Control)	WSRC-TR-93-262, REC-FA-I WSRC-TR-93-262, RLC-CC-E	30 10	L
RLC CCE	$1.00 \mathrm{E}-04 \mathrm{~N}$	Relay, Control, Fails to open/close (Electric Power)	WSRC-TR-93-262, RLC-CC-E WSRC-TR-93-262, RLC-CO-E	10 30	L
RLC COE	$3.00 \mathrm{E}-07 \mathrm{H}$	Relay, Control, Spurious operation (Electric Power)	WSRC-TR-93-262, RLC-CO-E	30	L
RLC NRE	$1.00 \mathrm{E}-04 \mathrm{~N}$	Relay, Control, Fails to open/close (Electric Power)	WSRC-TR-93-262, RLC-NR-E	10	L
RLC OCE	$3.00 \mathrm{E}-07 \mathrm{H}$	Relay, Control, Spurious operation (Electric Power)	WSRC-TR-93-262, RLC-OC-E	30	L
RLC OOE	$1.00 \mathrm{E}-04 \mathrm{~N}$	Relay, Control, Fails to open/close (Electric Power)	WSRC-TR-93-262, RLC-O0-E	10	L
RLC SOE	$3.00 \mathrm{E}-07 \mathrm{H}$	Relay, Control, Spurious operation (Electric Power)	WSRC-TR-93-262, RLC-SO-E	30	L
RLP CCE	$1.00 \mathrm{E}-03 \mathrm{~N}$	Relay, Protective, Fails to open/close (Electric Power)	WSRC-TR-93-262, RLP-CC-E	10	L
RLP COE	1.00E-07 H	Relay, Protective, Spurious operation (Electric Power)	WSRC-TR-93-262, RLP-CO-E	37	(1)
RLP NRE	1.00E-03 N	Relay, Protective, Fails to open/close (Electric Power)	WSRC-TR-93-262, RLP-NR-E	1	
RLP OCE	1.00E-07 H	Relay, Protective, Spurious operation (Electric Power)	WSRC-TR-93-262, RLP-OC-E	T0	
RLP OOE	1.00E-03 N	Relay, Protective, Fails to open/close (Electric Power)	WSRC-TR-93-262, RLP-00-E	10	
RLP SOE	1.00E-07 H		WSRC-TR-93-262, RLP-SO-E	70	
RST FAI	5.00E-06 H	Sensor/Transmitter/, Transducer/Proc. Sw., Radiation, Failure (Instr. \& Contr.)	WSRC-TR-93-262, RST-FA-I	5	

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type Code	Rate	Description	Source	EF	
Sov LIW	$1.00 \mathrm{E}-06 \mathrm{H}$	Valve (Standby or Safety), Solenoid--Operated, Leakage (internal) (Water)	WSRC-TR-93-262, SOV-LI-W	10	L
sov occ	5.00E-07 H	Valve (Standby or Safety), Solenoid-Operated, Spurious operation (Chemical)	WSRC-TR-93-262, SOV-OC-C	10	L
SOV OCG	$5.00 \mathrm{E}-07 \mathrm{H}$	Valve (Standby or Safety), Solenoid-Oper., Spurious operation (Compressed Gas)	WSRC-TR-93-262, SOV-OC-G	10	L
sov ocw	5.00E-07 H	Valve (Standby or Safety), Solenoid--Operated, Spurious operation (Water)	WSRC-TR-93-262, SOV-OC-W	10	L
SOV OOC	$1.00 \mathrm{E}-03 \mathrm{~N}$	Valve (Standby or Safety), Solenoid-Operated, Fails to open/close (Chemical)	WSRC-TR-93-262, SOV-00-C	10	L
SOV OOG	$3.00 \mathrm{E}-03 \mathrm{~N}$	Valve (Standby or Safety), Solenoid-Oper., Fails to open/close (Compressed Gas)	WSRC-TR-93-262, SOV-OO-G	10	L
SOV OOW	$1.00 \mathrm{E}-03 \mathrm{~N}$	Valve (Standby or Safety). Solenoid--Operated, Fails to open/close (Water)	WSRC-TR-93-262, SOV-OO-W	10	L
Sov PGC	$5.00 \mathrm{E}-08 \mathrm{H}$	Valve (Standby or Safety), Solenoid-Operated, Plugs (Chemical)	WSRC-TR-93-262, SOV-PG-C	10	L
V PgG	$5.00 \mathrm{E}-07 \mathrm{H}$	Valve (Standby or Safety). Solenoid-Oper., Plugs (Compressed Gas)	WSRC-TR-93-262, SOV-PG-G	10	L
V PGW	$5.00 \mathrm{E}-08 \mathrm{H}$	Valve (Standby or Safety), Solenoid--Operated, Plugs (Water)	WSRC-TR-93-262, SOV-PG-W	10	L
SOV REC	$3.00 \mathrm{E}-08 \mathrm{H}$	Valve (Standby or safety), Solenoid-Operated, Rupture (external) (Chemical)	WSRC-TR-93-262, SOV-RE-C	30	L
SOV REG	$5.00 \mathrm{E}-09 \mathrm{H}$	Valve (Standby or Safety), Solenoid-Oper., Rupture (external) (Compressed Gas)	WSRC-TR-93-262, SOV-RE-G	30	L
SOV REW	5.00E-10 H	Valve (Standby or Safety), Solenoid--Operated, Rupture (external) (Water)	WSRC-TR-93-262, SOV-RE-W	30	L
SOV RIC	$5.00 \mathrm{E}-08 \mathrm{H}$	Valve (Standby or Safety), Solenoid-operated, Rupture (internal) (Chemical)	WSRC-TR-93-262, SOV-RI-C		
SoV RIG	5.00E-07 H	Valve (Standby or Safety), Solenoid-Oper., Rupture (internal) (Compressed Gas)	WSRC-TR-93-262, SOV-RI-G		
Sov RIW	5.00E-08 H	Valve (Standby or safety), Solenoid--Operated, Rupture (internal) (Water)	WSRC-TR-93-262, SOV-RI-W		
SPG BFL G	$3.0 \mathrm{E}-06 \mathrm{H}$	SPG transmitter spuriously signals (basic failure)	WSRC-TR-93-262, p. 30 DPS-FA-I		$\stackrel{\sim}{\omega}$
$\underset{\text { SPG FLO }}{\mathbf{G}}$	$3.0 \mathrm{E}-06 \mathrm{H}$ $3.0 \mathrm{E}-06 \mathrm{H}$	Density Instrumet (all failures) DIFFERENTIAL PRESSURE INSTRUMENT FAILURE	WSRC-TR-93-262, page 30, DPS-FA-I WSRC-TR-93-262, page 30, DPS-FA-I		4

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type Code	Rate	Description	Source	EF	D
SPG LKS G	1.0E-08H	TUBE LEAKS (/HR-FT)	WSRC-TR-93-262, page 22, TUB-LE-G		
SPG PLG G	1.0E-06H	TUBE PLUGS (/HR-FT)	WSRC-TR-93-262, page 22, TUB-PG-G -		
SRV CCC	3.00E-03 N	Valve (Standby or Safety), Safety/Relief, Fails to open (Chemical)	1.0E-08 * 100 (evap. plugs frequently) WSRC-TR-93-262, SRV-CC-C	10	L
SRV CCG	$1.00 \mathrm{E}-02 \mathrm{~N}$	Valve (Standby or Safety), Safety/Relief, Fails to open (Compressed Gas)	WSRC-TR-93-262, SRV-CC-G	10	L
SRV CCW	$3.00 \mathrm{E}-03 \mathrm{~N}$	Valve (Standby or Safety), Safety/Relief, Fails to open (Water)	WSRC-TR-93-262, SRV-CC-W	3	L
SRV LEC	5.00E-07 H	Valve (Standby or Safety), Safety/Relief, Leakage (external) (Chemical)	WSRC-TR-93-262, SRV-LE-C	10	L
SRV LEG	$1.00 \mathrm{E}-07 \mathrm{H}$	Valve (Standby or Safety), Safety/Relief, Leakage (external) (Compressed Gas)	WSRC-TR-93-262, SRV-LE-G	10	L
SRV LEW	1.00E-08 H	Valve (Standby or Safety), Safety/Relief, Leakage (external) (Water)	WSRC-TR-93-262, SRV-LE-W	10	L
SRV LIC	1.00E-06 H	Valve (Standby or Safety), Safety/Relief, Leakage (internal) (Chemical)	WSRC-TR-93-262, SRV-LI-C	10	L
SRV LIG	$1.00 \mathrm{E}-05 \mathrm{H}$	Valve (Standby or Safety), Safety/Relief, Leakage (internal) (Compressed Gas)	WSRC-TR-93-262, SRV-LI-G	10	L
SRV LIW	$1.00 \mathrm{E}-06 \mathrm{H}$	Valve (Standby or Safety), Safety/Relief, Leakage (internal) (Water)	WSRC-TR-93-262, SRV-LI-W	10	L
SRV OOC	3.00E-03 N	Valve (Standby or Safety), Safety/Relief, Fails to reclose (Chemical)	WSRC-TR-93-262, SRV-OO-C	10	L
SRV OOG	$1.00 \mathrm{E}-02 \mathrm{~N}$	Valve (Standby or Safety), Safety/Relief, Fails to reclose (Compressed Gas)	WSRC-TR-93-262, SRV-00-G	10	L
SRV OOW	$3.00 \mathrm{E}-03 \mathrm{~N}$	Valve (Standby or Safety), Safety/Relief, Fails to reclose (Water)	WSRC-TR-93-262, SRV-OO-W	3	L
SRV REC	3.00E-08 H	Valve (Standby or Safety), Safety/Relief, Rupture (external) (Chemical)	WSRC-TR-93-262, SRV-RE-C	30	L
SRV REG	5.00E-09 H	Valve (Standby or Safety), Safety/Relief, Rupture (external) (Compressed Gas)	WSRC-TR-93-262, SRV-RE-G	30	L
SRV REW	5.00E-10 H	Valve (Standby or Safety), Safety/Relief, Rupture (external) (Water)	WSRC-TR-93-262, SRV-RE-W	30	L
SRV RIC	5.00E-08 H	Valve (Standby or Safety), Safety/Relief, Rupture (internal) (Chemical)	WSRC-TR-93-262, SRV-RI-C	30	L
SRV RIG	$5.00 \mathrm{E}-07 \mathrm{H}$	Valve (Standby or \because fety), Safety/Relief, Rupture (internal, (Compressed Gas)	WSRC-TR-93-262, SRV-RI-G	30	L
SRV RIW	5.00E-08 H	Valve (Standby or Safety), Safety/Relief, Rupture (internal) (Water)	WSRC-TR-93-262, SRV-RI-W	$1 \begin{aligned} & -9 \\ & 9 \\ & 9 \end{aligned}$	禹
SST FAI	$1.00 \mathrm{E}-06 \mathrm{H}$	Sensor/Transmitter/, Transducer/Process Sw., Speed, Failure (Instr. \& Control)	WSRC-TR-93-262, SST-FA-I	30	$\stackrel{+}{\square}$
STM BFL A	$1.9 Y$	Failure to supply steam to header	DWPF SAR 9.A		${ }_{2}$
STM FCL G	1.0E-03N	Steam trap on cooling line fails closed	COG		\cdots
STM FCL X	0.1 Y	Steam trap fails closed once every 1000 batches $\Rightarrow 10$ yrs	COG		U
$\begin{aligned} & \text { SW- BFL A } \\ & \text { SW- BFL } \end{aligned}$	$\begin{array}{r} 5 \mathrm{E}-3 \mathrm{~N} \\ 1.0 \mathrm{E}-06 \mathrm{H} \end{array}$	switch gear failure PRESSURE SWITCH FAILS	DPSTSY-200-1F vol. 2 p p-32 WSRC-TR-93-262, page 30, PST-FA-I, PRESSURE SENSOR/TRAN/SWITCH FAILURE		号

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type Code	Rate	Description	Source	EF	D
TKP LEG	1.00E-07 H	Tank (Pressurized), Leakage (external) (Compressed Gas)	WSRC-TR-93-262, TKP-LE-G	10	L
TKP LEW	1.00E-08 H	Tank (Pressurized), Leakage (external) (Water)	WSRC-TR-93-262, TKP-LE-W	10	L
TKP REC	$5.00 \mathrm{E}-09 \mathrm{H}$	Tank (Pressurized), Rupture (external) (Chemical)	WSRC-TR-93-262, TKP-RE-C	30	L
TKP REG	5.00E-09 H	Tank (Pressurized), Rupture (external) (Compressed Gas)	WSRC-TR-93-262, TKP-RE-G	30	L
TKP REW	$5.00 \mathrm{E}-10 \mathrm{H}$	Tank (Pressurized), Rupture (external) (Water)	WSRC-TR-93-262, TKP-RE-W	30	L
TKU LEC	$1.00 \mathrm{E}-07 \mathrm{H}$	Tank (Unpressurized), Leakage (external) (Chemical)	WSRC-TR-93-262, TKU-LE-C	10	L
TKU LEW	$1.00 \mathrm{E}-08 \mathrm{H}$	Tank (Unpressurized), Leakage (external) (Water)	WSRC-TR-93-262, TKU-LE-W	10	L
TKU REC	5.00E-09 H	Tank (Unpressurized), Rupture (external) (Chemical)	WSRC-TR-93-262, TKU-RE-C	30	L
TKU REW	5.00E-10 H	Tank (Unpressurized), Rupture (external) (Water)	WSRC-TR-93-262, TKU-RE-W	30	L
TMN FAE	$3.00 \mathrm{E}-07 \mathrm{H}$	Termination (Copper), Failure (Electric Power)	WSRC-TR-93-262, TMN-FA-E	10	L
TMR FAI	$5.00 \mathrm{E}-06 \mathrm{H}$	Timer, Failure (Instr. \& Control)	WSRC-TR-93-262, TMR-FA-I	10	L
TNK CLN E	$3 \mathrm{Y}$	Failure to clean system causes accumulation and/or phase inversion of solvent	a: estimate on frequency of cleaning * 0.1 prob. fail to clean		
TRD FAI	1.00E-06 H	Transducer, Failure (Instr. \& Control)	WSRC-TR-93-262, TRD-FA-I	10	L
TRM FAI	$3.00 \mathrm{E}-06 \mathrm{H}$	Transmitter, Failure (Instr. \& Control)	WSRC-TR-93-262, TRM-FA-I	10	L
TRS PGW	$5.00 \mathrm{E}-07 \mathrm{H}$	Screen, Travelling.. Plugs (Water)	WSRC-TR-93-262, TRS-PG-W	10	L
TST FAI	$1.00 \mathrm{E}-06 \mathrm{H}$	Sensor/Transmitter/, Transducer/Proc. Switch, Temp., Failure (Instr. \& Control)	WSRC-TR-93-262, TST-FA-I	3	L
TUB LEG	$3.00 \mathrm{E}-07 \mathrm{H}$	Tube, Leakage (external) (per ft.) (Compressed Gas)	WSRC-TR-93-262, TUB-LE-G	10	L
TUB PGG	1.00E-08 H	Tube, Plugs (per ft.) (Compressed Gas)	WSRC-TR-93-262, TUB-PG-G	30	L
TUB REG	$1.00 \mathrm{E}-08 \mathrm{H}$	Tube, Rupture (external) (per ft.) (Compressed Gas)	WSRC-TR-93-262, TUB-RE-G	30	L
UNC PRE A	$1.0 \mathrm{E}-04 \mathrm{H}$	UNCONTROLLED CHEMICAL REACTION IN AN EVAPORATOR	BOUNDS DPSTSY-200-1F		
UST FAI	1.00E-05 H	Sensor/Transmitter/, Transducer/Proc. Sw., Humidity, Failure (Instr. \& Control)	WSRC-TR-93-262, UST-FA-I		\square
VAP FAG	$1.00 \mathrm{E}-04 \mathrm{H}$	Vaporizer, Failure (Compressed Gas)	WSRC-TR-93-262, VAP-FA-G	16	-
VBV CCC	$1.00 \mathrm{E}-02 \mathrm{~N}$	Valve (Standby or Safety), Vacuum-Breaker, Fails to open (Chemical)	WSRC-TR-93-262, VBV-CC-C	1-6	
VBV CCG	3.00E-02 N	Valve (Standby or Safety), Vacuum-Breaker, Fails to open (Compressed Gas)	WSRC-TR-93-262, VBV-CC-G	10	2 0 0 0 0
VBV CCW	1.00E-02 N	Valve (Standby or Safety), Vacuum-Breaker, Fails to open (Water)	WSRC-TR-93-262, VBV-CC-W	50	$\begin{aligned} & 0 \\ & \hline 0 \\ & \hline \end{aligned}$
VBV LEC	5.00E-07 H	Valve (Standby or Safety), Vacuum-Breaker, Leakage (external) (Chemical)	WSRC-TR-93-262, VBV-LE-C	70	い

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type code	Rate	Description	Source	EF	D
VBV LEG	$1.00 \mathrm{E}-07 \mathrm{H}$	Valve (Standby or Safety), Vacuum-Breaker, Leakage (external) (Compressed Gas)	WSRC-TR-93-262, VBV-LE-G	10	L
VBV LEW	$1.00 \mathrm{E}-08 \mathrm{H}$	Valve (Standby or Safety), Vacuum-Breaker, Leakage (external) (Water)	WSRC-TR-93-262, VBV-LE-W	10	L^{L}
VBV LIC	1.00E-06 H	Valve (Standby or Safety), Vacuum-Breaker, Leakage (internal) (Chemical)	WSRC-TR-93-262, VBV-LI-C	10	L
vBV LIG	$1.00 \mathrm{E}-05 \mathrm{H}$	Valve (Standby or Safety), Vacuum-Breaker, Leakage (internal) (Compressed Gas)	WSRC-TR-93-262, VBV-LI-G	10	L
VBV LIW	$1.00 \mathrm{E}-06 \mathrm{H}$	Valve (Standby or Safety), Vacuum-Breaker, Leakage (internal) (Water)	WSRC-TR-93-262, VBV-LI-W	10	${ }^{\text {L }}$
vBv OOC	$1.00 \mathrm{E}-02 \mathrm{~N}$	Valve (Standby or Safety), Vacuum-Breaker, Fails to reclose (Chemical)	WSRC-TR-93-262, VBV-00-C	10	L
VBV OOG	$3.00 \mathrm{E}-02 \mathrm{~N}$	Valve (Standby or Safety), Vacuum-Breaker, Fails to reclose (Compressed Gas)	WSRC-TR-93-262, VBV-00-G	10	L
vBv OOW	$1.00 \mathrm{E}-02 \mathrm{~N}$	Valve (Standby or Safety), Vacuum-Breaker, Fails to reclose (Water)	WSRC-TR-93-262, VBV-00-W		L
VBV REC	$3.00 \mathrm{E}-08 \mathrm{H}$	Valve (Standby or Safety), Vacuum-Breaker, Rupture (external) (Chemical)	WSRC-TR-93-262, VBV-RE-C	30	L
VBV REG	$5.00 \mathrm{E}-09 \mathrm{H}$	Valve (Standby or Safety), Vacuum-Breaker, Rupture (external) (Compressed Gas)	WSRC-TR-93-262, VBV-RE-G	30	L
VBV REW	5.00E-10 H	Valve (Standby or Safety), Vacuum-Breaker, Rupture (external) (Water)	WSRC-TR-93-262, VBV-RE-W	30	L
VBV RIC	5.00E-08 H	$\begin{aligned} & \text { Valve (Standby or Safety), } \\ & \text { Vacuum-Breaker, Rupture (internal) } \\ & \text { (Chemical) } \end{aligned}$	WSRC-TR-93-262, VBV-RI-C	30	L
VBV RIG	5.00E-07 H	Valve (Standby or Safety), Vacuum-Breaker, Rupture (internal) (Compressed Gas)	WSRC-TR-93-262, VBV-RI-G		
VBV RIW	$5.00 \mathrm{E}-08 \mathrm{H}$	Valve (Standby or Safety), Vacuum-Breaker, Rupture (internal) (Water)	WSRC-TR-93-262, VBV-RI-W		
VRG FAI	$3.00 \mathrm{E}-06 \mathrm{H}$	Voltage Regulator, Failure (Instr. \& Control)	WSRC-TR-93-262, VRG-FA-I		
XDM CCH	$3.00 \mathrm{E}-03 \mathrm{~N}$	Damper (Standby or Safety), Manual, Fails to open/close (HVAC)	WSRC-TR-93-262, XDM-CC-H	10	
XDM LEH	$1.00 \mathrm{E}-07 \mathrm{H}$	Damper (Standby or Safety), Manual, Leakage (external) (HVAC)	WSRC-TR-93-262, XDM-LE-H		\%
XDM LIH	$1.00 \mathrm{E}-05 \mathrm{H}$	Damper (Standby or Safety), Manual, Leakage (internal) (HVAC)	WSRC-TR-93-262, XDM-LI-H		N

Type Codes for Sump Receipt Tank 7.3 （S73－1．TC）（CONT．）

Type Code	Rate	Description	Source	EF	D
XDM OOH	3．00E－03 N	Damper（Standby or Safety），Manual，Fails to open／close（HVAC）	WSRC－TR－93－262，XDM－00－H	10	L
XDM PGH	5．00E－07 H	Damper（Standby or Safety），Manual，Plugs （HVAC）	WSRC－TR－93－262，XDM－PG－H	10	L
XDM REH	5．00E－09 H	Damper（Standby or Safety），Manual， Rupture（external）（HVAC）	WSRC－TR－93－262，XDM－RE－H	30	L
XDM RIH	5．00E－07 H	Damper（Standby or Safety），Manual， Rupture（internal）（HVAC）	WSRC－TR－93－262，XDM－RI－H	30	L
XSK CCE	3．00E－07 H	Switch，Key－Operated（Manual），Fails to open／close（Electric Power）	WSRC－TR－93－262，XSK－CC－E	10	L
XSK COE	1．00E－06 H	Switch，Key－Operated（Manual），Spurious operation（Electric Power）	WSRC－TR－93－262，XSK－CO－E	10	L
XSK NRE	3．00E－07 H	Switch，Key－Operated（Manual），Fails to open／close（Electric Power）	WSRC－TR－93－262，XSK－NR－E	10	L
XSK OCE	1．00E－06 H	Switch，Key－Operated（Manual），Spurious operation（Electric Power）	WSRC－TR－93－262，XSK－OC－E	10	L
XSK OOE	3．00E－07 H	Switch，Key－Operated（Manual），Fails to open／close（Electric Power）	WSRC－TR－93－262，XSK－OO－E	10	L
XSK SOE	1．00E－06 H	Switch，Key－Operated（Manual），Spurious operation（Electric Power）	WSRC－TR－93－262，XSK－SO－E	10	L
XSP CCE	1．00E－06 H	Switch，Push－Button（Manual），Fails to open／close（Electric Power）	WSRC－TR－93－262，XSP－CC－E	10	L
XSP COE	1．00E－06 H	Switch，Push－Button（Manual），Spurious operation（Electric Power）	WSRC－TR－93－262，XSP－CO－E	10	L
XSP NRE	1．00E－06 H	Switch，Push－Button（Manual），Fails to open／close（Electric Power）	WSRC－TR－93－262，XSP－NR－E	10	L
XSP OCE	1．00E－06 H	Switch，Push－Button（Manual），Spurious operation（Electric Power）	WSRC－TR－93－262，XSP－OC－E	10	L
XSP OOE	1．00E－06 H	Switch，Push－Button（Manual），Fails to open／close（Electric Power）	WSRC－TR－93－262，XSP－OO－E	10	L
XSP SOE	1．00E－06 H	Switch，Push－Button（Manual），Spurious operation（Electric Power）	WSRC－TR－93－262，XSP－SO－E	10	L
XSR CCE	$5.00 \mathrm{E}-08 \mathrm{H}$	Switch，Rotary（Manual），Fails to open／close（Electric Power）	WSRC－TR－93－262，XSR－CC－E	10	L
XSR COE	$5.00 \mathrm{E}-07 \mathrm{H}$	Switch，Rotary（Manual），Spurious operation（Electric Power）	WSRC－TR－93－262，XSR－CO－E	10	L
XSR NRE	5．00E－08 H	Switch，Rotary（Manual），Fails to open／close（Electric Power）	WSRC－TR－93－262，XSR－NR－E	10	!
XSR OCE	5．00E－07 H	Switch，Rotary（Manual），spurious operation（Electric Power）	WSRC－TR－93－262，XSR－OC－E	160	促
XSR OOE	5．00E－08 H	Switch，Rotary（Manual），Fails to open／close（Electric Power）	WSRC－TR－93－262，XSR－OO－E	30	$\stackrel{+}{4}$
XSR SOE	5．00E－07 H	Switch，Rotary（Manual），Spurious operation（Electric Power）	WSRC－TR－93－262，XSR－SO－E	10	$\stackrel{+}{\bullet}$
XVM CCC	$3.00 \mathrm{E}-04 \mathrm{~N}$	Valve（Standby or Safety），Manual，Fails to open／close（Chemical）	WSRC－TR－93－262，XVM－CC－C	10	＋
XVM CCG	1．00E－03 N	Valve（Standby or Safety），Manual，Fails to open／close（Compressed Gas）	WSRC－TR－93－262，XVM－CC－G	30	べい

Type Codes for Sump Receipt Tank 7.3 (S73-1.TC) (CONT.)

Type Code	Rate	Description	Source	EF	D
XVM CCW	$3.00 \mathrm{E}-04 \mathrm{~N}$	Valve (Standby or Safety), Manual, Fails to open/close (Water)	WSRC-TR-93-262, XVM-CC-W	10	L
XVM LEC	5.00E-07 H	Valve (Standby or Safety), Manual, Leakage (external) (Chemical)	WSRC-TR-93-262, XVM-LE-C	10	L
XVM LEG	$1.00 \mathrm{E}-07 \mathrm{H}$	Valve (Standby or Safety), Manual, Leakage (external) (Compressed Gas)	WSRC-TR-93-262, XVM-LE-G	10	L
XVM LEW	$1.00 \mathrm{E}-08 \mathrm{H}$	Valve (Standby or Safety), Manual, Leakage (external) (Water)	WSRC-TR-93-262, XVM-LE-W	10	L
XVM LIC	$1.00 \mathrm{E}-06 \mathrm{H}$	Valve (Standby or Safety), Manual, Leakage (internal) (Chemical)	WSRC-TR-93-262, XVM-LI-C	10	L
XVM LIG	$1.00 \mathrm{E}-05 \mathrm{H}$	Valve (Standby or Safety), Manual, Leakage (internal) (Compressed Gas)	WSRC-TR-93-262, XVM-LI-G	10	L
XVM LIW	$1.00 \mathrm{E}-06 \mathrm{H}$	Valve (Standby or Safety), Manual, Leakage (internal) (Water)	WSRC-TR-93-262, XVM-LI-W	10	L
XVM OOC	$3.00 \mathrm{E}-04 \mathrm{~N}$	Valve (Standby or Safety), Manual, Fails to open/close (Chemical)	WSRC-TR-93-262, XVM-00-C	10	L
XVM OOG	$1.00 \mathrm{E}-03 \mathrm{~N}$	Valve (Standby or Safety), Manual, Fails to open/close (Compressed Gas)	WSRC-TR-93-262, XVM-00-G	10	L
XVM OOW	$3.00 \mathrm{E}-04 \mathrm{~N}$	Valve (Standby or Safety), Manual, Fails to open/close (Water)	WSRC-TR-93-262, XVM-00-W	10	L
XVM PGC	$5.00 \mathrm{E}-08 \mathrm{H}$	Valve (Standby or Safety), Manual, Plugs (Chemical)	WSRC-TR-93-262, XVM-PG-C	10	L
XVM PGG	$5.00 \mathrm{E}-07 \mathrm{H}$	Valve (Standby or Safety), Manual, Plugs (Compressed Gas)	WSRC-TR-93-262, XVM-PG-G	10	L
XVM PGW	$5.00 \mathrm{E}-08 \mathrm{H}$	Valve (Standby or Safety), Manual, Plugs (Water)	WSRC-TR-93-262, XVM-PG-W	10	L
XVM REC	$3.00 \mathrm{E}-08 \mathrm{H}$	Valve (Standby or Safety), Manual, Rupture (external) (Chemical)	WSRC-TR-93-262, XVM-RE-C	30	L
XVM REG	$5.00 \mathrm{E}-09 \mathrm{H}$	Valve (Standby or Safety), Manual, Rupture (external) (Compressed Gas)	WSRC-TR-93-262, XVM-RE-G	30	L
XVM REW	$5.00 \mathrm{E}-10 \mathrm{H}$	Valve (Standby or Safety), Manual, Rupture (external) (Water)	WSRC-TR-93-262, XVM-RE-W	30	L
XVM RIC	$5.00 \mathrm{E}-08 \mathrm{H}$	Valve (Standby or Safety), Manual, Rupture (internal) (Chemical)	WSRC-TR-93-262, XVM-RI-C		L
XVM RIG	$5.00 \mathrm{E}-07 \mathrm{H}$	Valve (Standby or Safety), Manual, Rupture (internal) (Compressed Gas)	WSRC-TR-93-262, XVM-RI-G	30	L
XVM RIW	$5.00 \mathrm{E}-08 \mathrm{H}$	Valve (Standby or Safety), Manual, Rupture (internal) (Water)	WSRC-TR-93-262, XVM-RI-W	3	+

Calculation No.
S-CLC-F-00100
Sheet No. 83 of 135
Rev. 1

Appendix 5
 Fault Trees \& Cutsets for Sump Receipt Tanks

RED OIL EXPLOSION IN SUMP REC. TANK 7.3

Cutsets for Sump Receipt Tank 7.3 (S73-1.caf)

Cutsets for Sump Receipt Tank 7.3 (S73-1.caf) (CONT.)

set No.	Event Name	Description	C	$\begin{aligned} & \text { B.E. } \\ & \text { Input } \end{aligned}$	Calc. Result	Cutset Freq. (/yr)
6.	OPRPOWERACHA\# SJ-TK-73PRED + TBPTK-73PRED\#	operator fails to respond to power failure (shut down) transfer to tank 7.3 is required Suff. solvent from canyon leaks received in sump receipt tank 7.3 causes unc rx	1 4	1 N $5.0 \mathrm{E}-2 \mathrm{~N}$ 24 H $1.19 \mathrm{E}-2 \mathrm{H}$ $2 \mathrm{E}-3 \mathrm{~N}$	$5.00 \mathrm{E}-02 \mathrm{~N}$ $2.22 \mathrm{E}-01$ $2.00 \mathrm{E}-03$	
	EXHCANYNBFLA\#	canyon exhaust system fails	3	24 H 0.03 Y	8.22E-05	$6.66 \mathrm{E}-10$
	NCWTK-73BRKA\# OPRDSJ--ACLA\#	cooling system for tank 7.3 is broken steam jet left on heats tank 7.3 (in control room)	1	1 N 1 N	$\begin{aligned} & 1.00 \mathrm{E}+00 \\ & 5.00 \mathrm{E}-04 \mathrm{~N} \end{aligned}$	
	OPRDSJ73SVLA\#	control room supervisor fails to stop transfer to 7.3 (key)	1	$5.0 \mathrm{E}-4 \mathrm{~N}$ 1 N $1.0 \mathrm{E}-1 \mathrm{~N}$	$1.00 \mathrm{E}-01 \mathrm{~N}$	
	SJ-TK-73PRED +	transfer to tank 7.3 is required	4	$\begin{array}{r} 24 \mathrm{H} \\ 1.19 \mathrm{E}-2 \mathrm{H} \end{array}$	2.22E-01	
	TBPTK-73PRED\#	Suff. solvent from canyon leaks received in sump receipt tank 7.3 causes unc rx		- $2 \mathrm{E}-3 \mathrm{~N}$	2.00E-03	
7.	AG-TK-73FTSA\#	agitator motor failure 7.3	3	5.00E-06 $\begin{array}{r}14 \mathrm{D} \\ \hline\end{array}$	1.68E-03	4.41E-10
	OPRD----TEHA +	transfer error to tank 7.3	4	5.00E 1 1 1 H	3.00E-05	
	OPRDSJCRACLA\#	oper. in CR fails to complete unintentional transfer to 7.3 (SJ left on)	1	$\left.\begin{array}{r} 3.0 \mathrm{E}-5 \mathrm{H} \\ 1 \mathrm{~N} \\ 5.0 \mathrm{E}-4 \mathrm{~N} \end{array} \right\rvert\,$	5.00E-04N	
	TBPTK-73PRED\#	Suff. solvent from canyon leaks received in sump receipt tank 7.3 causes unc rx		$2 \mathrm{E}-3 \mathrm{~N}$	2.00E-03	
8.	AG-TK-73FTSA\#	agitator motor failure 7.3	3	5.00E-06 $\begin{array}{r}14 \mathrm{D} \\ \mathrm{H}\end{array}$	1.68E-03	3.31E-10
	CHMTK-73UNRD +	excessive chemical reaction in tank 7.3	4	$\begin{array}{r} 1 \mathrm{H} \\ 5.0 \mathrm{E}-06 \mathrm{H} \end{array}$	5.00E-06	
	OPRDSPG-ACNA\#	operator fails to read SpG indication (doesn't notice agitator failure)	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 \mathrm{~N} \end{array}$	5.00E-03N	
	PERCHMLKO45A\#	uncontrolled rxn is a result of transfer of sumps	1	$\begin{array}{r} 1 \mathrm{~N} \\ -45 \mathrm{~N} \end{array}$	4.50E-01N	
	TBPTK-73PRED\#	Suff. solvent from canyon leaks received in sump receipt tank 7.3 causes unc rx		$2 \mathrm{E}-3 \mathrm{~N}$	2.00E-03	$\begin{array}{l\|l} \hline 0 \\ 0 & 0 \\ 4 & 0 \\ \hline \end{array}$
9.	AG-TK-73FTSA\#	agitator motor failure 7.3	3	$5.00 \mathrm{E}-06 \mathrm{H}$	1.68E-03	$6.810-4$
	OPRDSJ--ACLA\#	steam jet left on heats tank 7.3 (in control room)	1	- 1 N	5.00E-04N	
	OPRDSJ73SVLA\#	control room supervisor fails to stop transfer to 7.3 (key)	1		$1.00 \mathrm{E}-01 \mathrm{~N}$	
	OPRDSPG-ACNA\#	operator fails to read SpG indication (doesn't notice agitator failure)	1	$\begin{aligned} & 1.0 \mathrm{E}-1 \mathrm{~N} \\ & 1 \mathrm{~N} \\ & 5.0 \mathrm{E}-3 \mathrm{~N} \end{aligned}$	5.00E-03N	t

Cutsets for Sump Receipt Tank 7.3 (S73-1.caf) (CONT.)

$\begin{aligned} & \text { Set } \\ & \text { No. } \end{aligned}$	Event Name	Description	c	$\begin{aligned} & \text { B.E. } \\ & \text { Input } \end{aligned}$	Calc. Result	Cutset Freq. (/yr)
10.	SJ-TK-73PRED+ TBPTK-73PRED	```transfer to tank 7.3 is required Suff. solvent from canyon leaks received in sump receipt tank 7.3 causes unc rx```	4	$\begin{array}{r} 24 \mathrm{H} \\ 1.19 \mathrm{E}-2 \mathrm{H} \\ 2 \mathrm{E}-3 \mathrm{~N} \end{array}$	$2.22 \mathrm{E}-01$ $2.00 \mathrm{E}-03$	
	AG-TK-73BLAA\#	7.3 agitator blade/shaft failure		5.0E-07 ${ }^{14 \mathrm{D}}$	1.68E-04	4.41E-11
	OPRD----TEHA+	transfer. error to tank 7.3	4	$\begin{array}{r} 1 \mathrm{H} \\ 3.0 \mathrm{E}-5 \mathrm{H} \end{array}$	3.00E-05	
	OPRDSJCRACLA\#	oper. in $C R$ fails to complete unintentional transfer to 7.3 (SJ left on)	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-4 \mathrm{~N} \end{array}$	5.00E-04N	
	TBPTK-73PRED\#	Suff. solvent from canyon leaks received in sump receipt tank 7.3 causes unc rx		$2 \mathrm{E}-3 \mathrm{~N}$	2.00E-03	
11.	CHMTK-73UNRD+	excessive chemical reaction in tank 7.3	4	5.0E-06H	5.00E-06	$3.60 \mathrm{E}-11$
	EXHCANYNBFLA\#	canyon exhaust system fails	3	- $\begin{array}{r}24 \mathrm{H} \\ 0.03 \mathrm{Y}\end{array}$	8.22E-05	
		cooling system for tank 7.3 is broken		1N	$1.00 \mathrm{E}+00$	
	OPRDTEMPVRHA\#	operator fails to notice temperature increase during addition to 7.3	1	5.0E-2N ${ }^{1 N}$	5.00E-02N	
	PERCHMLK045A\#	uncontrolled rxn is a result of transfer of sumps	1	1 N 45 N	4.50E-01N	
	TA-D----BFLA\#	temperature alarm for 7.3 fails	5	- 2 Y	$2.22 \mathrm{E}-01$	
	TBPTK-73PRED\#	Suff. solvent from canyon leaks received in sump receipt tank 7.3 causes unc rx		$3 \mathrm{E}-5 \mathrm{H}$ $2 \mathrm{E}-3 \mathrm{~N}$	$2.00 \mathrm{E}-03$	
12.	AG-TK-73BLAA\#	7.3 agitator blade/shaft failure	3	5.0E-07 $\begin{array}{r}14 \mathrm{D} \\ \hline 1\end{array}$	$1.68 \mathrm{E}-04$	3.31E-11
	CHMTK-73UNRD+	excessive chemical reaction in tank 7.3	4	5.0E-06H	5.00E-06	
	OPRDSPG-ACNA\#	operator fails to read SpG indication (doesn't notice agitator failure)	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 \mathrm{~N} \\ 1 \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$ $4.50 \mathrm{E}-01 \mathrm{~N}$	
	PERCHMLK045A\#	uncontrolled rxn is a result of transfer of sumps	1	. 45 N	4.50E-01N	
	TBPTK-73PRED\#	Suff. solvent from canyon leaks received in sump receipt tank 7.3 causes unc rx		$2 \mathrm{E}-3 \mathrm{~N}$	$2.00 \mathrm{E}-03$	$\left\|\right\|$
13.	FPW-----BFLA\#	utility power fails		$\begin{array}{r} 24 \mathrm{H} \\ 1.0 \mathrm{E}-04 \mathrm{H} \end{array}$	$2.40 \mathrm{E}-03$	3.154
	OPRD----TEHA+	transfer error to tank 7.3		$\begin{array}{r} 1 \mathrm{H} \\ 3.0 \mathrm{E}-5 \mathrm{H} \end{array}$	3.00E-05	
	OPRDSJCRACLA\#	oper. in CR fails to complete unintentional transfer to 7.3	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-4 \mathrm{~N} \end{array}$	5.00E-04N	
	OPRPOWERACHA\#	(SJ left on) operator fails to respond to power failure (shut down)	1		5.00E-02N	

Cutsets for Sump Receipt Tank 7.3 (S73-1.caf) (CONT.)

Cutsets for Sump Receipt Tank 7.3 (S73-1.caf) (CONT.)

Set No.	Event Name	Description	c	B.E. Input	Calc. Result	Cutset Freq. (/yr
18.	EXHCANYNBFLA\#	canyon exhaust system fails	3	24H	8.22E-05	$2.74 \mathrm{E}-12$
	FLTRXN72UNRD+	ammonium nitrate builds up to dangerous amounts in 7.2 PVV filter	4	0.03 Y 24 H $3.81 \mathrm{E}-5 \mathrm{H}$	9.14E-04	
	OPRDDET1IRNA\#	operator fails to detect NH 4 NO 3 in 7.2 filter	1	1N	$1.00 \mathrm{E}-02 \mathrm{~N}$	
	OPRDFLUSACNA\#	operator fails to perform scheduled periodic filter flush	1	1 N	$5.00 \mathrm{E}-03 \mathrm{~N}$	
	TBPTK-73PRED\#	Suff. solvent from canyon leaks received in sump receipt tank 7.3 causes unc rx		$5.0 \mathrm{E}-3 \mathrm{~N}$ $2 \mathrm{E}-3 \mathrm{~N}$	2.00E-03	
19.	EXHCANYNBFLA\#	canyon exhaust system fails	3	0.034	8.22E-05	1.37E-12
	FLTRXN7 2 UNRD+	ammonium nitrate builds up to dangerous amounts in 7.2 PVV filter	4	$\begin{array}{r} 24 \mathrm{H} \\ 3.81 \mathrm{E}-5 \mathrm{H} \end{array}$	$9.14 \mathrm{E}-04$	
	OPRDFLUSACNA\#	operator fails to perform scheduled periodic filter flush	1	5.0E-3N	5.00E-03N	
	OPRDINSIACNA\#	operator fails to inspect 7.2 PVV filter (monthly vacuum test)	1	$\begin{array}{r} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 \mathrm{~N} \end{array}$	5.00E-03N	
	TBPTK-73PRED\#	Suff. solvent from canyon leaks received in sump receipt tank 7.3 causes unc rx		$2 \mathrm{E}-3 \mathrm{~N}$	2.00E-03	
20.	EXHCANYNBFLA\#	canyon exhaust system fails	3	24 H 0.03 Y	8.22E-05	$1.37 \mathrm{E}-12$
	FLTRXN72UNRD+	ammonium nitrate builds up to dangerous amounts in 7.2 PVV filter	4	$\begin{array}{r} 24 \mathrm{H} \\ 3.81 \mathrm{E}-5 \mathrm{H} \end{array}$	9.14E-04	
	OPRAPDE-MCNA\#\#	Filter Pressure Differential Sensor is Miscalibrated	1		$5.00 \mathrm{E}-03 \mathrm{~N}$	
	OPRDFLUSACNA\#	operator fails to perform scheduled periodic filter flush	1	5.0E-3N	5.00E-03N	
	TBPTK-73PRED\#	Suff. solvent from canyon leaks received in sump receipt tank 7.3 causes unc rx		$\begin{array}{r} 5.0 \mathrm{E}-3 \mathrm{~N} \\ 2 \mathrm{E}-3 \mathrm{~N} \end{array}$	$2.00 \mathrm{E}-03$	
21.	DG-POWERFTSA\#	292 emergency diesel generator fails to start	1	3.0E-02N	$3.00 \mathrm{E}-02 \mathrm{~N}$	1.20E-12
	FLTRXN7 2UNRD+	ammonium nitrate builds up to dangerous amounts in 7.2 PVV filter	4	$\begin{array}{r} 24 \mathrm{H} \\ 3.81 \mathrm{E}-5 \mathrm{H} \end{array}$	$9.14 \mathrm{E}-04$	可
	FPW-----BFLA\#	utility power fails	3	$\begin{array}{r} 24 \mathrm{H} \\ 1.0 \mathrm{E}-04 \mathrm{H} \end{array}$	$2.40 \mathrm{E}-03$	$\left\|\begin{array}{l} -1 \\ i \end{array}\right\|$
	OPRAPDE-VINA\#	Operator Fails to Monitor Filter Pressure Differential sensor	1	$\begin{array}{r} 1.0 \mathrm{C} \\ 1 \mathrm{~N} \\ 1.0 \mathrm{E}-1 \mathrm{~N} \end{array}$	$1.00 \mathrm{E}-01 \mathrm{~N}$	
	OPRDFLUSACNA\#	operator fails to perform scheduled periodic filter flush	1	5.0E1N	$5.00 \mathrm{E}-03 \mathrm{~N}$	
	OPRPOWERACHA\#	operator fails to respond to power failure (shut down)	1	$\begin{array}{r} 5.0 \mathrm{E}-3 \mathrm{~N} \\ 1 \mathrm{~N} \end{array}$	5.00E-02N	
	TBPTK-73PRED\#	Suff. solvent from canyon leaks received in sump receipt tank 7.3 causes unc rx		$\begin{array}{r} 5.0 \mathrm{E}-2 \mathrm{~N} \\ 2 \mathrm{E}-3 \mathrm{~N} \end{array}$	$2.00 \mathrm{E}-03$	

Cutsets for Sump Receipt Tank 7.3 (S73-1.caf) (CONT.)

Cutsets for Sump Receipt Tank 7.3 (S73-1.caf) (CONT.)

Calculation No.
S-CLC-F-00100
Sheet No. 103 of 135
Rev. 1

Cutsets for Sump Receipt Tank 7.3 (S73-1.caf) (CONT.)

set No.	Event Name	Description	c	B.E. Input	Calc. Result	Cutset Freq. (/yr)
29.	TBPTK-73PRED\#	Suff. solvent from canyon leaks received in sump receipt tank 7.3 causes unc rx		2E-3N	$2.00 \mathrm{E}-03$	
	DG-DG292MSCA\#	misc./operator error causes failure of 292 diesel to supply power	1	2E-3N	2.00E-03N	7.99E-14
	FLTRXN72UNRD+	ammonium nitrate builds up to dangerous amounts in 7.2 PVV filter	4	$2 \mathrm{E}-3 \mathrm{~N}$ 24 H $3.81 \mathrm{E}-5 \mathrm{H}$	9.14E-04	
	FPW-----BFLA\#	utility power fails	3	$3.81 \mathrm{E}-5 \mathrm{H}$ 24 H	$2.40 \mathrm{E}-03$	
	OPRAPDE-VINA\#	Operator Fails to Monitor Filter Pressure Differential	1	1.0E-04H	1.00E-01N	
	OPRDFLUSACNA\#	Sensor operator fails to perform scheduled periodic filter flush	1	$1.0 \mathrm{E}-1 \mathrm{~N}$ 1 N	5.00E-03N	
	OPRPOWERACHA\#	operator fails to respond to power failure (shut down)	1	$5.0 \mathrm{E}-3 \mathrm{~N}$ 1 N	5.00E-02N	
	TBPTK-73PRED\#	Suff. solvent from canyon leaks received in sump receipt tank 7.3 causes unc rx		$5.0 \mathrm{E}-2 \mathrm{~N}$ $2 \mathrm{E}-3 \mathrm{~N}$	$2.00 \mathrm{E}-03$	
30.	DG-POWERFTSA\#	292 emergency diesel generator fails to start	1	1N	$3.00 \mathrm{E}-02 \mathrm{~N}$	5.99E-14
	FLTRXN72UNRD+	ammonium nitrate builds up to dangerous amounts in 7.2 PVV	4	3.0E-02N	9.14E-04	
	FE	filter utility power fails		$3.81 \mathrm{E}-5 \mathrm{H}$		
		utility power fails	3	$\begin{array}{r} 24 \mathrm{H} \\ \text { 1. } 0 \mathrm{E}-04 \mathrm{H} \end{array}$	$2.40 \mathrm{E}-03$	
	OPRDFLUSACNA\#	operator fails to perform scheduled periodic filter flush	1	- 1N	5.00E-03N	
	OPRDINSIACNA\#	operator fails to inspect 7.2 PVV filter (monthly vacuum	1	$5.0 \mathrm{E}-3 \mathrm{~N}$ 1 N	$5.00 \mathrm{E}-03 \mathrm{~N}$	
	OPR POWERACHA\#	test)	1	$5.0 \mathrm{E}-3 \mathrm{~N}$		
	OPRPOWERACHA\#	operator fails to respond to power failure (shut down)	1	5.0E-2N	$5.00 \mathrm{E}-02 \mathrm{~N}$	
	TBPTK-73PRED\#	Suff. solvent from canyon leaks received in sump receipt tank 7.3 causes unc rx		$2 \mathrm{E}-3 \mathrm{~N}$	2.00E-03	

Rev. 1

Appendix 6
 Basic Event Data for 2nd Pu Mixer-Settler

Basic Event Report for Red Oil Explosions in Mixer Settler (2PU.BE)

Basic Event Report for Red oil Explosions in Mixer Settler (2PU.BE) (CONT.)

Type Codes for Red Oil Explosion in the Mixer Settler (2PU.TC)

Type Code	Rate	Description	Source
AG- BFL A	$1.24 \mathrm{E}-06 \mathrm{H}$	First Impeller Fails Due to Motor Failue	WSRC-TR-93-262, page 19, AGI-FA-C, Agitator Failure
AG- BLA A	5.0E-06H	Agitator Blades/Shaft Fail	WSRC-TR-93-262, page 19, AGI-FA-C, Agitator Failure, Less Likely /10
CHM OVH C	1.0E-32H	2nd Pu Mixer Settler Overheated Due to Strong Acid Addition	Estimate Based on Information Obtained From M.L. Hyder
CHM UNR C	$1.0 \mathrm{E}-32 \mathrm{H}$	Uncontrolled Reaction in 2nd Pu Mixer Settler Cause Pyrolysis of TBP	Estimate
DCS CRD C	$3.0 \mathrm{E}-06 \mathrm{H}$	Interlock/Loop Fails due to DCS card Failure	WSRC-TR-93-262 Page 187
DG- FTR C	$3.0 \mathrm{E}-04 \mathrm{H}$	292 Diesel Generator Fails to Run	F-Canyon SAR Addendum One
DG- FTS C	3.0E-2N	292 Diesel Generator Fails to start	F-Canyon System Analysis
DG- MSC C	$2.00 \mathrm{E}-03 \mathrm{~N}$	Misc./Operator Error Causes failure of 292 Diesel to Supply Power	F-Canyon System Analysis
EXH BFL C	$2.7 \mathrm{E}-06 \mathrm{H}$	Canyon Exhaust System Fails	F-Canyon SAR Addendum One
FCM ADJ C	$1.25 \mathrm{E}-01 \mathrm{M}$	Number of Adjustments Made to the Flow Meter	Estimate
FCV FOP C	$3.00 \mathrm{E}-06 \mathrm{H}$	Steam Valve Fails Open	WSRC-TR-93-262, Page 13
FCV HFL C	$3.13 \mathrm{E}-04 \mathrm{H}$	2AF Auto Wall Nozzle (Operated Manually) Held Open too Wide	Estimate: ACN Human Error x 50\% Run in Manual Mode
FPW BFL C	$1.40 \mathrm{E}-03 \mathrm{H}$	Utility Power Fails	F and H-Canyon System Analysis, page p-28
GV- BEL C	$1.67 \mathrm{E}-02 \mathrm{H}$	Gang Valve Fails	DPSTSY-200-1H, Page 13
GV- POS C	$3.0 \mathrm{E}-06 \mathrm{H}$ $1.3 \mathrm{E}-07 \mathrm{H}$	Steam Valve Fails Open and Gang Valve Does Not Go to Airblow/Vent Switch gear failure	WSRC-TR-93-262, Page 13 DP 1633, Page 26
INT BFL C	1.3E-07H	SWitch gear failure	WSRC-TR-93-262, page 13
INT FOP C	3.0E-06H	Interlock Fails to Shut off 2AX Flow Due to Flow Control Valve Failing Open	WSRC-TR-93-262, page 13
INT STE C	3.0E-06H	2AF Auto Wall Nozzle Fails Open	WSRC-TR-93-262, page 13 ,
OPR ACN C	5.0E-03N	Failure of Administrative Control (Nominal)	WSRC-TR-93-581, Table 4, Item 1, Nominal
OPR MCN C	5.0E-03N	Miscalibration (Nominal)	WSRC-TR-93-581, Table 4, Item 12, Nominal
OPR RMN C	5.0E-3N	Failure to restore following maintenance (Nominal)	WSRC-TR-93-581, Table 4, Item 14, Nominal
OPR VIN C	1.0E-01N	Failure of Visual Inspection (Nominal)	WSRC-TR-93-581, Table 4, Item 31, Nominal
SFW DIS C	$6.67 \mathrm{E}-03 \mathrm{~N}$	Software Interlock Failure	Rate x Human Error (RTN), WSRC-TR-93-581
SPC BFL C	$1.24 \mathrm{E}-06 \mathrm{H}$	2nd Pu VDF Fails	DP-1633, Page 20
STE FOP C	$3.0 \mathrm{E}-06 \mathrm{H}$	Steam Control Valve Fails Open	WSRC-TR-93-262, Page 13
STE LFL C	$3.0 \mathrm{E}-06 \mathrm{H}$	Sufficient Steam to Heat the Water too Hot	WSRC-TR-93-262, Page 13
SW- BFL C	$5.00 \mathrm{E}-3 \mathrm{~N}$	Switch Gear Failure Causes Failure of 292 Diesel Generator to Supply Power	F-Canyon SAR Addendum one
TE- FLO C	4.0E-05H	Temperature measurements (Excluding pyrometers)	DP 1633, Page 28 ,
TNK FLO C	1D	Transfer required to fill tank for 2AF stream	Conservative estimate
TSE ADJ C	$1.25 \mathrm{E}-01 \mathrm{M}$	Number of Times the Temperature Sensor is Calibrated	Estimate; 1/8 months
WAT FLO C	3.0E-06H	Sufficient Volumetric Flow of Water (From HX) to Heat 2 AF	WSRC-TR-93-262, Page 13

Appendix 7
 Fault Trees \& Cutsets for 2nd Pu Mixer-Settler

Calculation No.
S-CLC-F-00100
Sheet No. 116 of 135
Rev. 1

Calculation No.
S-CLC-F-00100
Sheet No. 124 of 135

Sate/Event Name	Page zone	Gate/Event Name	Page Zone	$\frac{\text { Gate/Event Name }}{\text { GI MS TMSC } 2 \mathrm{AF} \text { C }}$	Page Zone	Gate/Event Na SW-DG292BFLC	- Page	Zone
AG-2PU1-BFLA +	18	GI_MS_MIX_1ST_C	18	GI_MS_TMSC_2AF_C	C $\quad 9$	SW-DG292BFLC\#	$\begin{array}{r} 17 \\ 9 \end{array}$	
AG-2PU1-BLAA +	18	GI_MS_MIX_2ND_C	18	GI_MS_TMSC_2AS_C	C 12	TE-2AF--FLOC+	9	
AG-2PU2-BFLA+	18	GI_MS_MIX_ADJ_C	18	GI_MS_TMSC_2AX_C	C 16	TE-2AS--FLOC +	12	
AG-2PU2-BLAA+	18	GI_MS_MIX_C	1	GI_MS_TNOT_2AF_C		TE-2AX--FLOC +	16	
CHM2 PU--OVHC+	1	GI_MS_MIX_C	18	GI_MS_TNOT_2AS_C	C 10	TNK2AF--FLOC +	8	
CHM2PU--UNRC+	1	GI_MS_MIX_EQ_C	18	GI_MS_TNOT_2AX_C	C 13	TSEN2AF-ADJC+	9	
DCS2AF--CRDC+	9	GI_MS_NZL_2AF_C	2	GI_MS_TOP_C	1	TSEN2AS-ADJC+	12	
DCS2AS--CRDC+	12	GI_MS_NZL_2AF_C	3	GI_MS_TSEN_2AF_C	C	TSEN2AX-ADJC+	16	
DCS2AX--CRDC+	16	GI_MS_NZL_2AF_C	6	GI_MS_TSEN_2AF_C		WAT2AF--ELOC+	4	
DG-DG292MSCC\#	17	GI_MS_OVH_2AF_C	2	GI_MS_TSEN_2AS_C	C 10			
DG-POWERFTRC\#	17	GI_MS_SCV_2AS_C	10	GI_MS_TSEN_2AS_C	C 12			
DG-POWERFTSC\#	17	GI_MS_SCV_2AS_C	11	GI_MS_TSEN_2AX_C	C 13			
EXHCANYNBFLC\#	1	GI_MS_SCV_2AX_C	15	GI_MS_TSEN_2AX_C	C 16			
FCM2AS--ADJC+	11	GI_MS_SJO_2AF_C	2	GV-2AF--BFLC+	7			
FCM2AX--ADJC+	15	GI_MS_SJO_2AF_C	8	GV-2AF--POSC+	7			
FCV2AF--FOPC+	3	GI_MS_SPEED_C	18	INT2AF--BFLC+	9			
FCV2AF--HFLC+	3	GI_MS_SPEED_C	19	INT2AF--STEC+	6			
FPW-----BFLC\#	17	GI_MS_STE_2AF_C	2	INT2AS--BFLC+	12			
FPW-----BFLC\#	18	GI_MS_STE_2AS_C	10	INT2AX--BFLC+	16			
GE_F_ELEC_C	1	GI_MS_STE_2AX_C	13	INTFCV--FOPC+	10			
GE_F_ELEC_C	17	GI_MS_STE_2AX_C	15	INTFCVAXFOPC+	14			
GE_F_EMG_F	17	GI_MS_STR_2AF_C	2	OPR2AF--ACNC\#	8			
GE_MS_CANEXH1_C	1	GI_MS_TEMP__2AF_C	2	OPR2AFTEMCNC\#	9			
GI_MS_AV_2AF_C	2	GI_MS_TEMP_2AS_C	10	OPR2ASTEMCNC\#	12			
GI_MS_AV_2AF_C	5	GI_MS_TEMP_2AX_C	10	OPR2AXTEMCNC\#	16			
GI_MS_FCH_2AF_C	2	GI_MS_TEMP_2AX_C	13	OPR2 PU--RMNC\#	18			
GI_MS_FCH_2AF_C	4	GI_MS_TEMP_C	1	OPRSCV--ACNC\#	11			
GI_MS_HDW_2AF_C	5	GI_MS_TEMP_STR_C	1	OPRSCVAXACNC\#	15			
GI_MS_HDW_2AF_C	6	GI_MS_TEMP_STR_C	2	OPRSPC--VINC\#	19			
GI_MS_HDW_2AS_C	10	GI_MS_TEM_MIX_C	1	SFW2A---DISC+	5			
GI_MS_HDW_2AX_C	14	GI_MS_TEM_O_C	2	SFW2A---DISC+	10			
GI_MS_IGV_2AS_C	10	GI_MS_TEM_O_C	10	SFW2A---DISC+	14			
GI_MS_INT_2AF_C	2	GI_MS_TLO1_2AF_C	9	SPC2PU--BFLC+	19			
GI_MS_INT_2AF_C	6	GI_MS_TLO1_2AS_C	12	STE2AF--LFLC+	4			-
GI_MS_INT_2AF_C	7	GI_MS_TLO1_2AX_C	16	STE2AS--FOPC+	10			
GI_MS_INT_2AX_C	13	GI_MS_TLOP_2AF_C	9	STE2AS--FOPC+	10			N
GI_MS_INT_2AX_C	14	GI_MS_TLOP_2AS_C	12	STE2AX--FOPC+	14			\%
GI_MS_INT_HXV_C	6	GI_MS_TLOP_2AX_C	16	STE2AX--FOPC+	15			
	Red Oil	n 2nd Pu Mixer	Settier		F:2PU.CAF	6-20-94	Page 2	

Cutsets for Red Oil Explosion in the Mixer Settler (2PU.CSR)

Cutsets for Red Oil Explosion in the Mixer Settler (2PU.CSR) (CONT.)

Cutsets for Red Oil Explosion in the Mixer Settler (2PU.CSR) (CONT.)

Cutsets for Red Oil Explosion in the Mixer Settler (2PU.CSR) (CONT.)

Cutsets for Red Oil Explosion in the Mixer Settler (2PU.CSR) (CONT.)

Cutsets for Red Oil Explosion in the Mixer Settler (2PU.CSR) (CONT.)

$\begin{aligned} & \text { Set } \\ & \text { No. } \end{aligned}$	Event Name	Description	c	B.E. Input	Calc. Result	Cutset Freq. (/yr)
27.	DCS2AF--CRDC+ DG-POWERFTRC\# FPW-----BFLC\# TE-2AS--FLOC +	Interlock/Loop Failure DCS Card Fails (for Temp. Xmitter) Emergency Diesel Generator Fails to Run Utility Power Fails 2AS Temperature Sensor Fails Low	4 3 3 4		$2.40 \mathrm{E}-05$ $7.17 \mathrm{E}-03$ $3.30 \mathrm{E}-02$ $3.20 \mathrm{E}-04$	3.99E-09
28.	DCS2AX--CRDC+ DG-POWERFTRC\# FPW-----BFLC\# TE-2AF--FLOC +	Interlock/Loop Failure DCS Card Fails (for Temp. Xmitter) Emergency Diesel Generator Fails to Run Utility Power Fails 2AF Temperature Sensor Fails Low	3	$\begin{array}{r} 8 \mathrm{H} \\ 3.0 \mathrm{E}-06 \mathrm{H} \\ 24 \mathrm{H} \\ 3.0 \mathrm{E}-04 \mathrm{H} \\ 24 \mathrm{H} \\ 1.40 \mathrm{E}-03 \mathrm{H} \\ 8 \mathrm{H} \\ 4.0 \mathrm{E}-05 \mathrm{H} \end{array}$	$2.40 \mathrm{E}-05$ $7.17 \mathrm{E}-03$ $3.30 \mathrm{E}-02$ $3.20 \mathrm{E}-04$	$3.99 \mathrm{E}-09$
29.	DCS2AF--CRDC + FPW-----BFLC\# SW-DG292BFLC\# TE-2AX--FLOC +	Interlock/Loop Failure DCS Card Fails (for Temp. Xmitter) Utility Power Fails Switch Gear Failure Causes Failure of 292 Diesel Generator to Supply Power 2AX Temperature Sensor Fails Low	4	$\begin{array}{r} 8 \mathrm{H} \\ 3.0 \mathrm{E}-06 \mathrm{H} \\ 24 \mathrm{H} \\ 1.40 \mathrm{E}-03 \mathrm{H} \\ 1 \mathrm{~N} \\ 5.00 \mathrm{E}-3 \mathrm{~N} \\ 8 \mathrm{H} \\ 4.0 \mathrm{E}-05 \mathrm{H} \end{array}$	$\begin{aligned} & 2.40 \mathrm{E}-05 \\ & 3.30 \mathrm{E}-02 \\ & 5.00 \mathrm{E}-03 \mathrm{~N} \\ & 3.20 \mathrm{E}-04 \end{aligned}$	$2.78 \mathrm{E}-09$
30.	DCS2AS--CRDC+ FPW-----BFLC\# SW-DG292BFLC\# TE-2AF--FLOC +	Interlock/Loop Failure DCS Card Fails (for Temp. Xmitter) Utility Power Fails Switch Gear Failure Causes Failure of 292 Diesel Generator to Supply Power 2AF Temperature Sensor Fails Low	4^{4}	$\begin{array}{r} 8 \mathrm{H} \\ 3.0 \mathrm{E}-06 \mathrm{H} \\ 24 \mathrm{H} \\ 1.40 \mathrm{E}-03 \mathrm{H} \\ 1 \mathrm{~N} \\ 5.00 \mathrm{E}-3 \mathrm{~N} \\ 8 \mathrm{H} \\ 4.0 \mathrm{E}-05 \mathrm{H} \end{array}$	$\begin{aligned} & 2.40 \mathrm{E}-05 \\ & 3.30 \mathrm{E}-02 \\ & 5.00 \mathrm{E}-03 \mathrm{~N} \\ & 3.20 \mathrm{E}-04 \end{aligned}$	$2.78 \mathrm{E}-09$

APPENDIX C: EVAPORATOR SAFETY CLASS ITEM ANALYSIS

Calculation Cover Sheet

Project F-Canyon BIO	Calculation No. S-CLC-F-00146	Project Number NA
Title Scoping Study of Red Oil Reactions in the F-Canyon Evaporators(U)	Functional Classification NS Discipline Risk Analysis Group	Sheet 1 of 178
X Preliminary		
Computer Program No. CAFTA+	Committed	Confirmed
Purpose and Objective		
As requested by NMPD Safety Documentation, this Calc-Note determines a scoping evaluation of frequencies of runaway red oil reactions involving more than 3,000 lbs of TBP, in F-Canyon evaporators $8.5 \mathrm{E}, 7.6 \mathrm{E}, 7.7 \mathrm{E}$, , and 9.3E. The dominant sequences leading to an explosion and top event frequency for each evaporator are determined by fault tree analyses which include potential system modifications.		
Summary of Conclusion Runaway red oil reactions involving more than 3,000 lbs of TBP in the evaporators (given appropriate modifications) are calculated to be incredible (<10E-6/yr.). Incredibility is achieved by a combination of old and new controls involving: temperature, pressure, solvent inventory, and ensuring that aqueous is present during evaporation. The results of the analysis (i.e. incredibility) are valid only if all changes in the fault tree are incorporated.		

Revision					
Rev. No.	Revision Description				
Rev. A	Initial Issue				
		Verification Checking Method	Verifier /Checker (Print) Sign/Date	Manager (Print) Sign/Date	
Sign Off				D. A. Sharp	
Rev. No.	Originator (Print) Sign/Date	E. V. Browne C. R. Lux L.W. Christiansen			
Rev. A					

Classification

- C-2 -

TABLE OF CONTENTS

Section Page
OPEN ITEMS 2
ASSUMPTIONS 2
INTRODUCTION 5
INPUT 5
ANALYTICAL METHODS \& COMPUTATIONS 5
RESULTS 8
CONCLUSION 9
REFERENCES 10
APPENDICES 11

OPEN ITEMS

Since this is a scoping study, items which would be considered open in a committed or confirmed calc-note note are listed as assumptions for this study. For this reason, there are no open items.

GENERAL ASSUMPTIONS AND TECHNICAL BASES

1. Very high sp g readings require the operator to shut down the evaporator (high sp g implies that the aqueous layer that prevents runaway red oil reactions is lost).
2. Operator shall verify (via flow measurement) that steam is shut off (closing the steam block valve manually if needed) whenever temperature, steam pressure, or level interlocks demand the steam valve to close.
3. Low solvent hold tank $(904,906,14.7)$ level interlock and high level alarm will be installed or modified to ensure that solvent losses do not exceed $10,000 \mathrm{lbs}$ of 30% TBP.
4. The solvent hold tanks (14.7,904, 906) inventory will be administratively controlled to prevent losses of $30,000 \mathrm{lbs}$ or more.
5. Evaporators will not be operated until levels in solvent hold tanks have stabilized (steady state).
6. Any actuation of the solvent hold tank's (904, 906, 14.7) low level interlock, or discovery of large solvent losses, will require the evaporators to be shut down until accountability of the solvent inventory is performed.
7. Solvent hold tank operator (904, 906, 14.7) will ensure that the solvent feed pump (to banks) is shut off if the low level interlock is demanded.
8. Evaporators will not be operated if the evaporator feed tank agitators are not working.
9. Operator will ensure that agitation is working prior to any transfer into the evaporator feed tanks.
10. Administrative controls will be implemented to limit transfers from 17.5 to 8.7 (and from 7.3 to 8.3) to once per 72 hours to ensure that two full sump receipt tanks are not fed to the continuous evaporator feed tank in an evaporator cycle (ref. 10).
11. Solvent wash waste will not be fed to the batch or continuous evaporators.
12. Verify that sp g in the batch evaporator is greater than 1.1 (matches that of the feed tank at the beginning of the batch) to ensure that an aqueous layer is present.
13. Operator shall trend changes in sp g in the continuous evaporators during roundsheet readings to ensure that feed is not organic (sp g drop).
14. A 1 ft aqueous layer will prevent red oil reaction for up to 9 feet of organic (Ref. 11).
15. Operations will wait for acceptable sample results before continuing processing for those tanks which require sampling (17.5, 7.3, 7.8).
16. Sump receipt tanks $(17.5,7.3)$ are sampled for O / A prior to any transfers to the evaporators (ref. 10).
17. Operator will stop all transfers to 8.7 if a process upset is detected in 10.8 or 11.7 by the high organic level alarm. If a process upset is detected, the operator will shut down the cycle or ensure that tank contents in 8.7 are not evaporated (ref. 10).
18. Lab must notify F-Canyon if a tank sample has been found to be insufficient (for example the sample is too small) to perform adequate O/A analysis upon it (ref. 10).
19. Every batch must be tested for O / A in tank 7.8.
20. Tanks, cell ventilation, and the F-Canyon structure can withstand runaway red oil reactions involving less than $3,000 \mathrm{lbs}$ of TBP with minimal consequences (ref. 1).
21. Uncontrolled reactions do not generate sufficient heat to raise the evaporator contents over $t=120 \mathrm{C}$ and to cause a red oil reaction. Most uncontrolled reactions lead to eructation of evaporator contents, and cause high delta-p's that lead to the steam being shut off. Since it is assumed that uncontrolled reactions cannot lead to red oil reactions, these scenarios are not modeled.
22. Continuous evaporator will not run more than a total of 4 days/month.
23. There exist level, temperature and pressure interlocks, and low feed flow alarms for the continuous evaporators (ref. 10).
24. There exist temperature and pressure interlocks for the batch evaporator (ref. 10).
25. Credit is taken for samples from the 8 X 11 tanks since $10,000 \mathrm{lbs}$ or greater (of $30 \% \mathrm{TBP}$) represents at least 30% of the tank volume. No credit is given to detection of solvent in bi-cell evaporator feed tanks.
26. Calibrations for instrumentation are performed every 6 months.
27. Feed adjustments are performed often enough to ensure that errors leading to failure to supply feed are discovered quickly (prior to evaporation of aqueous).
28. Because small amounts of the TBP will degrade within 72 hours, TBP can not accumulate in the evaporators unless a process upset has occurred (ref. 10).
29. Organic does not accumulate in the evaporator feed tanks as long as the agitator is working.
30. All TBP is assumed to "survive" the continuous evaporator when fed to the batch evaporator.
31. No credit is given to the batch evaporator temperature interlock whenever a very large amount of solvent ($\geq 30,000 \mathrm{lbs}$) is fed because there may not be sufficient aqueous to prevent a runaway reaction even if the steam is shut down.
32. Direct transfer errors to the evaporator feed tanks are not considered because direct solvent paths are assumed blocked off.
33. Operator actions are considered independent when they involve different tanks since the operations usually involve different operators and are not performed simultaneously.
34. Losses of $10,000 \mathrm{lbs}$ of solvent ($3,000 \mathrm{lbs}$ of TBP) can be discovered and corrected prior to feeding an evaporator.
35. Temperature of concentrate ir the de-entrainment column will increase and trigger the temperature interlock if there is a failure to supply feed to the evaporator. The temperature will increase due to an increase in the boiling point and spg of the concentrate (ref. 2).
36. There is sufficient time for the operator to shut off the steam block valve if a high solution temperature or steam pressure is detected (ref. 10).
37. The probability of having $10,000 \mathrm{lbs}$ of solvent in the sump receipt tanks ($7.3 \& 17.5$) is $2.0 \mathrm{E}-3$ (ref. 3).
38. Process upsets occur at a frequency of $1 / 10$ yrs and can be detected and corrected in 12 hours (ref. 10).
39. Agitating prior to sampling is considered an administrative control to ensure that a representative sample is taken (ref. 10).
40. Excess TBP can be received from 1A bank with credit for low level detection in 14.7 to catch a large loss of solvent ($\geq 10,000 \mathrm{lbs}$). For losses involving $\geq 30,000 \mathrm{lbs}$, credit was given for detection via the low level alarm, since the full capacity of the tank is slightly less than $30,000 \mathrm{lbs}$ and at least one full tank would have to be sent (ref. 12).
41. Can receive excess TBP from 1D bank with credit for low level detection in 904 to catch a large loss of solvent ($\geq 10,000 \mathrm{lbs}$). No credit was given for the low level alarm for losses involving $\geq 30,000 \mathrm{lbs}$, since the capacity of the tank is large enough that sufficient material could be lost before tripping the alarms.
42. Can receive excess TBP from 7.3 sump receipt tank. Transfers were assumed to be sent from 7.35% of the time, per cognizant engineer's estimate.
43. Excess TBP can come from 12.6 during cold streams operations. Cold streams are assumed to be sent to the 9.3E feed tank (via tank 11.4) 25% of the time (ref. 10).
44. No TBP will be received from tank 805 or from 11.3 evaporator overheads.
45. Each batch evaporator processes 100 batches/yr. (ref. 10).
46. In cases where decanting is required, credit has been given to the operators recognizing that they transfer too much organic from feed tank 7.8 to 7.6 E during decanting (ref. 10).
47. In cases where decanting is required, credit has been given to the operators recognizing that they transfer too much organic from sump receipt tank 17.5 to 8.7 during decanting (ref. 10).
48. Credit has been given to operators "looking" for a break in sp g indication during all decanting operations (ref. 10).
49. Tanks will be settled by the operator before decanting takes place to prevent the transfer of organic (ref. 10).

INTRODUCTION

A very small potential exists in the SRS separations operations for an uncontrolled reaction between tri-n-butyl phosphate (TBP) and nitric acid that could result in unacceptable damage to separations facilities and a significant release of radioactive materials.

The recent TBP and nitric acid accident in Tomsk, Russia, resulted in considerable damage and radioactive release. Explosions have also occurred at SRS during the early years of operations. While the SRS separations facilities have operated without incident for many years since the last accident, it is prudent to revisit the SRS defense in depth approach to preventing such an accident and to upgrade preventive procedures and hardware if appropriate.

Originally, due to the lack of knowledge and experimental data , it was assumed in the evaporator's fault trees that a red oil reaction could occur whenever TBP was exposed to temperatures exceeding 120 degrees (C) or at temperatures above 80 degrees but below the evaporation point for the solution. Since evaporation of the solution is a very good mechanism for removing any excess heat from an uncontrolled reaction at temperatures below 120 degrees, the original fault trees modeled runaway reactions occurring during a) cooldown b) heating prior to boiling and c) during excessive heating.

Preliminary experimental results demonstrate that this type of reaction would not occur if an aqueous layer (ref. 1) is present unless the temperature exceeds 120 degrees (C). Since the vessels at SRS are open systems a second set of fault trees were developed to determine the frequency of a red oil reaction due to overheating or due to evaporation of the aqueous layer and several proposed instrumentation and administrative control changes. The presence of aqueous in the evaporator tanks allow credit to be taken for temperature interlocks. The temperature of the solution is limited by the boiling point of the aqueous solution, and the sp g of the solution increases as the aqueous is evaporated (ref. 2).

INPUT

Basic data used to quantify the fault trees came from the following sources: WSRC-TR-93-262, "Savannah River Site Generic Data Base Development", WSRC-TR-83-581, "Savannah River Site Human Error Data Base Development for Nonreactor Nuclear Facilities", Low Activity Waste (LAW) Study Guide (221-F Canyon), High Activity Waste (HAW) Study Guide (221-F Canyon), and estimates by F-Canyon and SRTC engineers/scientists (references $2,3,4,5$). Complete sources for the basic events in the fault trees are listed in their corresponding "Basic Event and Type Code" reports, which are included in this Calc-Note. The basic event file also includes assumptions involving restoration and mission times used to calculate unavailabilities and unreliabilities of equipment.

ANALYTICAL METHODS AND COMPUTATIONS

Fault tree analysis was used to generate a logic model that generates "minimal" combinations (cutsets) of events that yield a runaway red oil reaction involving in excess of $3,000 \mathrm{lbs}$ of TBP. The fault trees' logic structure was developed based on extensive discussions of a) canyon operations with F-Canyon engineers (D. Chostner, R. Eubanks (ref. 10), S. Marek, and T. G. Campbell), and b) experimental results by SRTC (ref. $1,11)$.

In order for a runaway red oil reaction of sufficient magnitude to compromise the F-Canyon containment to occur, it must involve at least 3,000 pounds of TBP. In addition, the organic must be heated to 120 C or above in the absence of an aqueous layer of at least one foot.

The fault trees model failures of the three main controls that prevent runaway red oil reaction: solvent inventory control, temperature control, and ensuring the presence of aqueous in the evaporator.

The analysis is conservative because the fault tree calculates the frequency of runaway reaction for $3,000 \mathrm{lbs}$ (in the first two cases below), and for $10,000 \mathrm{lbs}$ (in the last case). Reactions involving more than 3,000 pounds will happen with less frequency than those involving exactly $3,000 \mathrm{lbs}$ because it is less likely to have a large process upset than a small one, so the calculated frequency will conservatively bound the "actual" frequency.

Continuous Evaporators

- Excess TBP ($>3,000 \mathrm{lbs}$) is fed to the continuous evaporator and failure to regulate steam pressure to maintain a safe temperature. Credit is given to automatic shut down of steam by the pressure and temperature interlocks. If the interlocks do not work, but the loss of control is detected by the temperature, steam, and sp g sensors or alarms, then credit is given to an operator for closing a steam block valve.
- Excess TBP ($3,000 \mathrm{lbs}$) is fed to the continuous evaporator and failure to maintain an aqueous layer, and failure to shut down steam. Credit is given to automatic shut down of steam by level and temperature interlocks if the heating tubes begin to uncover. If the interlocks do not work, but failure is detected by the temperature, level, flow, and spg sensors or alarms, then credit is given to an operator for closing a steam block valve. It is postulated that as long as the steam is shut off before all the aqueous is evaporated a runaway reaction is prevented. It should be noted that operators could be misled by the correct instrumentation signals (high level, low sp g) to increase the steam flow and therefore remove the aqueous present.
- Excess TBP ($10,000 \mathrm{lbs}$) is fed to the continuous evaporator and normal operation. Credit is given to automatic shut down of steam by the temperature interlock. It should be noted that, due to the large amount of TBP and small amount of aqueous in this scenario, a rapid response is necessary.

Batch Evaporators

- Excess $\operatorname{TBP}(3,000 \mathrm{lbs})$ is fed to the batch evaporator and failure to regulate steam pressure to maintain a safe temperature. Credit is given to automatic shut down of steam by the pressure and temperature interlocks. If the interlocks do not work, but the loss of control is detected (by the temperature, steam, and sp g sensors or alarms), then credit is given to an operator for closing a steam block valve.
- Excess TBP ($3,000 \mathrm{lbs}$) is fed to the batch evaporator and failure to maintain an aqueous layer by overcooking the feed. Credit is given to sp g instrumentation and to automatic shut down of steam by the temperature interlock (due to an increase in boiling point).
- Excess TBP $(7,000)$ is fed to the batch evaporator from the continuous evaporator bottoms tank during normal operation. Credit is given to verification that the $s p g$ in the batch evaporator matches that of the evaporator feed tank at the beginning of the batch.

The following table shows the sources of TBP for each evaporator and mechanisms for detecting its presence.

Evaporator	Source of TBP	Detection
Continuous		
8.5E	Solvent Extraction Bank 2A Solvent Extraction Bank 2B (cold streams operations) Sump Receipt Tank 17.5 B-Line (via tank 9.7), this event was judged incredible because: a) no further processing of $B-$ Line material planned b) would have to transfer organic up to B -Line unnoticed then back down to canyon again	Organic high level alarm in tank 906 Organic low level alarm in tank 906 Organic level alarm in decanter 11.7 Organic level alarm in decanter 10.8 Sampling 17.5 Trending sp g in 8.5 E (roundsheet)
9.3 E	Solvent Extraction Bank 1D Solvent Extraction Bank 1A Sump Receipt Tank 7.3 Tank 12.6 (cold streams operations)	Organic high level alarm in tank 904 Organic low level alarm in tank 904 Organic high level alarm in tank 14.7 Organic low level alarm in tank 14.7 Sampling 7.3 Trending sp g in 9.3 E (roundsheet)

Evaporator	Source of TBP	Detection
Batch		
7.6E	8.5 Bottoms Tank (see above 8.5E)	Sampling in tank 7.8 Verification of matching sp g between 7.6 E and 7.8 prior to evaporation
7.7 E	8.5 Bottoms Tank (see above 8.5E)	Sampling tank 7.8 Verification of matching sp g between 7.7E and 7.8 prior to evaporation

The development of the fault trees underwent extensive revisions and the assumptions list the requirements needed to prevent unacceptable runaway red oil reactions. The list below shows some of the additional controls that were considered, but that were not feasible.

- Providing cooling water or drown tanks to the evaporators
- High and low sp g interlocks for the evaporator
- Trending sp g in the evaporator (no interlocks or alarms)
- Improved sampling

RESULTS

The frequency of evaporator explosion due to red oil reaction is listed in the following table for each of the evaporators analyzed. The final sets of fault trees and resulting cutsets are included in Appendices C, D and E.

Evaporator	Operation	Frequency (/yr.)
Continuous		
8.5 E	Continuous Mode	$9 \mathrm{E}-11$
9.3 E	Continuous Mode	$2 \mathrm{E}-9$
Batch		
7.6 E	Batch (8.5E Bottoms Only)	$3 \mathrm{E}-10$
7.7 E	Batch (8.5E Bottoms Only)	$3 \mathrm{E}-10$

Rev.A

CONCLUSION

The frequency of red oil explosion in F-Canyon is determined to be incredible by fault tree analysis. These results are contingent upon the facility implementation of all assumptions Runaway red oil reactions are unlikely to occur in the evaporators because very large amounts of TBP are needed to cause significant uncontrolled reactions in a well vented system. Experimental analysis and consequence studies demonstrate that only reactions involving more than $3,000 \mathrm{lbs}$ of TBP could result in unacceptable releases to the environment and public. These red oil reactions are prevented by maintaining administrative controls of solvent inventory, ensuring that the evaporator's temperature remains below 120 C , and ensuring that one foot of aqueous is maintained in the evaporator to provide adequate heat removal.

REFERENCES

1. M. L. Cowen, "Uncontrolled TBP-Nitric Acid BIO Risk Analysis (F-Canyon BIO Reference Paper, Uncontrolled TBP-Nitric Acid Reactions)", EPD-SSS-940010. Westinghouse Savannah River Co. June 20, 1994.
2. Inter-Office Memorandum from T. G. Campbell, "Boiling Points of Various Evaporator Solutions", Westinghouse Savannah River Co. August 26, 1994.
3. Inter-Office Memorandum from T. G. Campbell, "Probability for Accumulation of TBP in Canyon Sumps", Westinghouse Savannah River Co. June 3, 1994.
4. Inter-Office Memorandum from S. H.Marek, "8.5 Evaporator Information", Westinghouse Savannah River Co. August 4, 1994.
5. Inter-Office Memorandum from Tracy Rudisill (with attachments), "RE: Mixing Studies" , Westinghouse Savannah River Co. August 30, 1994.
6. C. H. Blanton and S. A. Eide. "Savannah River Site Generic Data Base Development" „WSRC-TR-93-262. Westinghouse Savannah River Co. June 30, 1993
7. H.C. Benhardt et al. "Savannah River Site Human Error Data Base Development for Nonreactor Nuclear Facilities", WSRC-TR-93-581. Westinghouse Savannah River Co. February 28, 1994.
8. Low Activity Waste (LAW) Study Guide (221-F Canyon). Training Course NSATSYWE. Westinghouse Savannah River Co.
9. R. E. Vail, "Human Factors Review of the 'Red Oil' Explosion Fault Trees for the F Canyon Evaporators", EPD-SIM-940098. Westinghouse Savannah River Co. October 5, 1994.
10. D. F. Chostner and R. A. L. Eubanks, "Existing Parameters to Mitigate TBP Reaction in 221-F (U)", NMP-EFA-94-0289. Westinghouse Savannah River Company. October 14, 1994.
11. J. R. Smith, "Organic Thickness Supported by One Foot Aqueous Phase", SRT-CTS-94-0151. Westinghouse Savannah River Co. November 3, 1994.
12. V. M. Martinez, "F-Canyon Vessels Capacities (U)", NMP-EFA-94-0054. Westinghouse Savannah River Co. February 17, 1994.
13. High Activity Waste (HAW) Study Guide (221-F Canyon). Training Course NSATSYWE. Westinghouse Savannah River Co.
14. R. A. L. Eubanks, "906 Operator Independence (U)", NMP-EFA-94-0309. Westinghouse Savannah River Co. November 21, 1994.
15. H. A. Ford, "Common Cause Parameters Using the Multiple Greek Letter Method-Work Performed by Los Alamos National Laboratory for WSRC (U)", WSRC-TR-92-470. Westinghouse Savannah River Co. June 21, 1993.

ATTACHMENTS AND APPENDICES

APPENDIX A - MEMORANDA (Page 12)APPENDIX B - DIAGRAMS (Process Flow Diagram, Evaporator Diagrams) (Page 24)APPENDIX C - 8.5E EVAPORATOR FAULT TREE AND DATA (Page 28)APPENDIX D - 9.3E EVAPORATOR FAULT TREE AND DATA (Page 75)APPENDIX E-7.6E \& 7.7 EVAPORATOR FAULT TREE AND DATA (Page 123)

MEMO
Inter-Office Memorandum from T. G. Campbell, "Boiling Points of Various Evaporator Solutions", Westinghouse Savannah River Co. August 26, 1994.

Inter-Office Memorandum from T. G. Campbell, "Probability for Accumulation of TBP in Canyon Sumps", Westinghouse Savannah River Co. June 3, 1994.

Inter-Office Memorandum from Tracy Rudisill (with attachments), "RE: Mixing Studies" , Westinghouse Savannah River Co. August 30, 1994.

Inter-Office Memorandum from S. H.Marek (with 22 attachments), "8.5 Evaporator Information", Westinghouse Savannah River Co. August 4, 1994.

PAGE

13

14

都

INTER-OFFICE MEMORANDUM
Savannah River Site
26-Aug-1994 02:53pm EST
To: See Below
From: Thomas G. Campbell
(CAMPBELL-TG-O5094 AT A1 AT SASRS2)
Dept: NMPD Safety Documentation
Tel : 2-3319

Boiling Points of Various Evaporator Solutions

I have found some good information on vapor-liquid equilibrium and boiling points in DPSOP 250, "200 Areas Process Guidebook". Using this information, I have made some calculations to prove our assumption that the temperature interlock will be reached before all of the aqueous in an evaporator could be boiled away. In these calculations I assumed the temperature interlock was set at 118 C , although I'm sure we could set the interlock lower without adversely impacting operations.

Under normal operating conditions, a continuous evaporator runs with a boiling sp g of 1.25 , and makes overheads with about 6% nitric acid. For this condition, the vapor-liquid equilibrium chart in DPSOP 250 gives a sodium nitrate concentration of 25% (about 3.7 M) and 20% nitric acid (about 4.0 M), with a boiling point of 112 C , which is consistent with our experience. Concentrating this solution to a boiling point of 118 C gives a final sodium nitrate concentration of 33% and nitric acid concentration of 23%. The sp g would be about 1.33 (boiling). The volume reduction to reach this point is only about 30%.

If you assume that the evaporator bottoms have no solids (very unusual), only nitric acid, then to make 6% nitric acid overheads would require the bottoms to be about 32% nitric acid, with a boiling point of about 106 C . To reach a boiling point of 118 C , the evaporator bottoms must be concentrated to about 56% nitric acid. My calculations indicate a volume reduction in this case of about 75\%, which is probably somewhat larger than actual because of the conservative assumptions I made about the amount of nitric acid lost to the overheads.

In my opinion, expected operating conditions are closer to the first example, with the second example being more of a worse case. In both of the examples, however, the temperature interlock of 118 C would be reached and the evaporator shut down well before all of the aqueous is gone. As I mentioned earlier, the interlock probably can be lowered to at least 115 C , thus providing even more margin.

Although the above calculations were primarily done with the continous waste evaporators (9.3 E and 8.5 E) in mind, the same conclusions can be expected with the batch evaporators, especially when they are being used for acid stripping concentrated bottoms. As for 17.7 E , you can concentrate uranyl nitrate to a boiling point of 118 C also, but the U concentration ($\mathrm{wt} \%$) would have to be increased from about 30% (1.5 sp g) to about 75% (sp g of over 2.2). I find it hard to believe that the evaporator would continue to operate under these conditions. The temperature interlock on 17.7E could be lowered substantially, however, probably to about 110 C .

inter-affice memoprndum
 Sauannah River Site

03-Jun-1994 04:30pm EDT
To: See Below
From: Thomas G. Campbell (CAMPBELL-TG-05094 AT A1 AT SASRS2)
Dept: NPSR
Tel: 2-3319

Probabllity for Accumulation of TBP in Canuon Sumbs

Process soluent is expected to be received in canyon sump receipt tanks from time to time due to ouerflows and leaks from canyon tanks and piping. Procedures require that accumulated saluent be remoued from receipt tanks before amounts (about 3000 pounds of TBP) are reached that could be a concern from a "red oil" reaction standpoint. The only way an amount can be received that is large enough to be of concern is from a single sump transfer. Esperience indicates that the frequency of receiving such a large mass of organic material unespectedly into a canyon uessel is very low. Myself, Ronnye Eubanks, and Dave Chostner conservatively estimate that a receipt of soluent, containing more than 3008 pounds of IBP, can be espected in the sump receipt tanks less than once every five years. This value is considered conservative because loss of such a large volume would be detected during operations. fctions other than transfer to sump receipt would be espected in these situations. Also, in our collective experience in the canyons (more than 40 years) we can recall of no occasion when such a large volume of organic material was received into a sump recelpt tank from a leak, spill, or transfer error. Please incorporate this value (once in 5 years for receipt of large volumes of soluent in sump receipt) into the sump receipt tank fault trees for "red oil".

Distribution:

To: Lance W. Christiansen
(CHRISTIANSEN-LШ-L0489 @A1@SLSRP 1)

cC:	ONELIO M. EBRA-LIMA Ray	(EBRALIMA-0M-T5452
CC:	uiliam E. Harris	(HARRIS-WE-05596 AT AI AT SASRS2)
	Dauid F. Chostner	
OSSTNER-DF-03998 AT 41 HT SASRS2		
	Sandr	MAR

INTER-OFFICE MEMORANDUM

Savannah River Site
30-Aug-1994 02:25pm EST
TO: ONELIO M. EBRA-LIMA
(EBRALIMA-OM-T5452 AT Al AT SLSRPl)
CC: Thomas G. Carmbell
(CAMPBELL-TG-05094 @Al@SASR52)
From: Tracy 5. Rudisill
(RUDISILL-TS-T6876 AT Al AT SLSRPl
Dept: CPT/CHEMICAL \& HYDROGEN TECH
Tel : 52539

RE: Mixing Stuales

Neguib estimates the experimental work will be complete by the end of September. He anticipates data analysis and documentation will require approximately 2 months. Therefore, we should have correlation(s) for the canyon tanks by the end of November.

INTIER-OFFICE MEMORANDOM Savannah River Site

22-Jul-1994 08:15am EST

To: See Below
From: Neguib M. Hassan
(HASSAN-NM-L2267 AT Al AT SASR52)
Dept: CPT/CHEMICAL \& HYDROGEN TECH
Tel : x5-5765

RE; Geod Newe About Mixing Teate

This may be a worse case, but in the next few runs we will reduce the liquid level in small increments and establish a mixing pattern. We know thus far that just below the second impeller (approximately 12 inches of liquid in our tank or about 5.3 feet scaled canyon tank-8' x 11') no organic is detectable in the current sampling procedure.

Distribution:

To: Thomas G. Campbell
(CAMPBELI-TG-05094 AT Al AT SASR52)
CC: DON F. PADDLEFORD
(PADDLEFORD-DF-H0010 AT Al AT SLSRPI)
CC: Tracy 5. Rudisill
(RUDISILI-TS-T6876 AT Al AT SLSRPI)
CC: Lee Hyder (HYDER-ML-T3258 AT Al AT SLSRP1)
CC: James R. Schornhorst
(SCHORNHORST-JR-Y4538 AT AI AT SLSRPI)
CC: William E. Harris (HARRIS-WE-05596 @AlQSASRS2)
CC: Ray Lux (LUX-CR-T7244 AT Al AT SLSRPl)
OC: ONELIO M. EBRA-LIMA
(EBRALIMA-OM-T5452 AT AI AT SLSRPI)
CC: Thomas G. Campbell (CAMPBELL-TG-05094 @Al@SASRS2)
CC: David F. Chostner (CHOSTNER-DF-03090 @Al@SASRS2)
CC: Charlene B. Cochran
(COCHRAN-CB-06921 @Al@SASRS2)
CC: CLINT R. WOLFE
CC: Jim Knight
(WOLFE-CR-H0021 AT AI AT SLSRPI)
CC: Frank R. Graham
(KNIGHT-JR-T3559 AT Al AT SLSRPl)
CC: Neguib M. Hassan
(GRAHAM-FR-T6413 AT Al AT SLSRPl)
CC: Major C. Thompson
(HASSAN-NM-L2267 @Al@SASRS2)
(THOMPSON-MC-T3324 @Al@SASRS2)

INTER-OFFICE MEMORANDU~

Savannah River Site
22-Jul-1994 08:23am EST
To:See Below
From: Tracy 5. Rudisill
(RUDISILL-TS-T6876 AT Al AT SLSRPI
Dapt: CPT/CHEMICAL \& HYDROGEN TECH
Tel : 52539

RB: Good News Ahout Mixing Rests

When the tank is full, two agitator blades are used to mix the tank. This doubles the mixing power and is apparently enough to form a dispersion which reaches the dip tube at the bottom of the tank. In Neguib's previous work, the liquid level was just below the bottom of the top agitator.

There will also be a very low liquid level where the mixing quality would permit the detection of large amounts of organic. At this point, a single agitator would provide enough power to disperse the organic phase. Intermediate levels seem to be the problem.

Distribution:

To: Charlene B. Cochran
(COCHRAN-CB-06921 AT Al AT SASRS2)
To: Thomas G. Campbell (CAMPBELL-TG-05094 @Al@SASR52)
CC: DON F. PADDLEFORD
(PADDLEFORD-DF-HOO10 AT Al AT SLSRPI)
CC: Lee Hyder (HYDER-ML-T3258 AT Al AT SLSRPl)
CC: James R. Schornhorst
(SCHORNHORST-JR-Y4538 AT AI AT SLSRPI)
CC: William E. Harris (HARRIS-WE-05596 GAl@SASRS2)
$\begin{array}{ll}\text { CC: } & \text { Ray Lux } \\ \text { CC: } & \text { ONELIO M. EBRA-LIMA }\end{array}$
(EBRALTMA-OM-T5452 AT Al AT SLSRPI)
CC: David F. Chostner (CHOSTNER-DF-03090 @AlQSASR52)
CC: CLINT R. WOLFE (WOLFE-CR-H0021 AT Al AT SLSRPI)
CC: Jim Knight (KNIGHT-JR-T3559 AT Al AT SLSRPl)
C: Frank R. Graham (GRAHAM-FR-T6413 AT Al AT SLSRPl)
CC: Neguib M. Hassan
CC: Major C. Thompson
(HASSAN-NM-L2267 @AlQSASR52)
(THOMPSON-MC-T3324 @Al@SASRS2)

INIERR-OFFICE MEMORANDDK

Savannah River Site

22-JuI-1994 11:02am EST
To: See Below
From: Thomas G. Campbell
(CAMPBELL-TG-05094 AT AI AT SASR52
Dept: NMPD Safety Documentation
Tel : 2-3319

RE: Good News About Mixing Teats

I've got to make one more comment on this subject.
If covering the top set of agitator blades is what is important for sampling organic, then a tank certainly does not have to be "full". In canyon tanks, both sets of agitator blades are covered by the time the tank is about half full. In 8×11 and loxil tanks, there is four feet between the bottom of the lower set of blades and the bottom of the upper set of blades. The bottom set of blades is within about six inches of the bottom of the tank. Therefore both sets of blades should be covered before the tank contains five feet of solution. In bicell tanks, which are 15 feet high, there is six feet from bottom to bottom of the agitator blades. Again, the upper set of blades are covered by the time the tank is about half full.

From what Neguib said in his message, I'm not sure your test equipment is scaled correctly. He said the upper impeller is uncovered at $5^{\prime \prime} 3^{\prime \prime}$ of liquid level. In an actual canyon $8 x 11$ tank, the upper set of agitator blades would be covered by at least 3 inches of solution at that level.

Distribution:


```
INTER-OFFICE MEMORANDKMM
Savannah River Site
22-Jul-1994 11:40am EST
To: See Below
Frcm: DON F. PADDLEFORD
( PADDLEFORD-DF-HOO10 AT Al AT SLSRPl Dept: WESTINGHOUSE STAFF
Tel :45420
```


RS: Gocd News About Mixing Tests

```
I guess I meant---filled above upper stirrer blades--- instead of full. Apparently this would only be half full according to \(T\). Campbell's response. You may well be right that full could represent a bad situation too?? I don't know whether the scale tests covered this "full" depth or not.
Don
```


Distribution:

```
To: Charlene B. Cochran ( COCHRAN-CB-06921 AT AI AT SASRS2 )
CC: DON F. PADDLEFORD
( PADDLEFORD-DF-HOO10 AT Al AT SLSRPI )
CC: Tracy S. Rudisill
( RUDISILL-TS-T6876 AT Al AT SLSRPI )
CC: Lee Hyder ( HYDER-ML-T3258 AT AI AT SLSRP1 )
CC: James R. Schornhorst
( SCHORNHORST-JR-Y4538 AT Al AT SLSRPI )
CC: Williarn E. Harris (HARRIS-WE-05596 @Al@SASRS2 )
CC: Ray Lux ( LUX-CR-T7244 AT Al AT SLSRPl )
CC: ONELIO M. EBRA-LIMA
( EBRALIMA-OM-T5452 AT AI AT SLSRPI )
CC: Thomas G. Campbell (CAMPBELL-TG-05094 @Al@SASRS2 )
CC: David F. Chostner ( CHOSTNER-DF-03090 @Al@SASRS2 )
CC: Charlene B. Cochran ( COCHRAN-CB-06921 @Al@SASRS2 )
CC: CLINT R. WOLFE (WOLFE-CR-H0021 AT Al AT SLSRPI )
C: Jim Knight ( ~NIGHT-JR-T3559 AT Al AT SLSRPl)
CC: Frank R. Graham (GRAHAM-FR-T6413 AT Al AT SLSRPl )
CC: Neguib M. Hassan (HASSAN-NM-L2267 @Al@SASR52)
CC: Major C. Thompson ( THCMPSON-MC-T3324 @Al@SASRS2 )
```


INTER-OFFICE MEMORANDCM

Savannah River Site
22-Jul-1994 12:30pm EST

To: See Below

From: Neguib M. Hassan
(HASSAN-NM-L2267 AT Al AT SASR52
Dept: CPT/CHEMICAL \& HYDROGEN TECH
Tel : x5-5765

RE: Gocd News About Mixing Teats

The second impeller in our small tank is currently located 14 inches from the bottom of the tank and it can be moved up/down. In the prelimenary test runs, we collected data at 6,8 and 12 inches with one set of impeller and found that no organic is detectable at the 12 inch level even when the initial concentration of organic was 8% volume. In the current runs, we raised the liquid level above the second impeller to see the effect. As I mentioned we can locate the second impeller at any point in the shaft and repeat an experiment. Thanks for the information

Distribution:

To: Thomas G. Campbell
(CAMPBELL-TG-05094 AT Al AT SASR52)
CC: Tracy S. Rudisill
(RUDISILL-TS-T6876 AT Al AT SLSRPl)
CC: Charlene B. Cochran
(COCHRAN-CB-06921 AT Al AT SASRS2)
CC: DON F. PADDLEFORD
(PADDLEFORD-DF-HOO10 AT AI AT SLSRPI)
CC: Lee Hyder (HYDER-ML-T3258 AT Al AT SLSRPl)
CC: James R. Schornhorst
(SCHORNHORST-JR-Y4538 AT AI AT SLSRPI)
CC: William E. Harris (HARRIS-WE-05596 @Al@SASRS2)
CC: Ray Lux (LUX-CR-T7244 AT AI AT SLSRPl)
CC: ONELIO M. EBRA-LIMA
(EBRALIMA-OM-T5452 AT Al AT SLSRPI)
CC: David F Chostner (CHOSTNER-DF-03090 @Al@SASR52)
CC: CLINT R. WOLFE
(WOLFE-CR-HOO21 AT AI AT SLSRPI)
CC: Jim Knight
(KNIGHT-JR-T3559 AT Al AT SLSRPI)
CC: Frank R. Graham
(GRAHAM-FR-T6413 AT Al AT SLSRPI)
CC: Neguib M. Hassan
(HASSAN-NM-L2267 @Al@SASRS2)
CC: Major C. Thompson
(THOMPSON-MC-T3324 @Al@SASR52)

INTER-OFFICE MEMORANDTM

Savannah River Site
30-Aug-1994 03:35pm EST
To: See Below
From: Thomas G. Campbell
(CAMPBELI-TG-05094 AT AI AT SASR52)
Dept: NMPD Safety Documentation
Te1 : 2-3319

See Attached

It looks like it will be a long time before we have anything conclusive on O/A sampling reliability from SRTC. As Dave has suggested, an in-canyon test is still probably our best bet to get useful information anytime soon.

Diatribution:

To: Andrew P. Mock	(MOCK-AP-L0498 AT Al AT SASR52)
To: Charlene B. Cochran	
(COCHRAN-CB-06921 AT Al AT SASRS2)	
To: Renee H. Spires	
To: David F. Chostner	
(CHOSTNER-DF-03090 AT Al AT SASR52)	
To: RPIRES-RH-06630 AT Al AT SASRS2)	
To: Eric V. Browne	
To: J. Stuart Evans	(LUX-CR-T7244 QAlQSLSRPl)

INTEER-OFFICE MEMORANDOB

Savannah River Site
04-Aug-199408:26am FDT
To: Eric V. Browne
(BROWNE-EV-Y8089 eAlQSLSRPl)
CC: Charlene B. Cochran (COCHRAN-CB-06921 AT Al AT SASRS2)
CC: Ronnye A. L. Eubanks
(EUBANKS-RA-06258 AT Al AT SASRS2)
CC: David F. Chostner
(CHOSTNER-DF-03090 AT A1 AT SASRS2)
From: Sandra H. Marek (MAREK-SH-07923 AT AI AT SASRS2)
Dept: NMPD/SEP TECH.
Tel : 9524199

8 5 Eyaporator Information

Attached is the information you requented for 8.5 E . Bryan, one of our STE's, reviewed some blueprints to perform the calculations and verified/corrected the numbers I gave you off the top of my head on Tuesday. I'll call you later today to discuss these numbers and some of your other assumptions.

INTER-OFFICE MEMORANDUM
Savannah River Site
03-Aug-1994 05:28am EDT
To: Sandra H. Marek
(MAREK-SH-07923 AT AL AT SASRS2)
From: Bryan K. Altringer
(ALTRINGER-BK-Y5558 AT Al AT SASRS2
Dept: SEP TECH
Tel : 952-2153
Info you reouested (IU)
OK. ..
By now you should have found the four prints I left you. Hope they are helpful. Sorry about the poor quality of the one showing the trays.

1. The overflow wier is at $96.7^{\prime \prime}$, or $15,360 \mathrm{lb}$ water
2. Typical steam rates for 8.5 E are $13,500 \mathrm{lb} / \mathrm{hr}$ to $16,500 \mathrm{lb} / \mathrm{hr}$
(or $15,000+/-1500 \mathrm{lb} / \mathrm{hr}$). It's unusual to see it run outside this
range. I normally assume $15,000 \mathrm{lb} / \mathrm{hr}$ as the normal rate.
3. Time to lose 1 ft level....this is a fun one.

Assumptions: $15,000 \mathrm{lb} / \mathrm{hr}$ steam 90% efficiency (0.9 lb evap per lb steam) initial liquid level at wier height, $96.7^{\prime \prime} \mathrm{sp} \mathrm{gr}$ at 1.0 (this made it easier for me)

Calculations: \quad Feed rate $=(15,000 \mathrm{lb} / \mathrm{hr})(0.9)=13,500 \mathrm{lb} / \mathrm{hr}$
Final liquid level $=96.7^{\prime \prime}-12^{\prime \prime}=84.7^{\prime \prime}$
Final pounds $=\sim 11,634 \mathrm{lb}$ (per calib chart)
Pounds depletion $=15,360 \mathrm{lb}-11,634 \mathrm{lb}$
$=3726 \mathrm{lb}$
Time $=(3726 \mathrm{lb}) /(13,500 \mathrm{lb} / \mathrm{hr})=0.26 \mathrm{hr}$
$=16.56$ minutes (How 'bout those sig figs!)
NOTE: You know as well as I do how the lb/in varies so much in a continuous evaporator. Ultimately, this calculation is only one of many possibilities for the evaporator...
4. The typical length of a run:

Assumptions: Full 8.7 at $146,797 \mathrm{lb}$ water
Heel of $36,000 \mathrm{lb}$ water
Typical run rate $=13,500 \mathrm{lb} / \mathrm{hr}$ feed
Time $=\quad(146,797 \mathrm{lb}-36,000 \mathrm{lb}) /(13,500 \mathrm{lb} / \mathrm{hr})$
8.2 hr

If you count startup and shutdown heating and cooling times (while the evaporator above 80 deqrees C), Ronnve mav have been able to stretch it to 16 hours. I do not believe we could have gotten 16 hours on feed.
5. How far down 'till we uncover the tube bunde? A quickie roundabout calculation based on the prints lead~ me to believe that we could go down as far as 1.5 ft below wier level before uncovering tubes. Unfortunately, this number sounds funny to me. Check it out.
6. Distance between the bottom of the de-entrainment column and the bottoms of the reboiler looks to be about 4.5 feet based on the prints. You can check it out yourself.

I didn't have time to look into any of the instrumentation stuff. I saw the alarm light you saw for the "low hat flow, " but that's all I saw.

Have fun...

Calculation No. S-CLC-F-00146
Sheet No. 27 of 179
Rev.A

APPENDIX B - DLAGRAMS

- Process Flow Diagram (Page 25)
- Continuous Evaporator Diagram (Page 26)
- Batch Evaporator Diagram (Page 27)

Schematic of Contlnuous Evaporator

Standard Coll Batch Evaporator and Column

Calculation No. S-CLC-F-00146
Sheet No. 31 of 179
Rev.A

APPENDIX C - 8.5E EVAPORATOR FAULT TREE AND DATA

The following abbreviations appear on the fault tree print out and in the basic event file for the fault tree:
$\mathbf{F R}=$ Failure Rate
$\mathrm{a}:=$ assumption
COG= cognizant engineer estimate/information
TRUNC= Truncation limit of cutset evaluator
The Beta Factor method used to estimate common cause alarm failure is explained in Reference 15.
NOTE: Events in this tree with a probability of " $1 \mathrm{E}-32$ " are incredible. They do not contribute to the top event frequency and were included only to show that they had been considered. The number " $1 \mathrm{E}-32$ " was used because it is the smallest number CAFTA is capable of handling.

Fault Tree (Page 29)
Gate/Event Cross Reference (Page 57)
Cutset Report (Page 59)
Basic Event Data (Page 69)
Type Code Data (Page 73)

Cutsets for 8.5E Evaporator

$\begin{aligned} & \text { Set } \\ & \text { No. } \end{aligned}$	Event Name	Description	C	B.E. Input	Calc. Result	Cutset Freq. (/yr)
1.	GI_TOP					$8.52 \mathrm{E}-11$
	ALRHL906NRIG\#	High level alarm in tank 906 tank fails	5	- 6.6 M	6.21E-02	$1.27 \mathrm{E}-11$
	ALRHL906NRIG\#		5	$3.00 \mathrm{E}-05 \mathrm{H}$		
	ALRO11.7NRIG\#	Failure of organic level alarm in decanter 11.7	5	$3.00 \mathrm{E}-05 \mathrm{H}$	6.21E-02	
	FREBATCH-2WG+	Frequency of a batch		48Y	$4.80 \mathrm{E}+01 \mathrm{Y}$	
	OPRGBLOCDENA\#	Operator fails to respond to 8.5E temp., level, sp g alarms (close block valve)	1	$\left\|\begin{array}{rr} 1 \mathrm{~N} \\ 1.0 \mathrm{E}-2 & \mathrm{~N} \\ 1 \end{array}\right\|$	$1.00 \mathrm{E}-02 \mathrm{~N}$	
	OPRGCETEIRNA\#	Evaporator Temperature Sensor is Out of Calibration	1	$\begin{array}{lr} & 1 \mathrm{~N} \\ 1.0 \mathrm{E}-2 & \mathrm{~N} \end{array}$	$1.00 \mathrm{E}-02 \mathrm{~N}$	
	OPRLV906ACNA\#	Operator fills tank 906 (Level Procedurally Controlled)	1	$\left\|\begin{array}{lr} & 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 & \mathrm{~N} \end{array}\right\|$	5.00E-03N	
	TBPTK---PREA\#	Process upset causes excess organic in feed	3	$\begin{aligned} & 12 \mathrm{H} \\ & 0.1 \mathrm{Y} \end{aligned}$	1.37E-04	
2.	ALRHL906NRIG\#	High level alarm in tank 906 tank fails	5	6M	6.21E-02	$9.73 \mathrm{E}-12$
	ALRO11.7NRIG\#	Failure of organic level alarm in decanter 11.7	5	$3.00 \mathrm{E}-05 \mathrm{H}$	6.21E-02	
	FREBATCH-2WG+	Frequency of a batch		48Y	$4.80 \mathrm{E}+01 \mathrm{Y}$	
	OPRGCETEIRNA\#	Evaporator Temperature Sensor is Out of Calibration	1	1.0E-2 $\begin{array}{rr}1 \mathrm{~N} \\ \mathrm{~N}\end{array}$	$1.00 \mathrm{E}-02 \mathrm{~N}$	
	OPRLV906ACNA\#	Operator fills tank 906 (Level Procedurally Controlled)	1	$\begin{array}{lr} & 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 & \mathrm{~N} \end{array}$	5.00E-03N	
	OPRPLUG-VRHA\#	Failure to notice that sp g instrumentation pegs low	1	[1 N	$5.00 \mathrm{E}-02 \mathrm{~N}$	
	SPGCEVAPPLGG\#	Plugging of instrumentation causes a low spg reading	3	2.0D	1.54E-01	
	TBPTK--- PREA\#	Process upset causes excess organic in feed	3	12 H 0.1 Y	1.37E-04	
3.	ALR-TLG-COMG\#	Common cause evaporator alarm failure (sp g,	5	3. $00 \mathrm{EM}-06 \mathrm{H}$	$6.45 \mathrm{E}-03$	$8.18 \mathrm{E}-12$
	ALR-TLG-COMG	level, temperature)	5	$3.00 \mathrm{E}-06 \mathrm{H}$	6.21E-02	
	ALRHL906NRIG\#	High level alarm in tank 906 tank fails	5	$3.00 \mathrm{E}-05 \mathrm{H}$	6.21E-02	
	ALRO11.7NRIG\#	Failure of organic level alarm in decanter 11.7	5	$\begin{array}{r} 6 \mathrm{M} \\ 3.00 \mathrm{E}-05 \mathrm{H} \end{array}$	6.21E-02	
	FREBATCH-2WG+	Frequency of a batch		$48 Y$	$4.80 \mathrm{E}+01 \mathrm{Y}$	
	OPRGCETEIRNA\#	Evaporator Temperature Sensor is Out of Calibration	1	$\left\lvert\, \begin{array}{lr} & 1 \mathrm{~N} \\ 1.0 \mathrm{E}-2 & \mathrm{~N} \end{array}\right.$	$1.00 \mathrm{E}-02 \mathrm{~N}$	
	OPRLV906ACNA\#	Operator fills tank 906 (Level Procedurally Controlled)	1	$\left\|\begin{array}{lr} & 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 & \mathrm{~N} \end{array}\right\|$	5.00E-03N	
	TBPTK---PREA\#	Process upset causes excess organic in feed	3	$\begin{aligned} & 12 \mathrm{H} \\ & 0.1 \mathrm{Y} \end{aligned}$	1.37E-04	
4.	ALRHL906NRIG\#	High level alarm in tank 906 tank fails	5	$\begin{array}{r} 6 \mathrm{M} \\ 3.00 \mathrm{E}-05 \mathrm{H} \end{array}$	6.21E-02	$6.34 \mathrm{E}-16$

Cutsets for 8.5E Evaporator (CONT.)

Cutsets for 8.5E Evaporator (CONT.)

$\begin{aligned} & \text { Set } \\ & \text { No. } \end{aligned}$	Event Name	Description	C	B.E. Input	Calc. Result	Cutset Freq. (/Yr)
8.	ALRHL906NRIG\#	High level alarm in tank 906 tank fails	5	$3.00 \mathrm{E}-05 \mathrm{H}$	6.21E-02	
	ALRO10.8NRIG\#	Failure of organic level alarm in decanter 10.8	5	3.00E-05 ${ }^{6 \mathrm{M}}$	6.21E-02	
		Frequency of a batch		48Y	4.80E+01Y	
	OPRGCETEIRNA\#	Evaporator Temperature Sensor is Out of Calibration	1	$\left\lvert\, \begin{array}{rr} & 1 \mathrm{~N} \\ 1.0 \mathrm{E}-2 & \mathrm{~N} \end{array}\right.$	$1.00 \mathrm{E}-02 \mathrm{~N}$	
	OPRLV906ACNA\#	Operator fills tank 906 (Level Procedurally Controlled)	1	$\left\lvert\, \begin{array}{lr} & 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 & \mathrm{~N} \end{array}\right.$	5.00E-03N	
	PER-COLD035G\#	Cold streams sent to 8.7	1	$\left\|\begin{array}{r} 1 \mathrm{~N} \\ 3.50 \mathrm{E}-01 \mathrm{~N} \end{array}\right\|$	$3.50 \mathrm{E}-01 \mathrm{~N}$	
	TBPTK2BPPREA\#	Process upset causes excess TBP in canyon product	3	$\begin{gathered} 12 \mathrm{H} \\ 0.1 \mathrm{Y} \end{gathered}$	1.37E-04	
	ALRHL906NRIG\#	High level alarm in tank 906 tank fails	5	$\begin{array}{r} 6 \mathrm{M} \\ 3.00 \mathrm{E}-05 \mathrm{H} \end{array}$	6.21E-02	$2.22 \mathrm{E}-12$
	ALRO10.8NRIG\#	Failure of organic level alarm in decanter 10.8	5	$\begin{array}{r} 6 \mathrm{M} \\ 3.00 \mathrm{E}-05 \mathrm{H} \end{array}$	$6.21 \mathrm{E}-02$	
	FREBATCH-2WG+	Frequency of a batch		48 Y	$4.80 \mathrm{E}+01 \mathrm{Y}$	
	OPRGCETEIRNA\#	Evaporator Temperature Sensor is Out of Calibration	1	1.0E-21 N	$1.00 \mathrm{E}-02 \mathrm{~N}$	
	OPRGCSPGMCNA\#	Calibration error - sp g instrumentation gives false reading	1	5.0E-31 N	$5.00 \mathrm{E}-03 \mathrm{~N}$ $5.00 \mathrm{E}-03 \mathrm{~N}$	
	OPRLV906ACNA\#	Operator fills tank 906 (Level Procedurally Controlled)	1	5.0E-3 N	$5.00 \mathrm{E}-03 \mathrm{~N}$	
	PER-COLDO35G\#	Cold streams sent to 8.7	1	$3.50 \mathrm{E}-01 \mathrm{~N}$	$3.50 \mathrm{E}-01 \mathrm{~N}$	
	TBPTK2BPPREA\#	Process upset causes excess TBP in canyon product	3	$\begin{array}{r} 12 \mathrm{H} \\ 0.1 \mathrm{Y} \end{array}$	$1.37 \mathrm{E}-04$	
9.	ALRO11.7NRIG\#	Failure of organic level alarm in decanter 11.7	5	$3.00 \mathrm{E}-05 \mathrm{H}$	$6.21 \mathrm{E}-02$	$2.04 \mathrm{E}-12$
	FREBATCH-2WG+	Frequency of a batch	1	48 Y 1 N	4.80E+01Y $1.00 \mathrm{E}-02 \mathrm{~N}$	
	OPRGBLOCDENA\# OPRGCETEIRNA\#	Operator fails to respond to 8.5E temp., level, sp g alarms (close block valve) Evaporator Temperature Sensor is Out of Calibration	1	1.0E-2 r N ${ }^{1}$	$1.00 \mathrm{E}-02 \mathrm{~N}$	
	OPRLV906ACNA\#	Operator fills tank 906 (Level Procedurally Controlled)		5.0E-3 $\begin{array}{rr}1 \mathrm{~N} \\ \mathrm{~N}\end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	
	OPRTK906CSNA\#	Operator fails to respond to low level alarm in tank 906	1	1.0E-2 rr	$1.00 \mathrm{E}-02 \mathrm{~N}$	
	TBPTK---PREA\#	Process upset causes excess organic in feed	3	$\begin{array}{r} 12 \mathrm{H} \\ 0.1 \mathrm{Y} \end{array}$	1.37E-04	
10.	. ALRHL906NRIG\#	High level alarm in tank 906 tank fails	5	3.00E-05 ${ }^{6 \mathrm{M}}$	$6.21 \mathrm{E}-02$	$2.04 \mathrm{E}-18$
	EREBATCH-2WG+			48Y	$4.80 \mathrm{E}+01 \mathrm{Y}$	

Cutsets for 8.5E Evaporator (CONT.)

Set No.	Event Name	Description	c	$\begin{aligned} & \text { B.E. } \\ & \text { Input } \end{aligned}$	Calc. Result	Cutset Freq. (/yr)
30.	OPR906LEMCNA\# OPRCELE-MCNA\# OPRGBLOCDENA\# OPRGCETEIRNA\# OPRPUMPAVRNA\# PER8.5OP013\# TBPTK---PREA\# ALR-TLG-COMG\# ALRHL906NRIG\# FREBATCH-2WG+ OPRG10.8CSNA\# OPRGCETEIRNA\# OPRLV906ACNA\# PER-COLD035G\# TBPTK2BPPREA\#	Calibration Error - Level instrument is calibrated to give a false reading Calibration Error - Level Instrument is calibrated to give a high signal Operator fails to respond to 8.5 E temp., level, sp g alarms (close block valve) Evaporator Temperature Sensor is Out of Calibration Operator fails to correct adjustment error during 2nd adjustment Continuous Evaporator is in Operation Process upset causes excess organic in feed Common cause evaporator alarm failure (sp g, level, temperature) High level alarm in tank 906 tank fails Frequency of a batch Operator fails to shut down process (compelling signal) Evaporator Temperature Sensor is Out of Calibration Operator fills tank 906 (Level Procedurally Controlled) Cold streams sent to 8.7 Process upset causes excess TBP in canyon product	1 1 1 1 1 1 3 5 5 5 1 1 1 1 3		$\begin{gathered} 5.00 \mathrm{E}-03 \mathrm{~N} \\ 5.00 \mathrm{E}-03 \mathrm{~N} \\ 1.00 \mathrm{E}-02 \mathrm{~N} \\ 1.00 \mathrm{E}-02 \mathrm{~N} \\ 1.00 \mathrm{E}-02 \mathrm{~N} \\ 1.30 \mathrm{E}-01 \mathrm{~N} \\ 1.37 \mathrm{E}-04 \\ 6.45 \mathrm{E}-03 \\ 6.21 \mathrm{E}-02 \\ 4.80 \mathrm{E}+01 \mathrm{Y} \\ 1.00 \mathrm{E}-02 \mathrm{~N} \\ 1.00 \mathrm{E}-02 \mathrm{~N} \\ 5.00 \mathrm{E}-03 \mathrm{~N} \\ 3.50 \mathrm{E}-01 \mathrm{~N} \\ 1.37 \mathrm{E}-04 \end{gathered}$	4.61E-13

Cutsets for 8.5E Evaporator (CONT.)
Basic Event Data for 8.5E Evaporator

Basic Event Data for 8.5E Evaporator (CONT.)

Basic Event Data for 8.5E Evaporator (CONT.)

Basic Event Data for 8.5E Evaporator (CONT.)

Event	c	Input	Calc.	Description	Source
PSTSTEAMFAIG\#	3	- 4 D	$9.60 \mathrm{E}-05$	Steam pressure switch fails	Assume would be discovered by next
PSTSTEAMFAIG+		$1.00 \mathrm{E}-06 \mathrm{H}$	$9.60 \mathrm{E}-05$		cycle: FR $1 \mathrm{E}-6 / \mathrm{hr}$ Assume would be discovered by next
		$1.00 \mathrm{E}-06 \mathrm{H}$	$9.60 \mathrm{e}-05$	steam pressure switc	Assume would be discovered by next cycle: FR 1E-6/hr
RLPPUMP-NREG\#			$1.00 \mathrm{E}-03 \mathrm{~N}$	Pump switch fails to open	Per Demand, Generic Data
SAM_17.5FAIA\#			$7.20 \mathrm{E}-04$	Sampler malfunctions such that	6 Days to restore: FR $1 \mathrm{E}-5 / \mathrm{hr}$
SPGCEVAPPLGG\#	3		$1.54 \mathrm{E}-0$	sample can not be puled (tank 17 Plugging of instrumentation causes	
TBP17.5-I		.0D		low spg reading	
-				are received from 17.5 (30,000 lbs total)	from 17.5 during a batch
TBPDENS1PREA\#		1.0E-32N	1.00E-32	Process upsets causes dilute 2AW or high density in 11.7 s	COG: incredible (would involve phase inversion, can't get 10,000 lbs
TBPDENS2 PREA\#		.0E-32H	$8.76 \mathrm{E}-29 \mathrm{Y}$	Process upsets causes dilute 2 W or high density in 11.7S	organic) COG: incredible (would involve phase inversion, can't get 10,000 lbs organic
TBPTK---PREA\#	3	12 H 0.1 Y	1.37E-04	Process upset causes excess organic in feed	Estimated as $1 / 10 y e a r s$ - Not detected for 12 hours
TBPTK2BPPREA\#	3	12 H 0.1 Y	1.37E-04	Process upset causes excess TBP in	Estimated as 1/10years - Not detected
TSTCETE-FAIG\#	3	0.17 4 D	$9.60 \mathrm{E}-05$	canyon product Continous Evaporator Temperature	for 12 hours ${ }^{\text {Assumes }}$ Discovered by next cycle: FR
TUBCEAIRLEGG\#	3	$\left\|\begin{array}{rr} 1.00 \mathrm{E}-06 & \mathrm{H} \\ 3.00 \mathrm{E}-07 & 40 \mathrm{H} \end{array}\right\|$	2.88E-04	Sensor Has Failed Air leak cause false sp g reading	$1 \mathrm{E}-6 / \mathrm{hr}$ 10 ft Long x 4 day to restore, detected at next feed tank filling

Rev.A
Data Type Codes for 8.5E Evaporator

Type Code	Rate D	Description	Source	EF	D
AGI BLA	$5.0 \mathrm{E}-7 \mathrm{H}$	Agitor blades fall off	a: fails at $1 / 10$ frequency of agitator failure		
AGI FAC	5.0E-6H	Agitator failure	WSRC-TR-93-262		
ALR COM	$3.00 \mathrm{E}-06 \mathrm{H}$	Alarm/Annunciator, Fails to alarm (Instr. \& Control)	WSRC-TR-93-262, ALR-NR-I		
ALR NRI	$3.00 \mathrm{E}-05 \mathrm{H}$	Alarm/Annunciator, Fails to alarm (Instr. \& Control)	WSRC-TR-93-262, ALR-NR-I		
ANA FAI	$5.00 \mathrm{E}-06 \mathrm{H}$	Analyzer, Failure (Instr. \& Control)	WSRC-TR-93-262, ANA-FA-I WSRC-TR-93-262, CAV-FO-W	10	L
CAV FOW	$3.00 \mathrm{E}-06 \mathrm{H}$	Valve (Control), Air-Operated, Fails open (Water)			L
DPS FAI	$3.00 \mathrm{E}-06 \mathrm{H}$	Sensor/Transmit:, Transdu./Proc. Sw., Differ. Pres., Failure (Instr. \& Control)	WSRC-TR-93-262, DPS-FA-I		
FRE 2YR	0.5 Y	Frequency	a: every 2 years (COG) operations personnel		
FRE ADJ	4H	Speed of Feed Pump Adjusted 4 Times per hourt			
JPR REC	$1.00 \mathrm{E}-08 \mathrm{H}$ 2.0 Y	Jumper, Rupture (external) (Chemical) Level Instrument Calibration Frequency	WSRC-TR-93-262, JPR-RE-C Assumed Value		\pm
LST CAL	5.00E-07 ${ }^{2.0 \mathrm{Y}}$	Levsor/Transmitter/, Transducer/Proc.	WSRC-TR-93-262, LST-FA-I		L
LST FAI	$5.00 \mathrm{E}-07 \mathrm{H}$	Switch, Level, Failure (Instr. \& Control)		10	L
MDP FRC	$1.00 \mathrm{E}-04 \mathrm{H}$	Pump, Motor-Driven, Fails to run (Chemical)	WSRC-TR-93-262, MDP-FR-C WSRC-TR-93-262, MOV-OO-C	10	L
MOV OOC	$3.00 \mathrm{E}-03 \mathrm{~N}$	Valve (Standby or Safety), Motor-Operated, Fails to open/close (Chemical)	WSRC-TR-93-262, MOV-OO-C WSRC-TR-93-581, Table 4, Item 1, High		L
OPR ACH	$5.0 \mathrm{E}-2 \mathrm{~N}$	Failure of Administrative Control (High)	WSRC-TR-93-581, Table 4، WSRC-TR-93-581, Table 4, Item 1, Nominal	10	L
OPR ACN	5.0E-3 N	Failure of Administrative control (Nominal)	WSRC-TR-93-581, Table 4, Item 2, Nominal		L
OPR CSN	$1.0 \mathrm{E}-2 \mathrm{~N}$	Failure to respond to compelling signal (Nominal)	WSRRC-TR-93-581, Ta3-581, Table 4, Item 8, Low		
OPR CVL	$\left\|\begin{array}{ll} 1 & 1.0 \mathrm{E}-2 \\ 1 & \mathrm{~N} \\ \mathrm{OE}-2 \end{array}\right\|$	Checker verification error Diagnosis error (Nominal)	WSRC-TR-93-581, Table 4, Item 30, Nominal		L
OPR OPR ILN	$\left\|\begin{array}{ll} 1.0 \mathrm{E}-2 & \mathrm{~N} \\ 5.0 \mathrm{E}-3 & \mathrm{~N} \end{array}\right\|$	Diagnosis error Incorrect labeling or tagging (Nominal)	WSRC-TR-93-581, Table 4, Item 10, Nominal	0	L
OPR ILN	$\begin{array}{ll}5.0 \mathrm{E}-3 & \mathrm{~N} \\ 1.0 \mathrm{E}-2 & \mathrm{~N}\end{array}$	Incorrect reading or recording of data (Nominal)	WSRC-TR-93-581, Table 4, Item 11, Nominal		L
OPR LAN	$3.0 \mathrm{E}-4 \mathrm{~N}$	Laboratory analysis error (Nominal)	WSRC-TR-93-581, Table 4, Item 19, Nominal	10	L
OPR MCN	$5.0 \mathrm{E}-3 \mathrm{~N}$	Miscalibration (Nominal)			
OPR VRH	$1.0 \mathrm{E}-2.05 \mathrm{~N}$		WSRC-TR-93-581, Table 4, Item 3, Nominal		
OPR VRN	$1.0 \mathrm{E}-2 \mathrm{~N}$	Failure to verify within control room (Nominal)			
PER . 20	$2.00 \mathrm{E}-03 \mathrm{~N}$	0.2\% chance			
PER 002	$2.00 \mathrm{E}-02 \mathrm{~N}$	2\% chance			
PER 010	$1.00 \mathrm{E}-01 \mathrm{~N}$	10\% Chance			
PER 013	$1.30 \mathrm{E}-01 \mathrm{~N}$	13% Chance			
PER 020	$\begin{aligned} & 2.00 \mathrm{E}-01 \mathrm{~N} \\ & 3 . \\ & 50 \mathrm{E}-01 \mathrm{~N} \end{aligned}$				
$\begin{array}{ll}\text { PER } & 035 \\ \text { PER } & \text { INC }\end{array}$	$\begin{aligned} & 3.50 \mathrm{E}-01 \mathrm{~N} \\ & 1.00 \mathrm{E}-32 \mathrm{~N} \end{aligned}$	35\% chance Incredible Event			
PER PST FAI	$1.00 \mathrm{E}-32 \mathrm{~N}$ $1.00 \mathrm{E}-06 \mathrm{H}$	Sensor/Transmitter/, Transducer/Proc.	WSRC-TR-93-262, PST-FA-I		
RLP NRE	$1.0 \mathrm{E}-3 \mathrm{~N}$	Sw., Press., Failure (Instr. \& Control) Relay fails to open	WSRC-TR-93-262m RLP-NRE		

Data Type Codes for 8.5E Evaporator (CONT.)

Type Code	Rate	Description	Source	EF	D
SAM FAI	$1.00 \mathrm{E}-05 \mathrm{H}$	Sampler, Failure (Instr. \& Control)	WSRC-TR-93-262, SAM-FA-I	10	L
SPG PLG	2.0 D	TUBE PLUGS	Estimate by facility sep. tech (Chostner)	10	L
TBP PRE	0.1 Y	Process upset causes excess organic in	- Plugs frequently Never Seen, Estimated as Once in Ten		
TST FAI	$1.00 \mathrm{E}-06 \mathrm{H}$	Sensor/Transmitter/, Transducer/Proc.	Years WSRC-TR-93-262, TST-FA-I	3	L
TUB LEG	$3.00 \mathrm{E}-07 \mathrm{H}$	Switch, Temp., Failure (Instr. \& Control) Tube, Leakage (external) (per ft.) (Compressed Gas)	WSRC-TR-93-262, TUB-LE-G	10	L

APPENDIX D - 9.3E EVAPORATOR FAULT TREE AND DATA

The following abbreviations appear on the fault tree print out and in the basic event file for the fault tree:
FR=Failure Rate
$\mathrm{a}:=$ assumption
COG= cognizant engineer estimate/information
TRUNC = Truncation limit of cutset evaluator
The Beta Factor method used to estimate common cause alarm failure is explained in Reference 15.
NOTE: Events in this tree with a probability of "1E-32" are incredible. They do not contribute to the top event frequency and were included only to show that they had been considered. The number " $1 \mathrm{E}-32$ " was used because it is the smallest number CAFTA is capable of handling.

Fault Tree (Page 76)
Gate/Event Cross Reference (Page 105)
Cutset Report (Page 107)
Basic Event Data (Page 117)
Type Code Data (Page 121)

Runaway TBP Reaction in 9.3E

Rev.A

Cutsets for 9.3E Evaporator

Cutsets for 9.3E Evaporator (CONT.)

Set No.	Event Name	Description	c	B.E. Input	Calc. Result	Cutset Freq. (/yr)
25.	OPRQELE-MCNA\# OPRQPMPAVRNA\# PER9.3OP013\# PERTR8.3100Q\# TBP1ABNKPREA\#	```Calibration Error - Level Instrument is calibrated to give a high signal operator fails to correct adjustment error during 2nd adjustment continuous evaporator 9.3E is in operation Excess TBP is transferred to evaporator 9.3E from 8.3 excess TBP to 8.3 from 1A bank```	1 1 1 1 3	$\left.\begin{array}{\|r} \hline 1 \mathrm{~N} \\ \hline 5.0 \mathrm{E}-3 \\ \mathrm{~N} \\ 1.00 \mathrm{E}-02 \mathrm{~N} \\ 1 \mathrm{~N} \\ 1.30 \mathrm{E}-01 \mathrm{~N} \\ 1 \mathrm{~N} \\ 1.00 \mathrm{E}+00 \mathrm{~N} \\ 12 \mathrm{H} \\ 0.1 \mathrm{Y} \end{array} \right\rvert\,$	$5.00 \mathrm{E}-03 \mathrm{~N}$ $1.00 \mathrm{E}-02 \mathrm{~N}$ $1.30 \mathrm{E}-01 \mathrm{~N}$ $1.00 \mathrm{E}+00 \mathrm{~N}$ $1.37 \mathrm{E}-04$	
	ALRHL904NRIQ\#	high level alarm in tank 904 fails		$\left\|\begin{array}{r} 6 \mathrm{M} \\ 3.00 \mathrm{E}-05 \mathrm{H} \end{array}\right\|$	6.21E-02	5.88E-12
	$\begin{aligned} & \text { DPSTKK9.3FAIQ\# } \\ & \text { FREBATCH-2WQ+ } \end{aligned}$	Spg instrumentation gives a false reading Frequency of a batch	3	$\left\|\begin{array}{rr} 2.00 \mathrm{E}-00 & \mathrm{H} \\ 3.00 \mathrm{E}-06 & \mathrm{H} \\ 48 \mathrm{Y} \end{array}\right\|$	$2.88 \mathrm{E}-04$ $4.80 \mathrm{E}+01 \mathrm{Y}$	
	OPRQCETEIRNA\#	Evaporator Temperature Sensor is Out of Calibration		$\left\|\begin{array}{r} 401 \\ 1.0 \mathrm{~N} \\ 1.2 \\ \mathrm{~N} \end{array}\right\|$	1.00E-02N	
	OPRTK904ACNA\#	Operator fills tank 904 (level procedurally controlled)		$\left\|\begin{array}{rr} 1.0 E-2 & 1 N \\ 5.0 E-3 & N \end{array}\right\|$	5.00E-03N	
	PERTR8.3100Q\#	Excess TBP is transferred to evaporator 9.3E from 8.3		$1.00 \mathrm{E}+00 \mathrm{~N}$	$1.00 \mathrm{E}+00 \mathrm{~N}$	
	TBP15.7MPREA\#	Process upset in 1D bank 15.7 M	3	12 H 0.1 Y	1.37E-04	
26.	ALRHL904NRIQ\#	high level alarm in tank 904 fails		$\begin{array}{r} 6 \mathrm{M} \\ 3.00 \mathrm{E}-05 \mathrm{H} \end{array}$	6.21E-02	5.88E-12
	FREBATCH-2WQ+ OPRQCETEIRNA\#	Frequency of a batch Evaporator Temperature Sensor is Out of Calibration		48 Y 1 N	$4.80 \mathrm{E}+01 \mathrm{Y}$ $1.00 \mathrm{E}-02 \mathrm{~N}$	
	OPRQCETEIRNA\#	Evaporator Temperature Sensor is Out of Calibration		1.0E-2 ${ }^{1} \mathrm{~N}$	1.00E-02N	
	OPRTK904ACNA\#	Operator fills tank 904 (level procedurally controlled)		$\left\lvert\, \begin{array}{rr} & 1 \mathrm{~N} \\ 5.0 \mathrm{~N}-3 & \mathrm{~N} \end{array}\right.$	5.00E-03N	
	PERTR8.3100@\#	Excess TBP is transferred to evaporator 9.3E from 8.3	1	$1.00 \mathrm{E}+00 \mathrm{~N}$	$1.00 \mathrm{E}+00 \mathrm{~N}$	
	TBP15.7MPREA\#	Process upset in 1D bank	3	1.00E+00N	1.37E-04	\%
	TUBCEAIRLEGQ\#	Air leak causes a false SpG reading		$\begin{array}{r} 0.1 \mathrm{Y} \\ 40 \mathrm{D} \\ 3.00 \mathrm{E}-07 \mathrm{H} \end{array}$	2.88E-04	
27.	CAVCESTMFOWQ+	Pneumatic steam control valve fails open		$\left\lvert\, \begin{array}{r} 2 \mathrm{H} \\ 3.00 \mathrm{E}-06 \mathrm{H} \end{array}\right.$	6.00E-06	$5.85 \mathrm{E}-1$.
	OPR147LEMÇNA\#	Calibration Error - Level instrument is calibrated to give a false reading-14.7		$\left\|\begin{array}{rr} & 1 \\ 5.0 E-3 & N \end{array}\right\|$	5.00E-03N	
	OPRQBLOCDENA ${ }^{\text {\# }}$	Operator fails to respond to 9.3E temp, level,SpG alarms (close block valve)		$\begin{array}{lr} 3.0 \mathrm{E}-3 & \mathrm{~N} \\ & 1 \mathrm{~N} \\ 1.0 \mathrm{E}-2 & \mathrm{~N} \end{array}$	$1.00 \mathrm{E}-02 \mathrm{~N}$	
	PER9.30P013\#	continuous evaporator 9.3E is in operation	1	$\begin{array}{r} 1 \mathrm{~N} \\ \mathrm{I} .30 \mathrm{E}-01 \mathrm{~N} \end{array}$	1.30E-01N	

Cutsets for 9.3E Evaporator (CONT.)

Set No.	Event Name	Description	C	B.E. Input	Calc. Result	Cutset Freq. $(/ \mathrm{Yr})$
	PERTR8.3100Q\# TBP15.7MPREA\#	Excess TBP is transferred to evaporator 9.3E from 8.3 Process upset in 1D bank 15.7M	1	1 N $1.00 \mathrm{E}+00 \mathrm{~N}$ 12 H 0.1 Y	$\begin{aligned} & 1.00 \mathrm{E}+00 \mathrm{~N} \\ & 1.37 \mathrm{E}-04 \end{aligned}$	

Basic Event Data for 9.3E Evaporator

Event	C	Input	Calc.	Description	Source
AGI8 . 3--BLAQ\#	3	4D	4.80E-05	blades fall off of 8.3 agitator	FR: 5E-7/hr length of cycle 4 days
AGI8.3--FACQ\#	3	$\begin{array}{r} 4 \mathrm{D} \\ 5.00 \mathrm{E}-06 \mathrm{H} \end{array}$	4.80E-04	agitator for tank 8.3 fails to operate	FR: 5E-6/hr length of cycle 4 days
ALR-TLG-COMG\#	5	$\begin{array}{r} 3.0 \mathrm{E}-0 \mathrm{H} \\ 6 \mathrm{M} \\ 3.00 \mathrm{E}-06 \mathrm{H} \end{array}$	6.45E-03	Common cause evaporator alarm failure (sp g, level, temperature)	single alarm failure * 0.1 beta factor
ALRFEEFLNRIQ\#	5	3.00E-05 $\begin{array}{r}3 \mathrm{H} \\ \hline\end{array}$	3.17E-02	hat low feed flow alarm failure	FR: 3E-5/hr, calib. every 3 months
ALRHL147NRIQ\#	5	$\left.\begin{array}{rr} 3.00 \mathrm{E}-2 \mathrm{M} \\ 3.00 \mathrm{E}-05 \mathrm{H} \end{array} \right\rvert\,$	6.21E-02	high level alarm in tank 14.7 fails	Assumes discovered during 6 month calibration: FR 3E-5/hr
ALRHL904NRIQ\#	5	$3.00 \mathrm{E}-05 \mathrm{H}$	6.21E-02	high level alarm in tank 904 fails	Assumes discovered during 6 month calibration: FR 3E-5/hr
ALRTK147NRIQ\#	5	3.00E-05 ${ }^{6 \mathrm{H}}$	6.21E-02	Low level alarm in tank 14.7 fails	Assumes discovered during 6 month calibration: FR 3E-5/hr
ALRTK904NRIQ\#	5	3.00E-05 6 H	6.21E-02	Low level alarm in tank 904 fails	Assumes discovered during 6 month calibration: FR 3E-5/hr
ANAEQLABFAIA\#	3	5.00E-06 24	1.20E-04	Lab Equipment Malfunction, Sample Cannot be Run	a: 24 hr restoration time: FR 5E-5/hr
CAVCESTMFOWQ\#	5	3.00E-06 ${ }^{2 \mathrm{H}}$	$3.00 \mathrm{E}-06$	Pneumatic steam control valve fails open	2 hours to restore, round sheet every hour: FR 3E-6/hr
CAVCESTMFOWQ+	4	$\left\|\begin{array}{rr} 2 \mathrm{H} \\ 3.00 \mathrm{E}-06 & \mathrm{H} \end{array}\right\|$	$6.00 \mathrm{E}-06$ $1.50 \mathrm{E}-01$	Pneumatic steam control valve fails open Operator fails to respond to level	2 hours to restore, round sheet every hour: FR 3E-6/hr several competing signals
DPRRA147CSNA\#		$0.15 \mathrm{~N}$	1.50E-01	Operator fails to respond to level alarm in tank 14.7	several competing signals
DPRRA904CSNA\#		0.15 N	1.50E-01	operator fails to respond to level alarm in tank 904	several competing sig, level kept low to prevent large loss of organic
DPSTK73-FAIQ\#	5	$3.00 \mathrm{E}-06^{3 \mathrm{H}} \mathrm{H}$	$1.08 \mathrm{E}-04$	SPG Instrument in 7.3 Gives False Reading	Would Discover on Next Transfer About 3 days: FR 3E-6/hr
DPSTK9.3FAIQ\#	3	3.00E-06 4 H	$2.88 \mathrm{E}-04$	SpG instrumentation gives a false reading	4 days to restore, discovered at next tank filling: FR 3E-6/hr Adjusted 4 times per hour, discovered
FRE-PMP-ADJQ+	4	0.25 H 4 H	$5.00 \mathrm{E}-01$	Pump speed is adjusted	Adjusted 4 times per hour, discovered within 15 minutes
FREBATCH-2WQ+		48 Y	4.80E+01Y	Frequency of a batch	48 times a year $1 / 200$ batches (2 yrs). 1 hour to
FRECPRS-2YRQ+	4	- $\begin{array}{r}1 \mathrm{H} \\ 0.5 \mathrm{Y}\end{array}$	5.71E-05	Steam pressure switch is calibrated	$1 / 200$ batches (2 yrs). 1 hour to calibrate
GE-CE-7.3-Q2\#		$1 \mathrm{e}-32 \mathrm{~N}$	$1.00 \mathrm{E}-32$	excess TBP to 8.3 from 7.3-large amount	not credible because would involve transfer of over 4 tanks full
JPRFEED-RECQ+	4	1.00E-08 $\begin{array}{r}96 \mathrm{H} \\ \hline\end{array}$	9.60E-07	Large leak in jumper causes failure to feed evaporator	Would Discover by end of cycle (4 days)
LST-CE--EAIQ\#	5	5.00E-07 ${ }^{8 \mathrm{H}}$	$2.00 \mathrm{E}-06$	Continous evaporator level instrument fails high	Assume 8 hours for repair: FR 5E-7/hr
LST-CE--FAIQ+	4	$[5.00 \mathrm{E}-07 \mathrm{H}$	4.00E-06	Continous evaporator level instrument fails high	Assume 8 hours for repair: FR 5E-7/pr
LSTCEHATCALQ+	4	6 M 2.0 Y	4.97E-01	Frequency hat level instrumentation is calibrated	calib. $4 / \mathrm{yr}$, not discovered until next calibration
LSTCEHATFAIQ\#	5	5.00E-07 ${ }^{3 \mathrm{H}}$	5 $5.40 \mathrm{E}-04$	Level instrument in hackman hat fails high	FR: 3E-5/hr, discovered @ next calibration (3 months)
LSTCEHATFAIQ+	4	5.00E-07 ${ }^{3 \mathrm{H}}$	1.08E-03	Level instrument in hackman hat fails high	FR: 3E-5/hr, discovered @ next calibration (3 months)

Basic Event Data for 9.3E Evaporator (CONT.)

Event	C	Input	Calc.	Description	Source
LSTLE-CECALQ+	4	$4 H$ $2.0 Y$	$9.12 \mathrm{E}-04$	Frequency of continous evaporator level instrumentation calibration	4 hours for calibration: calibrated 2/yr
LSTPK147FAIA\#	5	5.00E-07 ${ }^{6 \mathrm{H}}$	$1.08 \mathrm{E}-03$	Tank 14.7 level sensor failure	discovered during $2 / \mathrm{yr}$ calibration: FR 5E-7/hr
LSTTK904FAIA\#	5	$5.00 \mathrm{E}-07 \mathrm{H}$	$1.08 \mathrm{E}-03$	Tank 904 level sensor failure	discovered during $2 / \mathrm{yr}$ calibration: FR 5E-7/hr
MDPTK8.3FRCQ +	4	$1.00 \mathrm{E}-04 \mathrm{H}$	9.51E-03	Continous evaporator feed pump fails	Will discover by end of cycle
MOVGA73-OOCQ\#	1	$3.00 \mathrm{E}-03 \mathrm{~N} \mathrm{~N}$	$3.00 \mathrm{E}-03 \mathrm{~N}$	Gang valve from 7.3 fails too close	generic failure on demand
OPR147LEMCNA\#	1	$\left\|\begin{array}{lr} & 1 \mathrm{~N} \\ 5.0 \mathrm{~N}-3 & \mathrm{~N} \end{array}\right\|$	$5.00 \mathrm{E}-03 \mathrm{~N}$	Calibration Error - Level instrument is calibrated to give a false reading-14.7	typical circumstances
OPR73-AGACNA\#	1	5.0E-3 $\begin{array}{rr}1 N \\ N\end{array}$	5.00E-03N	Operator fails to agitate tank 7.3 prior to sampling	typical circumstances
OPR904LEMCNA\#	1	5.0E-3 $\begin{array}{rr}1 N \\ \end{array}$	5.00E-03N	Calibration Error - 904 Level instrument is calibrated to give a false reading	typical circumstances
OPRAG183ACNA\#	1	5.0E-3 ${ }^{1} \mathrm{~N}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	operator fails to check if agitator working-1st transfer	typical circumstances
OPRAG283ACHA \#		0.5 N	$5.00 \mathrm{E}-01$	operator fails to check if agitator working-2nd transfer	assumes high dependence (same oper. as 1st transfer)
OPRAG383ACNA\#	1	5.0E-31 N	$5.00 \mathrm{E}-03 \mathrm{~N}$	operator fails to check if agitator working-3rd transfer	typical circumstances
OPRCEHATMCNQ\#	1	5.0E-3 $\begin{array}{rrr}1 \mathrm{~N} \\ \mathrm{~N}\end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	Calibration error- level inst. in hat set to give high signal	typical circumstances
OPRFEEFLCSNA\#	1	\|r 1 N	$1.00 \mathrm{E}-02 \mathrm{~N}$	operator fails to respond to low feed flow (increase feed or shut down)	several competing signals
OPRPLUG-VRHA\#	1	5.00E-02N	$5.00 \mathrm{E}-02 \mathrm{~N}$	Failure to notice that SpG instrumentation pegs low	a: checked hourly (roundsheet)
OPRQ7.3-ACNA\#	1	5.0E-3 $\begin{array}{rr} \\ & 1 \mathrm{~N} \\ \end{array}$	5.00E-03N	second consecutive transfer containing TBP from tank 7.3 is fed to same batch	sump receipt could not collect enough TBP during 1 feed tank run time
OPRQ73--ACNA\#	1	5.0E-3 $\begin{array}{rr}1 \mathrm{~N} \\ \mathrm{~N}\end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	Operator fails to settle tank contents prior to tranferring out	typical circumstances
OPRQ73-- IRNA\#	1	1.0E-2 $\begin{array}{rr}1 \mathrm{~N} \\ \mathrm{~N}\end{array}$	$1.00 \mathrm{E}-02 \mathrm{~N}$	Operator incorrectly reads spg display	organic frequently present, excelle display (digital readout, indicato lamp)
OPRQ73--MCNA\#	1	5.0E-31 N	$5.00 \mathrm{E}-03 \mathrm{~N}$	Calibration Error - SPG Instrument is Calibrated to Give a False Reading	typical circumstances
OPRQ73-TACLA\#	1	$\left\lvert\, \begin{array}{lr} & 1 \mathrm{~N} \\ 5.0 \mathrm{E}-4 & \mathrm{~N} \end{array}\right.$	$5.00 \mathrm{E}-04 \mathrm{~N}$	Operator transfers too much TBP to 8.3-doesn't watch transfer	routine repetitive circumstances
OPRQ73-VDEHA\#	1	1.0E-11 N N	$1.00 \mathrm{E}-01 \mathrm{~N}$	Operator fails to correct the excessive TBP sent to 8.3	diagnosis error, knowledge-based 10 to 30 minutes
OPRQAG83ACNA\#	1	$\left\lvert\, \begin{array}{rr} & 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 & \mathrm{~N} \end{array}\right.$	5.00E-03N	operator fails to activate agitator in 8.3 on transfer in	typical circumstances
OPRQBLOCDENA\#	1	$\left\|\begin{array}{lr} 1.0 \mathrm{E}-2 & 1 \mathrm{~N} \\ \mathrm{~N} \end{array}\right\|$	1.00E-02N	Operator fails to respond to 9.3 E temp, level,SpG alarms (close block valve)	knowledge based, 10 to 30 minutes

Basic Event Data for 9.3E Evaporator (CONT.)

Basic Event Data for 9.3E Evaporator (CONT.)

Event	C	Input	Calc.	Description	Source
PERTR8.3100Q\#	1	1.00E+00N	$1.00 \mathrm{E}+00 \mathrm{~N}$	Excess TBP is transferred to evaporator 9.3E from 8.3	assumes no sampling for continuous feed
PSTSTEAMFAIQ\#	3		9.60E-05	Steam pressure switch fails	discovered by next cycle: FR 1E-6/hr
PSTSTEAMFAIQ+	4	1.00E-06 ${ }^{4 \mathrm{H}}$	9.60E-05	Steam pressure switch fails	discovered by next cycle: FR 1E-6/hr
RLPPUMP1NREQ\#	1	1.00E-06 ${ }^{1 \mathrm{H}}$	$1.00 \mathrm{E}-03 \mathrm{~N}$	failure to stop 14.7 pump (protective	demand failure
RLPPUMP2NREQ\#	1	$1 \mathrm{E}-3 \mathrm{~N}$ 1 N	$1.00 \mathrm{E}-03 \mathrm{~N}$	relay fails) failure to stop 904 pump (protective	demand failure
		$1 \mathrm{E}-3 \mathrm{~N}$		relay fails)	demand
SAM73---FAIA\#	5	$1.00 \mathrm{E}-05 \mathrm{H} \mathrm{H}$	7.20E-04	Sampler malfunctions such that a sample can not be pulled (tank 7.3)	6 days to restore: FR 1E-5/hr
SPGCEVAPPLGQ\#	3	[1.54E-01	Plugging of instrumentation causes a false SpG reading	2 hours to detect and restore, round sheet every hour
TBP126--PREA\#	3	12 H	1.37E-04	process upset to 12.6	estimated @ $1 / 10 \mathrm{yr}-12$ hours to
TBP15.7MPREA\#	3	0.1 Y 12 H	1.37E-04	Process upset in 1D bank 15.7M	detect estimated @ $1 / 10 \mathrm{yr}-12$ hours to
		0.1 Y			detect
TBP1ABNKPREA\#	3	12H	1.37E-04	excess TBP to 8.3 from 1A bank	estimated @ $1 / 10 \mathrm{yr}-12$ hours to
TSTCETE-FAIQ\#	3	0.1 Y 4 D	9.60E-05	C	detect Assumes Discovered at next run
TUBCEAIRLEGQ\#	3	$\begin{array}{r} 1.00 \mathrm{E}-06 \mathrm{H} \\ 40 \mathrm{D} \\ 3.00 \mathrm{E}-07 \mathrm{H} \end{array}$	$2.38 \mathrm{E}-04$	Sensor Has Failed Air leak causes a false SpG reading	$1 \mathrm{E}-6 / \mathrm{hr}$ 10 ft long x 4 days to restore, detected $@$ end of cycle

Type Code	Rate	Description	Source	EF	D
AGI BLA	5E-7H	agitator blade failure (estimate)	WSRC-TR-93-262,AGI-FA-C/10		
AGI FAC	5.00E-06H	Agitator, Failure (Chemical)	WSRC-TR-93-262, AGI-FA-C		
ALR COM	$3.00 \mathrm{E}-06 \mathrm{H}$	common cause alarm failure (single * 0.1 beta factor)		10	L
ALR NRI	3.00E-05 H	Alarm/Annunciator, Fails to alarm (Instr. \& Control)	WSRC-TR-93-262, ALR-NR-I	10	L
ANA FAI	$5.00 \mathrm{E}-06 \mathrm{H}$	Analyzer, Failure (Instr. \& Control)	WSRC-TR-93-262, ANA-FA-I	10	L
CAV FOW	$3.00 \mathrm{E}-06 \mathrm{H}$	Valve (Control), Air-Operated, Fails open (Water)	WSRC-TR-93-262, CAV-FO-W	10	L
DPS FAI	$3.00 \mathrm{E}-06 \mathrm{H}$	Sensor/Transmit., Transdu./Proc. Sw., Differ. Pres., Failure (Instr, \& Control)	WSRC-TR-93-262, DPS-FA-I	10	L
FRE 2YR	0.5 Y	Frequency	a: every 2 years (COG)		
FRE ADJ	4H	Speed of Feed Pump Adjusted 3 Times per shift	Operations personnel		
JPR REC	$1.00 \mathrm{E}-08 \mathrm{H}$	Jumper, Rupture (external) (Chemical)	WSRC-TR-93-262, JPR-RE-C	30	L
LST CAL	2.0Y	Level Instrument Calibration Frequency	Assumed Value		
LST FAI	5.00E-07 H	Sensor/Transmitter/, Transducer/Proc. Switch, Level, Failure (Instr. \& Control)	WSRC-TR-93-262, LST-FA-I	3	L
MDP FRC	1.00E-04 H	Pump, Motor-Driven, Fails to run (Chemical)	WSRC-TR-93-262, MDP-FR-C	10	L
MOV OOC	$3.00 \mathrm{E}-03 \mathrm{~N}$	Valve (Standby or Safety), Motor-Operated, Fails to open/close (Chemical)	WSRC-TR-93-262, MOV-OO-C	10	L
OPR ACH	$5.0 \mathrm{E}-2$	Failure of Administrative Control (High)	WSRC-TR-93-581, Table 4, Item 1, High	5	L
OPR ACL	$5.0 \mathrm{E}-4$	Failure of Administrative Control	WSRC-TR-93-581, Table 4, Item 1, Low	10	L
OPR ACN	5.0E-3 N	Failure of Administrative Control (Nominal)	WSRC-TR-93-581, Table 4, Item 1, Nominal	10	L
OPR CSN	1E-2N	failure to respond to compelling signal (nominal)	WSRC-TR-93-581, Table 4, Item 2, Nominal		
OPR CVL	1.0E-2 $\quad \mathrm{N}$	Checker verification error	WSRC-TR-93-581, Table 4, Item 8, Low	5 3	L
OPR DEH	1.OE-1 N	Diagnosis error (High)	WSRC-TR-93-581, Table 4, Item 30, High	3	L
OPR DEN	$1.0 \mathrm{E}-2$	Diagnosis error (Nominal)	WSRC-TR-93-581, Table 4, Item 30, Nominal	5	L
OPR ILN	$\begin{array}{ll}\text { 5.0E-3 } \\ 1.0 \mathrm{E}-2 & \mathrm{~N}\end{array}$	Incorrect labeling or tagging (Nominal)	WSRC-TR-93-581, Table 4, Item 10, Nominal	10	L
OPR IRN	1.0E-2 N	Incorrect reading or recording of data (Nominal)	WSRC-TR-93-581, Table 4, Item 11, Nominal	5	
OPR LAN	3.0E-4 N	Laboratory analysis error (Nominal)	WSRC-TR-93-581, Table 4, Item 19, Nominal	10	
OPR MCN	5.0E-3 N	Miscalibration (Nominal)	WSRC-TR-93-581, Table 4, Item 12, Nominal	10	
OPR VRH	5.00E-02N	Failure to verify within control room (High)	WSRC-TR-93-581, Table 4, Item 3, High		
OPR VRN	1.00E-02N	Failure to verify within control room (Nominal)	WSRC-TR-93-581, Table 4, Item 3, Nominal	5	
PER . 20	2.00E-03N	0.2% chance			
PER 005	$5.00 \mathrm{E}-02 \mathrm{~N}$	5\% chance			
PER 010	1.00E-01N	10\% chance			
PER 013	1.30E-01N	13% chance			
$\begin{array}{ll}\text { PER } & 020 \\ \text { PER } & 025\end{array}$	2.00E-01N	20\% chance			
$\begin{array}{ll}\text { PER } & 025 \\ \text { PER } & 100\end{array}$	$2.50 \mathrm{E}-01 \mathrm{~N}$ $1.00 \mathrm{E}+00 \mathrm{~N}$	25\% chance 100\% chance		-	

Data Type Codes for 9.3E Evaporator
Data Type Codes for 9.3E Evaporator (CONT.)

Type Code	Rate	Description	Source	EF	D
PST FAI	$1.00 \mathrm{E}-06 \mathrm{H}$	Sensor/Transmitter/, Transducer/Proc. Sw., Press., Failure (Instr. \& Control)	WSRC-TR-93-262, PST-FA-I	3	L
RLP NRE	1E-3N	Relay, protective, fails to open/close	WSRC-TR-93-262,RLE-NR-E	10	1
SAM FAI	$1.00 \mathrm{E}-05 \mathrm{H}$	Sampler, Failure (Instr. \& Control)	WSRC-TR-93-262, SAM-FA-I	10	L
SPG PLG	2D	TUBE PLUGS	Estimate by facility sep. tech (Chostner) - Plugs frequently		
TBP PRE	$0.1 Y$	Process upset causes excess organic in feed	Never Seen, Estimated as Once in Ten Years		
TST FAI	$1.00 \mathrm{E}-06 \mathrm{H}$	Sensor/Transmitter/, Transducer/Proc. Switch, Temp., Failure (Instr. \& Control)	WSRC-TR-93-262, TST-FA-I	3	L
TUB LEG	$3.00 \mathrm{E}-07 \mathrm{H}$	Tube, Leakage (external) (per ft.) (Compressed Gas)	WSRC-TR-93-262, TUB-LE-G	10	L

Rev.A

APPENDIX E-7.6E \& 7.7 EVAPORATOR FAULT TREE AND DATA

The following abbreviations appear on the fault tree print out and in the basic event file for the fault tree:
FR=Failure Rate
a:= assumption
COG= cognizant engineer estimate/information
TRUNC $=$ Truncation limit of cutset evaluator
The Beta Factor method used to estimate common cause alarm failure is explained in Reference 15.
NOTE: Events in this tree with a probability of " $1 \mathrm{E}-32$ " are incredible. They do not contribute to the top event frequency and were included only to show that they had been considered. The number " $1 \mathrm{E}-32$ " was used because it is the smallest number CAFTA is capable of handling.

Fault Tree (Page 124)
Gate/Event Cross Reference (Page 157)
Cutset Report (Page 159)
Basic Event Data (Page 171)
Type Code Data (Page 175)

Rev.A	
	¢

Cutsets for 7.6E \& 7.7E Evaporators

Cutsets for 7.6E \& 7.7E Evaporators (CONT.)

Set No.	Event Name	Description	C	B.E. Input	Calc. Result	Cutset Freq. (/yr)
4.	OPRPLUG1VRHA\# PER-COLD035G\# PERSR7.8010A\# SPGBEVAPPLGG\# TBPTK2BPPREA\# ALRHL906NRIG\# ALRO11.7NRIG\# EVPBEVAPON-G+ OPREBLOCDENA\# OPRLVЭ06ACl1̈́\# PERSF. 7.3010 : TBPTK---FREA ALRHLOUGNRIGB ALRO10. 3NRIG\# EVPBEVAPON-G+ OPRG7.3-ACHA\# OPRG7.8TACHA\# OPRLV906ACNA\# OPRPLUG1VRHA\# PER-COLD035G\# SPGBEVAPPLGG\# TBPTK2BPPREA\#	Failure to notice that $s p g$ instrumentation peg low Cold streams sent to 8.7 Sample is not representative of tank contents Plugging of instrumentation causes a low spg reading Process upset causes excess TBP in canyon product High level alarm in tank 906 tank fails Failure of organic level alarm in decanter 11.7 Batch Evaporator is Used Operator fails to respond to alarm(s) (906, temp., pres., spg (Close valve) Operator fails to recognize SPG break or assure SFG is \%ithir range 110 K TEF: Operator fills tank pó (Level Procedurally Controllきd; Sample is not representative of tank contents Erosess upset causes excess organic in feed High level alarm in tark 306 tank fails Failure of organic level alarm in decanter 10.3 Batch Evaporator is Used Operator fails to recognize SPG break or assure SPG is within range (10 K TBP) Operator transfers too much organic to the batch evaporator (procedural) Operator fills tank 906 (Level Procedurally Controlled) Failure to notice that $s p$ g instrumentation peg low Cold streams sent to 8.7 Plugging of instrumentation causes a low spg reading Process upset causes excess TBP in canyon product			$\begin{aligned} & \text { 5.00E-02N } \\ & 3.50 \mathrm{E}-01 \mathrm{~N} \\ & 1.00 \mathrm{E}-01 \mathrm{~N} \\ & 8.65 \mathrm{E}-01 \\ & 1.37 \mathrm{E}-04 \\ & 6.21 \mathrm{E}-02 \\ & 6.21 \mathrm{E}-02 \\ & 1.00 \mathrm{E}+02 \mathrm{Y} \\ & 1.00 \mathrm{E}-02 \mathrm{~N} \\ & 5.00 \mathrm{E}-02 \mathrm{~N} \\ & 5.00 \mathrm{E}-03 \mathrm{~N} \\ & 1.00 \mathrm{E}-01 \mathrm{~N} \\ & 1.37 \mathrm{E}-04 \\ & 6.21 \mathrm{E}-02 \\ & 6.21 \mathrm{E}-02 \\ & 1.00 \mathrm{E}+02 \mathrm{Y} \\ & 5.00 \mathrm{E}-02 \mathrm{~N} \\ & 5.00 \mathrm{E}-02 \mathrm{~N} \\ & 5.00 \mathrm{E}-03 \mathrm{~N} \\ & 5.00 \mathrm{E}-02 \mathrm{~N} \\ & 3.50 \mathrm{E}-01 \mathrm{~N} \\ & 8.65 \mathrm{E}-01 \\ & 1.37 \mathrm{E}-04 \end{aligned}$	$1.32 \mathrm{E}-11$ 9. $99 E-12$

Cutsets for 7.6E \& 7.7E Evaporators (CONT.)

Cutsets for 7.6E \& 7.7E Evaporators (CONT.)

Set No.	Event Name	Description	C	B.E. Input	Calc. Result	Cutset Freq. (/yr)
9.	PERSR7.8010A\# TBPTK---PREA\#	Sample is not representative of tank contents Process upset causes excess organic in feed	1 3	1 N $1.00 \mathrm{E}-01 \mathrm{~N}$ 12 H 0.1 Y	$1.00 \mathrm{E}-01 \mathrm{~N}$ $1.37 \mathrm{E}-04$	
	ALRHL906NRIG\#	High level alarm in tank 906 tank fails	5	$3.00 \mathrm{E}-05 \mathrm{H}$	6.21E-02	$6.60 \mathrm{E}-12$
	ALRO11.7NRIG\#	Failure of organic level alarm in decanter 11.7	5	$\begin{array}{r} 6 \mathrm{M} \\ 3.00 \mathrm{E}-05 \mathrm{H} \end{array}$	6.21E-02	
	EVPBEVAPON-G+	Batch Evaporator is Used		100Y	1.00E +02 Y	
	OPRBBLOCDENA\#	Operator fails to respond to alarm(s) (906, temp., pres., spg (Close valve)	1	$\left\|\begin{array}{lr} & 1 \mathrm{~N} \\ 1.0 \mathrm{E}-2 & \mathrm{~N} \end{array}\right\|$	1.00E-02N	
	OPRG7.8-ACHA\#	Operator fails to recognize SPG break or assure SPG is within range (10 K TBP)	1	$\left\|\begin{array}{lr} & 1 \mathrm{~N} \\ 5.0 \mathrm{E}-2 & \mathrm{~N} \end{array}\right\|$	5.00E-02N	
	OPRG7. 8TACHA\#	Operator transfers too much organic to the batch evaporator (procedural)	1	$\left\|\begin{array}{lr} & 1 \mathrm{~N} \\ 5.0 \mathrm{E}-2 & \mathrm{~N} \end{array}\right\|$	5.00E-02N	
	OPRLVOGEACNA ${ }^{\text {a }}$	Operator fills tank 906 (Level Procedurally Controlled)	1	$\left\|\begin{array}{rr} & 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 & \mathrm{~N} \end{array}\right\|$	5.00E-03N	
	TEPTK-- PREA\%	Frocess upser causes excess organic in feed	5	$\begin{array}{r} 12 \mathrm{H} \\ 3.10 \end{array}$	1.37E-04	
10.	ALRHL906NRIG\#	High level alarm irı tank 906 tank fails	5	$3.00 \mathrm{E}-95 \mathrm{H}$	6.21E-02	6.60E-12
		Failur	5	$3.005-5 \frac{8}{5}$	$\therefore .21 E-02$	
	EVPEEVAPON-Gt	Batch Evaporaror is Usizd.		18	1.00E+02Y	
	OPRG7. $\begin{gathered}\text { - CHA }\end{gathered}$	Operatol fails 6 recognize SPG break or assure SFG is within range ! 10 OK TEF;	1	5.0e-2 $\begin{array}{rr}11 \\ \text { 5 }\end{array}$	E.00E-02N	
	OFRGESPGMCHAH	Calibration error - spg instrumentation gives false reading	1	$\left\|\begin{array}{lr} & 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 & \mathrm{~N} \end{array}\right\|$	5.00E-03N	
	OFRLV906ACNA\#	Operator fills tank 906 (Level Procedurally Controlled)	1	$\left\|\begin{array}{lr} & 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 & \mathrm{~N} \end{array}\right\|$	5.00E-03N	
	PERSR7.8010A\#	Sample is not representative of tank contents	1		1.00E-01N	
	TBPTK---PREA\#	Process upset causes excess organic in feed	3	$\begin{array}{r} 12 \mathrm{H} \\ 0.1 \mathrm{Y} \end{array}$	1.37E-04	$\stackrel{0}{2}$
11.	ALRHL906NRIG\#	High level alarm in tank 906 tank fails	5	$3.00 \mathrm{E}-05 \mathrm{H}$	6.21E-02	5.71E-1
	ALRO11.7NRIG\#	Failure of organic level alarm in decanter 11.7	5	$\begin{array}{r} 6 \mathrm{M} \\ 3.00 \mathrm{E}-05 \mathrm{H} \end{array}$	6.21E-02	
	EVPBEVAPON-G+ MOVGA7 800GG\#	Batch Evaporator is Used	1	$100 Y$	$1.00 \mathrm{E}+02 \mathrm{Y}$	
		Gang valve fails to close		1.00E-02 ${ }^{1 / \mathrm{N}}$	$1.00 \mathrm{E}-02 \mathrm{~N}$	
	OPRG7.8-ACHA\#	Operator fails to recognize SPG break or assure SPG is within range (10 K TBP)	1	$\left\|\begin{array}{lr} & 1 \mathrm{~N} \\ 5.0 \mathrm{E}-2 & \mathrm{~N} \end{array}\right\|$	5.00E-02N	
	OPRLV906ACNA\#	Operator fills tank 906 (Level Procedurally Controlled)	1	$\left\|\begin{array}{lr} & 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 & \mathrm{~N} \end{array}\right\|$	5.00E-03N	

Cutsets for 7.6E \& 7.7E Evaporators (CONT.)

Cutsets for $7.6 \mathrm{E} \& 7.7 \mathrm{E}$ Evaporators（CONT．）

$\overline{\text { set }}$ No.	Event Name	Description	c	B．E． Input	Calc． Result	Cutset Freq．（／yr）
15.	OPRG7．8－ACHA\＃	Operator fails to recognize SPG break or assure SPG is within range（ 10 K TBP）		5．0E－2 ${ }^{1 \mathrm{~N}} \mathrm{~N}$	5．00E－02N	
	OPRLV906ACNA\＃	Operator fills tank 906 （Level Procedurally Controlled）		$.0 \mathrm{E}-3$ 1 N N	5．00E－03N	
	OPRPLUG1VRHA\＃	Failure to notice that sp g instrumentation peg low	1	5．0E－3 1 N	5．00E－02N	
	PERSR7．8010A\＃	Sample is not representative of tank content	1	1 N	1．00E－01N	
	SPG	Plugging of instrumentation causes a low spg reading	3	$1.00 \mathrm{E}-01 \mathrm{~N}$ 1 D	8．65E－01	
	spgberpagh			2.0 D	－65E－01	
	TBPTK－－－PREA\＃	Process upset causes excess organic in feed	3	12 H 0.1 Y	$1.37 \mathrm{E}-04$	
	ALRHL906NRIG\＃	High level alarm in tank 906 tank fails	5	6 M	6．21E－02	4．60E－12
				$3.00 \mathrm{E}-05 \mathrm{H}$		
	EVFEEVAPON－G＋ OPRS11．7CSNA月	Batch Evaporator is Used Operator fails to shut down process compelling signal）			$\begin{aligned} & 1.00 \mathrm{E}+02 \mathrm{Y} \\ & 1.00 \mathrm{E}-02 \mathrm{~N} \end{aligned}$	
		Operator fail： Lo resognize SFG break it assure SPG is		$\begin{array}{\|cc\|}1.0 \mathrm{E}-2 & \mathrm{~N} \\ 1 \mathrm{~N}\end{array}$	5．00E－02N	
		\％ithin rang le TGP）		5．92		
	QRE． 7 －TMCHA	Operator tralisíers coo much organic to the batch evaporater （procedural）		$\left\lvert\, \begin{array}{cc} & 1 \mathrm{~N} \\ 5.0 \mathrm{E}-2 & \mathrm{~N} \end{array}\right.$	5．008－02N	
	OFRLV9「2－nay	Operator fill．s tank 905 （Level Procedurilly Controlled）		E．1上： $\begin{array}{r}1 \mathrm{~N} \\ \mathrm{~N}\end{array}$	5．00E－03\％	
	xncienveran	Failure to notice that se a instrumention peg low	1	100	5．00E－024	
		Plugging o\％instumentation causes a 10% sta \times esding	$\dot{\square}$	1D	－．65E－01	
	TSFTK－－－PREA	Process upset causes excess orgaric in feed	3	${ }^{2} 2.0 \mathrm{H}$	1．37E－04	
				0.1 Y		
16.	ALFO11．7NRIG\＃	Failure of organic level alarm in decanter 11.7		3．00E－05 ${ }^{6 \mathrm{M}}$	6．21E－02	4．60E－12
	EVPEEVAPON－G＋ OPRG7．5－ACHA\＃	Batch Evaporator is Used Operator fails to recognize SPG break or assure SPG is		$\begin{array}{r} 100 \mathrm{Y} \\ 1 \mathrm{~N} \end{array}$	$\begin{aligned} & 1.00 \mathrm{E}+02 \mathrm{Y} \\ & 5.00 \mathrm{E}-02 \mathrm{~N} \end{aligned}$	$\stackrel{\square}{6}$
		within range（ $10 \mathrm{~K} \mathrm{TBP} \mathrm{)}$		$5.0 \mathrm{E}-2$		$\stackrel{4}{4}$
	OPRG7．3TACHA\＃	Operator transfers too much organic to the batch evaporator （procedural）		$5.0 \mathrm{E}-2 \begin{array}{r}1 \mathrm{~N} \\ \mathrm{~N}\end{array}$	5．00E－02N	
	OPRLV906ACNA\＃	Operator fills tank 906 （Level Procedurally Controlled）		$5.0 \mathrm{E}-3^{1 \mathrm{~N}}$	5．00E－03N	
	OPRPLUG1VRHA\＃	Failure to notice that sp g instrumentation peg low	1	5．0e－3 ${ }^{1}$	5．00E－02N	
	OPRTK906CSNA\＃	Operator fails to respond to low level alarm in tank 906		$.05 N$ 1 N	1．00E－02N	
	SPGBEVAPPLGG\＃	Plugging of instrumentation causes a low spg reading	3	$1.0 \mathrm{E}-2$ N 20	8．65E－01	
		Process upset causes excess organic in feed		2.0 D		
	TBPIK－－－Preaf	Process upset causes excess organic in feed		12 H 0.1 Y	$1.37 \mathrm{E}-04$	

Cutsets for 7.6E \& 7.7E Evaporators (CONT.)

Cutsets for 7.6E \& 7.7E Evaporators (CONT.)

Cutsets for 7.6E\& 7.7E Evaporators (CONT.)

Cutsets for $7.6 \mathrm{E} \& 7.7 \mathrm{E}$ Evaporators (CONT.)

Set No.	Event Name	Description	c	B.E. Input	Calc. Result	Cutset Freq. (/yr)
25.						
	ALRHL906NRIG\#	High level alarm in tank 906 tank fails	5	3.00E-05 ${ }^{6 \mathrm{M}}$	6.21E-02	$2.31 \mathrm{E}-12$
	ALRO10.8NRIG\#	Failure of organic level alarm in decanter 10.8	5	, 6M	6.21E-02	
	EVPBEVAPON-G+	Batch Evaporator is Used		$3.00 \mathrm{E}-05 \mathrm{H}$ 100 Y	$1.00 \mathrm{E}+02 \mathrm{Y}$	
	OPRBBLOCDENA\#	Operator fails to respond to alarm(s) (906, temp., pres.	1	1N	$1.00 \mathrm{E}-02 \mathrm{~N}$	
		spg (Close valve)		1.0E-2 N		
	OPRG7.8-ACHA\#	Operator fails to recognize SPG break or assure SPG is within range (10 K TBP)	1	5.0E-2 $\begin{array}{cr}1 \mathrm{~N} \\ \mathrm{~N}\end{array}$	5.00E-02N	
	OPRG7.8TACHA\#	Operator transfers too much organic to the batch evaporator (procedural)	1	$\begin{array}{lr} & 1 \mathrm{~N} \\ 5.0 \mathrm{E}-2 & \mathrm{~N} \end{array}$	5.00E-02N	
	OPRLV906ACNA\#	Operator fills tank 906 (Level Procedurally Controlled)	1	5.0E- 1 N	5.00E-03N	
	PER-COLD035G\#	Cold streams sent to 8.7	1	5.0E-3 1 N	3.50E-01N	
				$3.50 \mathrm{E}-01 \mathrm{~N}$		
	TBPTK2BPPREA\#	Prosess upset causes excess TEP in canyon product	3	$\begin{gathered} 12 \mathrm{H} \\ 0.1 \mathrm{Y} \end{gathered}$	1.37E-04	
\because	ALFHL906NRI3芥		E	6M	6.21E-32	$2.315-12$
	ALRO10.8NRIG\#	Failure of organic level alarm in decanter 10.8	5	3.00E-05H	6.21E-02	
	ALROIO. ${ }^{\text {dNRIGA }}$	Pailure of organic level alarm in decanter 10.8		$3.00 \mathrm{E}-05 \mathrm{H}$	- $21 \mathrm{E}-02$	
	EJFEEVAPON-3t	Eisch Evaporacor is lised		100 Y	1-	
	OFRG7.3-ACHA\#	Gental fails to recognine ats breat or assure ats is ※irhin range (10 K TBP)		5.0E-2 ${ }^{1 \mathrm{~N}} \mathrm{~N}$	を.8\% M	
	OEFSESPGMCHA\#	Calbrarion error - epg ins:um-tration gives false reading		$\begin{array}{lr} & 1 \mathrm{~N} \\ 5,0 \mathrm{E}-3 & \mathrm{~N} \end{array}$		
	OPRLV90 2 ACNA\#	Operacor fills tank 906 (Level yrocedurally concrolled;	1	5:0E- 1 N	5.00E-03N	
	PER-COLD035G\#	Cold streams sent to 8.7	1	5.0E-3 $\begin{array}{rr}\text { N } \\ 1 \mathrm{~N}\end{array}$	$3.50 \mathrm{E}-01 \mathrm{~N}$	
				$3.50 \mathrm{E}-01 \mathrm{~N}$		
	PERSR7.8010A\#	Sample is not representative of tank contents	1	$\begin{array}{r} 1 \mathrm{~N} \\ 1.00 \mathrm{E}-01 \mathrm{~N} \end{array}$	$1.00 \mathrm{E}-01 \mathrm{~N}$	
	TBPTK2BPPREA\#	Process upset causes excess TBP in canyon product	3	$\begin{array}{r} \mathrm{E}-01 \mathrm{~N} \\ 12 \mathrm{H} \\ 0.1 \mathrm{y} \end{array}$	1.37E-04	$\stackrel{0}{<1}$
27.	ALRO11.7NRIG\#	Failure of organic level alarm in decanter 11.7	5	$\begin{array}{r} 6 \mathrm{M} \\ 3.00 \mathrm{E}-05 \mathrm{H} \end{array}$	6.21E-02	2.30E-1
	EVPBEVAPON-G+	Batch Evaporator is Used		100 Y	$1.00 \mathrm{E}+02 \mathrm{Y}$	
	OPR906LEMCNA\#	Calibration Error - Level instrument is calibrated to give a false reading		5.0E-3 $\frac{1 \mathrm{~N}}{\mathrm{~N}}$	5.00E-03N	
	OPRG7.8-ACHA\#	Operator fails to recognize SPG break or assure SPG is within range (10 K TBP)		5.0E-21 N N	5.00E-02N	
	OPRG7.8TACHA\#	Operator transfers too much organic to the batch evaporator (procedural)	1	5.0E-2 ${ }^{1 \mathrm{~N}} \mathrm{~N}$	5.00E-02N	
	OPRLV906ACNA\#	Operator fills tank 906 (Level Procedurally Controlled)	1	$\left\|\begin{array}{lr} 2.0 \mathrm{E}-2 & \mathrm{~N} \\ 5.0 \mathrm{E}-3 & \mathrm{~N} \end{array}\right\|$	5.00E-03N	

Cutsets for 7．6E \＆7．7E Evaporators（CONT．）

Set No.	Event Name	Description	C	B．E． Input	Calc． Result	Cutset Freq．（／yr）
28.	OPRPLUG1VRHA\＃	Failure to notice that sp g instrumentation peg low	1	． 1 N	$5.00 \mathrm{E}-02 \mathrm{~N}$	
	SPGBEVAPPLGG\＃	Plugging of instrumentation causes a low spg reading	3	10 D 2.0 D	8．65E－01	
	TBPTK－－－PREA\＃	Prociess upset causes excess organic in feed	3	12 H 0.1 Y	1．37E－04	
	ALRO11．7NRIG\＃	Failure of organic level alarm in decanter 11.7	5	3．00E－05H	6．21E－02	$2.13 \mathrm{E}-12$
	EVPBEVAPON－G＋	Batch Evaporator is Used		－ 100 Y	$1.00 \mathrm{E}+02 \mathrm{Y}$	
	OPRBBLOCDENA\＃，	Operator fails to respond to alarm（s）（906，temp．，pres．， spg（Close valve）	1	1：0E－2 $\begin{array}{r}1 N \\ N\end{array}$	$1.00 \mathrm{E}-02 \mathrm{~N}$	
	OPRG7．8－ACHA\＃	Operator fails to recognize SPG break or assure SPG is within range（ 10 K TBP）	1	5．0E－2	$5.00 \mathrm{E}-02 \mathrm{~N}$ $5.00 \mathrm{E}-03 \mathrm{~N}$	
	OPRLV90 6ACNA\＃	Operator fills tank 906 （Level Procedurally Controlled）	1	$\left\lvert\, \begin{array}{cr} 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 & \mathrm{~N} \end{array}\right.$	5．00E－03N	
	OPRTK906CSNA ${ }^{\text {\％}}$	operator fails to respond to low level alarm in tank 906	1	$\begin{array}{lr} & 1 \mathrm{~N} \\ 1.0 \mathrm{E}-2 & \mathrm{~N} \end{array}$	$1.00 \mathrm{E}-02 \mathrm{~N}$	
	PERSE7．S010．4	Sample is not representative of tank contents	1	$1.00 \mathrm{E}-01 \mathrm{~N}$	1．00E－01N	
	TBFTK－－－PFEA	Frisess upset causes excess organic in feed	3	$\begin{array}{r} 12 \mathrm{H} \\ 0.1 \mathrm{Y} \end{array}$	1．37E－04	
23.		Hi ．a L ヨvel alarm in tank jus Gank fails	5	3．00E－ 05 EH	c．$\dot{S} \mathrm{E}$－	$\therefore 15 \mathrm{E}-12$
	EVPBEVAFOH－3＋	Eaccir Evaporacor is Used．		100%	1． $100 \mathrm{E}+3-{ }^{\prime}$	
	OPREBLOCDENS多	Op三raror fails to respond io alarm（s）（906．temp．，：：：$=3 .$, spg（Close valve）	1	（1，0E－2 $\begin{array}{rr}1 N \\ 1\end{array}$	$1 . \because 10 E-\ldots, ~$ $1.00 E-i j$	
	OPRG11．7CSNA\＃	Operator Eails to shut down process（compelling sijnal：	1	1．0E－2 N	1．00E－521	
	OPRG7．8－ACHA\＃	Operator fails to recognize SPG break or assure SPG is within range（ 10 K TBP）	1	5．0E－21 N N 1 N	$5.00 \mathrm{E}-02 \mathrm{~N}$ $5.00 \mathrm{E}-03 \mathrm{~N}$	
	OPRLV906ACNA\＃	Operator fills tank 906 （Level Procedurally Controlled）	1	$\begin{array}{\|cr} & 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 & \mathrm{~N} \end{array}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	
	PERSR7．8010A\＃	Sample is not representative of tank contents	1	$1.00 \mathrm{E}-01 \mathrm{~N}$	$1.00 \mathrm{E}-01 \mathrm{~N}$	
	TBPTK－－－PREA\＃	Process upset causes excess organic in feed	3	$\begin{array}{r} 12 \mathrm{H} \\ 0.1 \mathrm{X} \end{array}$	1．37E－04	
30.	ALRHL906NRIG\＃	High level alarm in tank 906 tank fails	5	3．00E－05H	6．21E－02	2．00E－12
	ȦLRO10．8NRIG\＃	Failure of organic level alarm in decanter 10.8	5	$\begin{array}{r} 6 \mathrm{M} \\ 3.00 \mathrm{E}-05 \mathrm{H} \end{array}$	$6.21 \mathrm{E}-02$	
	EVPBEVAPON－G＋	Batch Evaporator is Used		100 Y	1．00E＋02Y	
	MOVGA7．800GG\＃	Gang valve fails to close	1	1．00E－02 ${ }^{1 \mathrm{~N}} \mathrm{~N}$	$1.00 \mathrm{E}-02 \mathrm{~N}$	
	OPRG7．8－ACHA\＃	Operator fails to recognize SPG break or assure SPG is within range（10K TBP）		$5.0 \mathrm{E}-2 \begin{array}{r}1 \mathrm{~N} \\ \mathrm{~N}\end{array}$	$5.00 \mathrm{E}-02 \mathrm{~N}$	

Cutsets for 7.6E \& 7.7E Evaporators (CONT.)

Set No.	Event Name	Description	C	B.E. Input	Calc. Result	Cutset Freq. (/yr)
	OPRLV906ACNA\# OPRPLUG1VRHA\# PER-COLD035G\# SPGBEVAPPLGG\# TBPTK2BPPREA\#	Operator fills tank 906 (Level Procedurally Controlled) Failure to notice that sp g instrumentation peg low Coldatiteams sent to 8.7 Plugging of instrumentation causes a low spg reading Process upset causes excess TBP in canyon product		$\begin{array}{\|r\|} \hline 1 \mathrm{~N} \\ 5.0 \mathrm{E}-3 \\ \mathrm{~N} \\ 1 \mathrm{~N} \\ .05 \mathrm{~N} \\ 1 \mathrm{~N} \\ 3.50 \mathrm{E}-01 \mathrm{~N} \\ 1 \mathrm{D} \\ 2.0 \mathrm{D} \\ 12 \mathrm{H} \\ 0.1 \mathrm{Y} \end{array}$	$\begin{aligned} & 5.00 \mathrm{E}-03 \mathrm{~N} \\ & 5.00 \mathrm{E}-02 \mathrm{~N} \\ & 3.50 \mathrm{E}-01 \mathrm{~N} \\ & 8.65 \mathrm{E}-01 \\ & 1.37 \mathrm{E}-04 \end{aligned}$	

Rev.A
Basic Event Data for 7.6E \& 7.7E Evaporators

Basic Event Data for $7.6 \mathrm{E} \& 7.7 \mathrm{E}$ Evaporators（CONT．）

Event	c	Input	Calc．	Description	Source
OPR7．8AGACNA\＃	1	$5.0 \mathrm{E}-3^{1 \mathrm{~N}}$	5．00E－03N	Operator fails to agitate tank 7．8	Typical Circumstances
OPR906LEMCNA \＃	1	1 N	5．00E－03N	Calibration Error－Level instrument	Typical Circumstances
OPRBBLOCDENA ${ }^{\text {a }}$	1	${ }^{1}$	$1.00 \mathrm{E}-02 \mathrm{~N}$	Operator fails to respond to alarm（s）	Several Competing Signals
OPRG10．8CSNA\＃	1	$1.0 \mathrm{E}-2 \mathrm{~m}$	－2N	（906，temp．if pres．，spg（Close valve）	Few Competing Signa
		$1.0 \mathrm{E}-2$.		（compelling signal）	
OPRG11．7CSNA\＃	1	$1.0 \mathrm{E}-2 \begin{gathered}\text { 1N } \\ \mathrm{N}\end{gathered}$	$1.00 \mathrm{E}-02 \mathrm{~N}$	Operator fails to shut down process （compelling signal）	Few Competing Signals
OPRG175－ACNA	1		$5.00 \mathrm{E}-03 \mathrm{~N}$	Operator fails to settle tank contents	typical circumstances
OPRG175－IRNA\＃	1	－ $\begin{array}{r}\text { N } \\ 1 \mathrm{~N}\end{array}$	$1.00 \mathrm{E}-02 \mathrm{~N}$	prior to tranferring out ${ }^{\text {pen }}$ operator incorrectly reads spg display	Organic Frequently Present，Good
		$1.0 \mathrm{E}-2 \mathrm{~N}$			Display（graph）
OPRG175－MCNA\＃	1	$5.0 \mathrm{E}-3 \begin{array}{r}\text { 1N } \\ \mathrm{N} \\ \hline\end{array}$	5．00E－03N	Calibration Error－SPG Instrument is Calibrated to Give a False Reading	Single person，operator check
OPRG175TACHA \＃	1		5．00E－02N	operator transfers too much TSP to 8.7	Routine，repetitive circumstances
OPRG175VACH：－	1		5．00E－110！	Operacor fails to correor	owledge－based， 10 to 30 mirut
		E．5E－2 N		こxcessive TBP sent	
Opre．： Cl		シ．jE－2		or assure SPG is within rat．j才 10k TBP）	to $3 . y$ minutes
OPRG7－ $3-2.014 .4$	1		5．0ne－034	aperaror fails to setrle tart aptents 	Rourine，rerstirive circumerances
	1	1 N	1．\because	CBitcor incorrectly こ＝aty	
607．－－1\％		\％s－2 N		dismlay	（araph
				oxlibrated co give a fals 1 〒ading	
ORRG7．	1	1N	5．00E－\％	pperator cransfers too much ojanic to	Unusual Circumst
OPRGAG37ACNA．\＃	1	N	5．00E－03N	the batch evaporator（pro	1
		$5.0 \mathrm{E}-3 \mathrm{~N}$			
OPRGBETEMCNA．${ }_{\text {\＃}}$	1		5.	Tank Temperature Sensor is Miscalibrated	ngle Person，Operator Check
OPRGBSPGMCN．A\＃	1	1 N	5．00E－03N	Calibration er	Single Person，Operator check
		$5.0 \mathrm{E}-3 \mathrm{~N}$		instrumentation gives false	
OPRGINSUACHA\＃	1		5．00E－02N	Insufficient sample pulled	，
OPRGLOSEILNA\＃	1	5．0E－2 ${ }^{1}$	5.00 E	Sample Accountability Error in Lab	Tell if Sufficient
		$5.0 \mathrm{E}-3 \mathrm{~N}$		Causes Loss of Sample	
OPRGNOTRACHA\＃	1	$5.0 \mathrm{E}-2 \mathrm{~T}$（N	5．00E－02N	Sample Not Transported to Lab on a Timely Basis	Unusual Circumstances，transportati is not emphasized
OPRGNROMCVLA\＃	1	${ }^{5.0 \mathrm{E}-2} 1 \mathrm{~N}$	$1.00 \mathrm{E}-02 \mathrm{~N}$	Timely	checking requires
		$1.0 \mathrm{E}-2 \mathrm{~N}$		Omission of Sample	participation
OPRGOPCOACNA\＃	1	5．0E－3 ${ }^{1} \mathrm{~N}$	5．00E－03N	Operations Violates Procedure and Continues Without Lab results	Typical circumstances

Basic Event Data for 7．6E \＆7．7E Evaporators（CONT．）

Event	c．	Input	Calc．	Description	Source
OPRGPRESMCNA\＃			$5.00 \mathrm{E}-03 \mathrm{~N}$	Calibration Error－Pressure switch for steam gives a false signal	Single Person，Operator Check，Not Discovered Till Next Calibration
OPRGS175ACNA\＃		$5.0 \mathrm{E}-3 \mathrm{~N}$	$5.00 \mathrm{E}-03 \mathrm{~N}$	frocedural violation results in sample	Typical circumstances
OPRGSIVSACNA		5．0E－3 N		not being taken for tank 17.5	
OPRGS175LANA\＃		$3 \mathrm{E}-4 \mathrm{~N}$	3．00E－04N	Routine analysis gives false TBP results for tank 17.5	Low Dependence check
OPRGS7．8ACNA\＃		3．0E－4	5，00E－03N	Procedural violation results in no	Typical Circumstances
OPRGS ．BACNA				sample being taken for tank 7．8	Low Dependence Check
OPRGS $7.8 L A N A \#$		3．0E－4 ${ }^{1 / \mathrm{N}}$	3．00E－04N	Routine analysis gives false TBP result for tank 7.8	
OPRLV906ACNA\＃		3．0E－4	5．00E－03N	Operator fills tank 906 （Level Procedurally Controlled）	Typical Circumstances，Level kept low to prevent large loss of organic
OPRPLUGIVRHA\＃	1	1N	$5.00 \mathrm{E}-02 \mathrm{~N}$	Failure to notice that sp g	a：checked hourly（roundsheet）
		．05N		instrumentation peg low operator fails to respond to low level	Typical Circumstances，Further Loss
OPRTK906CSNA\＃	1	1．0E－2 $\begin{gathered}\text { 1N } \\ \mathrm{N}\end{gathered}$	$1.00 \mathrm{E}-02 \mathrm{~N}$	alarm in tank 906	could shut down process
PER－COLDO35G\＃	1	$\left\lvert\, \begin{array}{r}1 \mathrm{~N} \\ 3.50 \mathrm{E}-01 \mathrm{~N}\end{array}\right.$	$3.50 \mathrm{E}-01 \mathrm{~N}$	Cold streams sent to 3.7	1.5 Days of cold Streams out of 4 days of running
PERACCUMIILO\＃	1	－50E01N 1 N	1．00E－32N	30，000 lbs of organic accumulares in	
PEREETE：${ }^{\text {a }}$ ：			2．00E－3：		
EEREETE：．．${ }^{\text {a }}$		$2.00 \mathrm{E}-02 \mathrm{~N}$	2．9リエ－．．．．	before this barch	batches a y キar Incredible Event
PERFBLININC\＃	1	2．008 $1.00 \mathrm{~N}-32 \mathrm{~N}$	$1.00 \mathrm{E}-32 \mathrm{~N}$	Excess TBP is Received in $\mathbf{E .} 7$ From 9.7	Incredible Event
FERS：$-\therefore \sim$	1	$1.00 \mathrm{E}-32 \mathrm{~N}$ 111	2．00E－51：1		20g escimarta
PERSR17ち9さ日		$2.00 \mathrm{E}-01 \mathrm{~N}$ 1 N	1．00E－01N	Sample is Not Representative it＇rank	No credir is caker for samplind
		1．00E－01N		Contents	involving＜ $10,6 \mathrm{TE}$ ？ Sampling poor 1ij\％
PERSFT－EiSM\％	1		1．00E－01H	Sample is not represshtarive－［ tarak	Sampling poor 1－\％
PERTK175．20A\＃	1	$1.00 \mathrm{E}-01 \mathrm{~N}$ 1 N	2．00E－03N	Sufficient TBP present in tank 17.5	a： 1 in 5 years（1／500 Batches）
		$2.00 \mathrm{E}-03 \mathrm{~N}$ 1 N			Pu Recovery，Assume 1 out of 50
PERTR175002A\＃		$2.00 \mathrm{E}-02 \mathrm{~N}$	$2.00 \mathrm{E}-02 \mathrm{~N}$	Material is Being Received From 17.5	batches
RLPPUMP－NREG\＃	1		$1.00 \mathrm{E}-03 \mathrm{~N}$	Pump switch fails to open	Per Demand，Generic Data
SAM－7．8－FAIA	5	$1.0 \mathrm{E}-3 \mathrm{~N}$ 6 D	7．20E－04	Sampler malfunctions such that a	6 days to Correct：FR 1E－5／hr
		$1.00 \mathrm{E}-05 \mathrm{H}$		sample can not be pulled（tank 7．8）	Sampler，Failure 6 Days to restore：FR $1 \mathrm{E}-5 / \mathrm{hr}$
SAM＿17．5FALA\＃		$1.00 \mathrm{E}-05 \mathrm{H}$	7．20E－04	$\begin{aligned} & \text { Sampler malfunctions such that a } \\ & \text { sample can not be pulled (tank 17.5) } \end{aligned}$	
SPGBEVAPPLGG\＃	3	$\begin{array}{r} 1.00 \mathrm{e}-\mathrm{n} \\ 1 \mathrm{D} \\ 2.0 \mathrm{D} \end{array}$	8．65E－01	Plugging of instrumentation causes a low spg reading	A： 1 day to detect and restore（eas， to＂correct），detected with next feel tank
TBP17．5－INCG\＃		1．0E－32N	$1.00 \mathrm{E}-32$	Several batches containing excess TBP are received from 17.5 （ 30,000 lbs total）	a：Incredible－it would take 3 consecutive transfers from 17.5 during a batch
TBPDENS1PREA\＃		$1.0 \mathrm{E}-32 \mathrm{~N}$	1．00E－32	Process upsets causes dilute 2AW or high density in 11.7 S	incredible，phase inversion of $>$ 10，000 lbs

Basic Event Data for 7.6E \& 7.7E Evaporators (CONT.)

Event	c	Input	Calc.	Description	Source
TBPDENS2 PREA\#		$1.0 \mathrm{E}-32 \mathrm{H}$	8.76E-29Y	Process upsets causes dilute 2 W or high density in 11.7 S	incredible, phase inversion of $>$ $10,000 \mathrm{lbs}$
TBPTK---PREA\#	3	12 H 0.1 Y	1.37E-04	Process upset causes excess organic in feed	Estimated as $1 / 10 y e a r s$ - Not detected for 12 hours
TBPTK2BPPREA\#	3	$\begin{array}{r} 12 \mathrm{H} \\ 9 \times 1 \mathrm{x} \end{array}$	1.37E-04	Process upset causes excess TBP in canyon product	a: process upset exists for 12 hours: FR 1/10yr
TSTBETE-FAIG\#	5		+4.80E-05	Batch Evaporator Temperature Sensor	Temp Sensor, Discovered within 4
TUBBEAIRLEGG\#	3	$\begin{aligned} & 1.00 \mathrm{E}-6: \mathrm{H} \\ & 3.00 \mathrm{E}-07 \mathrm{H} \end{aligned}$	2.88E-04	Fails Air leak cause false sp g reading (batch evaporator)	days: FR1E-6/hr 10 ft Long*4 days to restore, (next feed tank filling)

Data Type Codes for 7.6E \& 7.7E Evaporators

Data Type Codes for $7.6 \mathrm{E} \& 7.7 \mathrm{E}$ Evaporators (CONT.)

| Type Code | Rate | Description | Source | EF |
| :--- | :--- | :--- | :--- | :--- | :--- |
| TST FAI | $1.00 \mathrm{E}-06 \mathrm{H}$ | Sensor/Transmitter/, Transducer/Proc.
 Switch, Temp., Failure (Instr. \& Control) | WSRC-TR-93-262, TST-FA-I | |
| TUB LEG | $3.00 \mathrm{E}-07 \mathrm{H}$ | Tube, Leakage (external) (per ft.)
 (Compressed Gas) | WSRC-TR-93-262, TUB-LE-G | |

[^0]-

DATE: October 5, 1994

TO:	C.R. Lux
	E.V. Browne
	L.W. Christiansen

FROM: R.E. Vail

RE: $\quad \begin{aligned} & \text { Human Factors Review of the "Red Oil" Explosion Fault Trees for the } \\ & \text { F Canyon Evaporators }\end{aligned}$
CC: D.A. Sharp
J.H. Starling
D.J. Baker
H.C. Benhardt

Introduction

A Human Factors review of the F Canyon Evaporators (7.6E, 8.5E, 9.3E, and 17.7E) fault trees for "red oil" (Tomsk-like) explosions was performed over the past two weeks. The review included: (1) documentation of the supporting information required to justify the evaluation of the assigned human error codes, per WSRC-TR-93-581 (presented in Attachments 1 through 4); (2) suggested events to be recoded (as noted in "ERROR CODE" column of Attachments 1 through 4); (3) a review of dependencies between multiple human error events in a single minimal cut set (Attachment 5); (4) identification of human error events that require procedure modification before full credit can be given to the event (as noted in the "HEP" column of Attachments 1 through 4); and (5) identification of human error events that need further logic development by the analysts, in conjunction with the facility technical representatives.

Review Methodology

A qualitative task analysis to support the human error modeling and quantification selections made by the fault tree analysts did not exist. Because of this lack of documentation, the available information was compiled before an evaluation of each human error was possible. The types information included actions involved, who performed theaction, equipment, feedback and indication, and the event probability and error factoridill human error events in the batch evaporator (7.6E) tree (BATCH.CAF) were reviewedat For the additional four trees (8.5E, 9.3E-C, 9.3E-B and 17.7E), I had each tree's analyst mark the branches that were not directly "pruned" from the BATCH tree and only these tree-specific branches/ human error events were reviewed. The CONT93C.CAF tree was not reviewed in-depth because its logic duplicated the CONT93.CAF tree, minus the sampling branches.

Any reference to a reviewed procedure should not be misconstrued as an in-depth procedure (or programmatic) review. The only steps reviewed were those that directly pertained to the modeled operator actions. Glaring inadequacies were noted.

Summary of Findings Based on Items (1) through (5) in Introduction

(1) Human error documentation (that meets the intent of both DOE STD-93-3009 and NUREG/CR=1278) was provided in this memo by the Human Reliability Analyst for four of the five red oil explosion fault trees (the fifth tree was an exact duplicate of the CONT93.CAF tree) for 88 different human error events.
(2) Twenty-four of the above 88 human errors should be re-coded. The changes and the effect on the probability value are as follows (the suggested changes are denoted under the "ERROR CODE" column in Attachments 1 through 4):
one eyent (OPRLV906ACNA\#) is a major rework and logic change;
11 human errors changed from lower to higher values w/o changing type code;
four changed type code and decreased failure probability value;
six changed type code and increased failure probability value;
two changed type code with no change in probability value.
Note: Values in WSRC-TR-93-581 are mean values (on a log scale).
(3) Dependence - The assumption of independence (zero dependence) between operator actions had been assumed by the fault tree analysts for most human error events in the trees. A more conservative general guideline is to first assume some level of dependence between human activities during the logic model development and early quantifications, .unless a diligent search reveals no significant interaction between activities. This includes both inter- and intra- operator actions.

The assessment of dependence was performed in accordance with NUREG/CR-1278 guidelines. The nominal conditional human error probabilities reported in Table 20-21 (items 2a through 5a) were used to quantify low ($\mathrm{LD}, \mathrm{p}=0.05$), moderate ($\mathrm{MD}, \mathrm{p}=0.15$), high ($\mathrm{HD}, \mathrm{p}=0.5$) and complete ($\mathrm{CD}, \mathrm{p}=1.0$) dependence levels. The following general guidelines of dependence level determination from Chapter 10 of NUREG/CR-1278 were applied:

- CD is unusual between two people working on a job.
- CD between two actions performed by the same person is more common.
- CD when two (or more) switches/components are treated as a pair (manipulated at the same time per a procedure).
- HD usually for two operators in a CR for tasks in which they are supposed to interact.
- HD for two controls at a panel if the operator doesn't have to change his position.
- HD if two (or more) parameters indications are read on the same recorder/ display, and are treated as a functional unit.
- MD if two operators assigned to the same panel and split 50-50 between them the CR display scanning/ monitoring duties.
- If a decision cannot be made between two levels of dependence, then the higher level is chosen.

Several of the F Canyon control room operator duty positions may be performed by a single operator. The operators have been cross-trained on several positions and in some cases may perform two duties during one shift. (These two duty stations are within close proximity of each other). There is also the possibility that an operator may report for the following shift "day" and perform a different duty position than the previous day. Several of the duty combinations are as follows (based on conversations with R. Eubanks, Shift Technical Engineer, F Canyon):

Solvent Recovery operator \& Low Activity Waste operator
Lab Waste operator \& 2nd U Cycle (17.7E) operator Lab Waste operator and LAW operator
(2nd Pu cycle position precludes it from being in combination with others)
It is suggested that the failure probabilities for one of each of these pairs (or triplets) of human error events should retain its "original" value. The other events should be adjusted to account for dependencies when these two (or more) events appear in the same minimal cut set. The recommended failure probability of " $\mathrm{p}=$?" for the second (third, fourth, ...) human error event in the minimal cut set, is given after the events. (The order of the events (i.e., the one(s) receiving the conditional probability) should be determined by the time sequence of the events. To facilitate making the changes, an extension to the coding scheme might be developed. Where "L", "M" or "H" are used in the third position of the OPR type code, the characters "C" (for CD), "M" ("much" for HD), "S" ("some" for MD), and "V" ("very little" for LD) and then the associated values of 1.0, 0.5, 0.15 and 0.05 , respectively.

The suggested dependence levels are listed by tree in Appendix 5.
(4) Procedure addition or changes required (for "old" existing operator errors):
a. OPRPUMPAVRNA\#, SOP 221-F-40825, Att 7.1 should have "lower limits" for Items \#9 and \#10, 8.5E spg and 8.5 True Level ($\mathrm{p}=0.5$)
b. OPRRA147ACNA\#, "operator fails to respond to low level in Tank 14.7" - no ARP exists (there may be operator aids on panel boards for when pump prime is lost on 14.7) ($\mathrm{p}=1.0$ now, would go to $\mathrm{p}=0.001$) (in 9.3E \& 17.7E trees)
c. OPRRA904ACNA\#, "Operator fails to respond to low level alarm in Tank 904", SOP 211-F-1221, Steps 5.5.1 \& 5.6.1 NOTES are mispositioned and contain typos for setpoint information ($\mathrm{p}=1.0$ until fixed, then $\mathrm{p}=0.01$)
d. OPRQ73--ACLA\#, "Operator fails to settle tank contents prior to transferring out", SOP 221-F-40790, implies agitator "OFF". Need to add step to "ENSURE agitator is off".
e. OPRTK147ACNA\#, "Operator fills tank 14.7 (level procedurally controlled) There are numerous procedures that addresses the chronic (or known accidental diversion) loss of solvent, daily solvent inventory control, and compensating for low solvent inventories. But these do not address the control of an acute, gross solvent loss. Perhaps an Abnormal Operating Procedure (AOP) is needed to handle this scenario. ($\mathrm{p}=1.0$ now, then $\mathrm{p}=0.005$ with AOP)
f. OPRG175:ACLA\#, "Operator fails to settle tank contents prior to transferring out" (to 8.7) No procedure currently exists ($\mathrm{p}=1.0$ now, to $\mathrm{p}=0.005$ when procedure added). (7.6 E Batch tree) ${ }^{\text {S }} \mathrm{s}^{2}$?
g. OPRGS175ACNA\#, "Procedural violation results in sample not being taken", no procedure exists for this infrequent route from sump handling (might be similar to procedure SOP 221-F-40780) ($\mathrm{p}=1.0$ now, to $\mathrm{p}=0.005$ when procedure added).(7.6E)
h. OPRG175VDEHA\#, "Operator fails to correct excessive TBP sent to 8.7", Rerun operator does not have procedure for decanting from 17.5 to 8.7 ; ($p=1.0$ now, to $p=0.005$ when procedure added).(7.6E)
i. OPRG175TACLA\#, "Operator transfers too much TBP to 8.7", procedure not written; special procedure should direct Rerun operator to look for the "sharp break" in spg.
j. OPRG-9.7CVNA\#, "Operator fails to visually check sample for solvent", event type code changed to -VIH- because it's a visual inspection task that is NOT procedure-driven. $\mathrm{p}=0.5$ now, could be changed to $\mathrm{p}=0.01$ if proceduralized, used every time and sample aisle operators expectations' trained on looking for TBP in sample.
k. OPR8.7AGACNA\#, "Operator fails to agitate tank 8.7 prior to sampling" SOP 221-F40825 does not state to havel or turn the agitator ON prior to sampling. ($\mathrm{p}=1.0$ now, $\mathrm{p}=0.005$ then) (in 7.6E) (treated as "new" sensitivity event in 8.5 E tree)

1. OPRTK128DENA\#, "Operator fails to diagnose cause of change in spg, level interface"; was not able to verify if a procedure existed that gave guidance on the diagnostic criteria for the Solvent Recovery operator for Tank 12.8. ($p=1.0$ until "proven" then $\mathrm{p}=0.01$)
m. OPRGS137ACNA\#, "Procedural violation results in no sample being taken for 13.7, although procedures exist for sampling 13.7, they do not cover this scenario for 7.6 E tree.
(5) Logic changes - A change in the logic (or clarification) is suggested for the following operator action. OPRLV906ACNA\#, "Operator fills tank 906 (level procedurally controlled)". The action implies inventory control at regular intervals and communication of inventory amounts among the F Canyon and Outside Facilities operators. A first response to this event may be that the 2nd Pu Cycle operator shuts down his cycle. The Low Activity Waste operator might shut down the evaporator. The Solvent Recovery operator may perform troubleshooting if solvent recovery cycle is involved at that time. Consider adding the following events (or some combination), as appropriate:

- 2nd Pu operator fails to shutdown cycle (CS? or AC?)
- LAW operator fails to shutdown evaporator (CS? or AC?)
- SR operator fails to diagnose loss of solvent inventory (DE?)

Fault Tree Recommendations

1. In generat, the trees are strongly influenced by the contributions of operator, E\&I technician, andlaboratory error. Administrative controls, both those currently in place and ones piomised, are needed to properly credit these human actions. In instances where the facility commits to providing the new administrative controls (e.g., alarm response procedures, decanting SOPs, etc.), then full credit should be assigned, as noted in the "HEP" column of Attachments 1 through 4. Additionally, if no commitment is forthcoming, then no credit ($p=1.0$) should be assigned for that particular operator action.
2. Overall, modeling of operator error was fairly accurate. The majority of proposed changes are to operator error events that reflected a lack of knowledge of the procedural/ administrative controls in place for the facility. The fault tree analysts should acquire the procedural documentation earlier in the development phase. (These changes became evident with a review of the procedure index for F Canyon and the procedures). Most of

EPD-SIM-940098
these were changes from the "administrative controls" (AC) type code to the "compelling signal" (CS) type code, or the reverse. Several changes reflected changes to and from the "diagnosis error" (DE).
3. It is suggested that the fault tree analysts document their selection rationale (and the underlying task analysis) for operator errors earlier in the tree development cycle. Because the error sensitivity and assumptions rely on this task analysis documentation, it is counterproductive to wait until the review phase to construct it.
4. Calibrations involving "evaporator temperature sensor" (e.g., OPRGCETEMCNA\# in the 8.5 E tree) for Molytek equipment may be better modeled as a programming error ("incorrect reading or recording of data", - IR-, $\mathrm{p}=0.01$). Our technical (STE) contact says that Molytek is an uncalibratable IPI.
5. The following two gates (page 29) of the Batch Evaporator tree, do not contain descriptions of the branch: GE_12.8_XFER_G and GE_12.8_XFER1_G

The following are presented to clarify suggested changes:
6. Sample aisle operator has high expectancy for "no TBP present" condition, and would not be looking for the presence of TBP/solvent in the sample. This would increase the probability of his failing to detect it, therefor the higher failure value should be used.
7. Shift Technical Engineer (STE) does not expect TBP to be present in the continuous evaporator. (First the operator would have to clue-in the STE to the low density readings.) When there is a low spg (density) reading, the STE would first expect and investigate instrument malfunction (increasing the amount of time until the TBP is diagnosed/detected). (e.g., OPRCESPGDEHA\#, $\mathrm{p}=0.1$ in the 8.5 E tree)
8. Alarms exist for low levels on Tanks 14.7,906, and 904. The "administrative control failure" events (OPRRA147ACNA\#, OPRA904ACNA3 and OPRA906ACNA\#) should be changed to "failure to respond to a compelling signal" (-CSN-). (The failure probability increases from $\mathrm{p}=0.005$ to $\mathrm{p}=0.01$).

Procedural Recommendations

1. Although not affecting the "taking of spg readings" (e.g., OPRCESPGACNA\#), the SOP 221-E-40825, Att 7.1 Data Sheet should have the minimum limits value for "sp gr" in the table (item\#10) and for 8.5 True Level (Item \#9)

2. SOP 21 T-F-1221 "Operation of Segregated Solvent Systems Round Sheets (U)", has incorrectly positioned and misleading NOTES for Alarm Setpoints of Low and Low-Low . The NOTE for Tanks 904 and 906 Low-level alarms should be moved from above the "Low Low-Level " alarm substep (5.6.1) to above the "Low-level" substep (5.5.1). The NOTE for "Low Low-level" alarm is currently missing the needed descriptor "Low" (i.e., only has one "LOW"). It should be moved up to just above substep 5.6.1. (Also, in Appendix 7.9, change "Level 96 " to read "Level \%").
3. Alarm Response Procedure, SOP 221-F-ARP-WX-10-1 (Rev. 0) "OSR 7.6E HI POT TEMP" has incorrect documents listed in the "References" section of the ARP. Both
references incorrectly refer to the 8.5E Continuous Evaporator, instead of the batch evaporator. Additionally, the second reference refers to the starting up, when the Corrective Actions 3.3 directs a "shutdown". This type of error may not be limited to this one ARP and should be verified for similar ARPs.

Facility Recommendations

1. The PRoVOX low D/P alarm for PI-8259 (17.7E , point \#24) erroneously displays the word "HIGH" in red on the "17.7 Evaporator" display to indicate an alarmed LOW condition. This alarm is used in the "CONT177.CAF" tree operator event "OPRRBLOCCSNA\#, Operator fails to respond to 17.7E temp., level, or dp alarms (close block valve)". Until the required (PRoVOX) alarm setpoints and descriptions are verified/ validated for the 17.7 Evaporator (and other vessels where the PRoVOX may be relied on instead of panel information), no credit ($p=1.0$) should be given for these operator alarm response events.
2. Alarm Response Procedures (ARPs) do not exist currently for all OSR-related annunciator/alarms in the Canyon Control Room. Specifically, an ARP is not in the Control Room ARP manual for Panel WV-1A alarm "OSR 14.8 Cooling Water HIGH Temp".

References

[1] WSRC-TR-93-581, Savannah River Site Human Error Data Base Development for Nonreactor Nuclear Facilities (U), Benhardt, H. C., et al., February 1994.
[2] SOP 211-F-1221, Operation of Segregated Solvent Systems Round Sheets, Rev. 10
[3] SOP 221-F-40815, Processing LAW Concentrate, Rev. 3
[4] SOP 221-F-40825, 8.5E Continuous Evaporator Routine Operation, Rev. 5
[5] SOP 221-F-40790, Handling Hot Canyon Sump Solution in Vessel 7.3, Rev. 6
[6] SOP 221-F-40780, Handling Warm Canyon Sump Solution in Vessel 17.5, Rev. 4
[7] SOP 221-F-40506, Second Plutonium Cycle Solvent Extraction Round Sheet, Rev. 15
[8] SOP 221-F-40811, Shutting Down Batch Evaporators 7.6E, 7.7E, and 18.6E, Rev. 3
[10] SOP 221-F-41047, 12.8 Solvent Wash Change, Rev. 6
[11] SOP 221-F-41041, 14.5-2 Solvent Wash Change - First Cycle Down, Rev. 1
[12] SOP 221-F-41043, 14.8 Solvent Wash Change - First Cycle Down, Rev. 2
[13] SOP-221-F-41046, 14.5-1 Solvent Wash Change - First Cycle Down, Rev. 0
[14] SOP W-702002, Pressure Switch, United Electric, Calibration (U), Rev. 8
[15] SOP W-770005, Republic Pneumatic Transmitter, Calibration (U), Rev. 2
[16] SOP W-794001, Transmitter, Differential Pressure, Fischer \& Porter/ Moore, Series 50 DP 3000; Calibration (Installed) (U), Rev. 5
SOPW-794007, Ashcroft Series 4000, Pressure Transmitter, Calibration (U), Rev. 1
SOP W-798003, Fischer-Porter Concept 45 Pneumatic Recorder, Calibration (U), Rev. 4
[19] SOE221-F-40531(S), Transferring 2BP Solution from 9.8 to FB-Line, (Rev. 1)
[20] SOP 221-F-40415, Organic Level Depletion in 18.5 (U) (Rev. 1) (Inactive)
[21] SOP 221-F-40404, Routine Operation of 1CU Continuous Evaporator (Rev. 0) (Inactive)

Fault Trees Reviewed:

[1] BATCHEVI.CAF, 9/15/94, Runaway TBP Reaction in F Batch Evaporator [2] CONTAQ3X.CAF, 9/14/94, Runaway TBP Reaction in F Continuous Evaporator
[3] CONT93.CAF, 9/16/94, no title
[4] CONT93C.CAF, 9/16/94, no title
[5] CONT177.CAF, 9/16/94, no title

ATTACHMENT 1

$\begin{gathered} \text { PAGE } \\ \# \\ \hline \end{gathered}$			ERAOR WESESCIRTION			
1 (52)		OPRGSPGCKACNA*	Operator falls to verify that 7.6E spg matches that of the feed	comparison of two spg readings at two steps in the procedure	LAW operator	3 spg recordars for: 8.5BT to 7.8 to 7.6 E
2(6)		OPRBBLOCCSNA: change to OPRBBLOCDENA:	Operator fails to respond to 7.6E temp. alarm (close block valve)	alarm acknowedgement; intiates "221-F-ARP- WX-10-1"; CRO asks Bldg Op to initiate SOP; (may not need to close this BV every time)	LAW operator \& Blda_operator	alarm/ annunclator tile (WX-10-1); manual 3 inch valve in piping corridor; don't dress out
4		OPRGBETEMCNA\#	Tank Temperature sensor is miscalibrated	whole temp loop cal; yields falso low	single E\&il tech; ops checks the functionality	sensor in 7.6 tank in Warm Canyon; transmitter on 2nd Level, recorder in CCR
5		OPRGPRESMCNA\#	Calibration error- Pressure switch for steam gives a false signal		single E\&l tech; Ops check;	detector - 2nd Level (on supply to coils); transmilter \& recorder2nd Level: alarm in CCR
$\left[\begin{array}{c} 7 \\ (37) \end{array}\right.$		OPRG7.8-DEHA\# change to OPRGZ.8-ACHA\#	Operator falls to recognize that 100 much TBP was transferred	reading spg at tank 7.8 during decanting procedure; he expects \& looks for the "break"	LAW operator; SUPVPERM keylock to jet to transfor	CCR panel

	으	의	앙	의	웅
		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		\%	
安卷					

				\qquad	\square
	의	의	\because in	의	$0 \cdot$
		0	$\stackrel{\sim}{0}$	囘	¢
$\%$					

WSRC-RP-95-910
Rev. 0
EPD-SIM-940098

						\qquad	
	응	으	앙	으	웅	웅	우
8	\%		0	\%			
$\% \%$							

	8	8	8	\％	\％	\％	8	8	8	
			\square							
							華		筍	热
等	R +2		\％+ \％	$\cdots \times$		4				\％R
$\begin{array}{\|l\|} \hline \text { 炭 } \\ \hline \end{array}$		त	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	N	¢	ल	$\stackrel{\sim}{\sim}$	¢	$\stackrel{\sim}{\sim}$

	아	응	우	9	우	4	우	\cdots
	18 0 0	0 0 0 0	\%	8	40 80 0	잉	0	京
						-		\|

ATTACHMENT 2

EPD-SIM-940098

PAGE	TASK \#		ERROR DESCRIPIION	ACTION INVOLVED	OPERATOR (ACTOR)	EQUPPMENT
		NEW BRANCH EVENTS SPECIFIG TO THIS TREE				
3	1	OPR-VOL-IRNA\#	Operator incorrectly reads flow or level indication	"flow" read on "8.5E HAT level; \qquad	LAW CCR op	use recorders WZ-18 \& WZ-19
3		OPR-PMP-DENA\#	Operator incorrectly diagnoses pump speed	HAT level (=flow), 8.5E Level, and pump (s) RPM	LAW CCR op	WZ-30 (for one of the pumps)
$\begin{array}{r} 3 \\ (5, \end{array}$		OPRCELE-MCNA	Calibration error- Level instrument is calibrated to give a high signal	(8.5E level? it can't be too far off because the evap overflows at a known level.)	E\&l techn with Operations check	x-mitter \& recorder (WZ-19)
7		OPRPUMPAVRNA\#	Operator fails to verify spg level, and flow readings (self check**)	8.5E spg, 8.5E level, HAT "flow" llevel	LAW operator, CCR	$\begin{gathered} \text { WZ-26 (B.5E level, 8.5E } \\ \text { spg (WZ-19), HAT } \\ \text { level/flow (WZ-18) or } \\ \text { WZ-24 (controllers) } \\ \hline \end{gathered}$
4		OPRGCSPGMCNA\#	Calibration error- spg instrumentation gives false low reading		E\&l techn with Operations check	x-mitter - 2nd Level; recorder (WZ-19)
6	6	OPRCEHATMCNG\#	Calibration error- level instrument is set to give a high signal \qquad		E\&l techn with Operations check	x-mitter - 2nd Level; recorder (WZ-19)
10	\cdots	OPRGCETEMCNA\# consider change to	Evaporator temperature sensor is out of calibration		E\&l techn with Operations check	Molytek

								$\frac{1}{2}$
		\sim	50	아	ω	으	우	응
		잉	$\overline{0}_{0}$	\%		$\begin{aligned} & 0 \\ & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 8 \\ & 0 \end{aligned}$	
$\begin{array}{\|l} y^{2} \\ 6 \\ \sigma^{2} \\ \hline \end{array}$	8	\mid						$\begin{aligned} & \\ & \because \\ & \end{aligned}$

母\%	\sim	m	으
	응	$\overline{0}$	
			\%

ATTACHMENT 3

WSRC-RP-95-910
Rev. 0
EPD-SIM-940098

$\begin{gathered} \text { PAGE } \\ \hline \\ \hline \end{gathered}$	Th	thequghacit		4etictidequeb	OREATO GACOB	$\operatorname{codectan}$
	1	EVENTSSPECCIFIC TO THIS TREE				
14		OPR147LEMCNA\#	Calibration error - Level instrument is calibrated to give a false reading -14.7		E\&/ Itechnician	transmitter: recorder
14		OPRRA147ACNA\# change to OPRRA147CSNA\#	Operator falls to respond to low level in tank 14.7	same event as in 17.7E tree	solvent recovery operator, CCR	
15		OPR904LEMCNA\#	Calibration error- 904 level instrument is callbrated to give a high signal		E\&i tochnician	
15		OPRRA904ACNA\# change to OPRRA904CSNA\#	Operator fails to respond to low level alarm in tank 904		Outside Facilties operator	Outside Facilities CR
16	5	OPRQ73--ACLA\# change to OPRQ73--ACNA\#	Operator fails to settle tank contents prior to transferingout	(transfers 7.3 to 8.3)	HAW/Rerun operator	08
16	6:	OPRO73-MCNA\#	Callibration error- spg instrument is calibrated to give a false reading		E\&l technician	
16		OPRQS73-LANA\#	Routine analysis gives false TBP results for tank 7.3		Lab tech specialist; low dependence Supv check	772-F Labs

		우	10	으	으	앙	아	우
		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		-		4080	능	0 0 0 0
							\% $\%$	

$\begin{gathered} \text { PAGE } \\ \hline \end{gathered}$		\qquad		\square	OPERATOR 	
16	W8 8	OPR73-AGACNA\#	Operator fails to agitate tank 7.3 prior to sampling		HAW/Rerun operator	
$\begin{array}{r} 17 \\ (22, \\ 30 \\ \hline \end{array}$		OPRQOPOCOACNA\#	Operations violates procedure and continues without lab results	similar to event in other tree	HAW	008
17		OPRQS73-ACNA\#	Procedural violation results in no sample being taken for tank 7.3		HAW operator	ORR
17		OPRQNROMCVLA\#	Operations fails to recognize/ correct omission of sample	similar to event in other tree	sample aisle operator (dressed out): HAW	sample aisle
$\begin{array}{r} 18 \\ (23, \\ 31) \\ \hline \end{array}$		OPRQNOTRACHA\#	Sample not transported to lab on a timely basis	similar to event in BATCH tree	sample aisle operator (dressed out/respirator)	sample aisle
$\begin{array}{r} 18 \\ (23, \\ 31) \\ \hline \end{array}$		OPRQLOSEILNA\#	Sample accountablility error in lab causes loss of sample	similar to event in other tree	Lab specialist	772-F Labs
$\begin{array}{r} 18 \\ (23, \\ 31) \\ \hline \end{array}$		OPROINSUACHA\#\#	Insufficient sample pulled	similar to event in other tree	sample aisle operator (dressed out/ respirator)	sample aisle
19		OPRQ73-VDENA\# change to OPRO73-VDEHA\#	Operator fails to correct the excessive TBP sent to 8.3 \qquad	DOESNT REALLY CORRECT IT PER SE; FLAGS IT \& INFORMS SUPERMSOF; SEPTECH WRITES SPECIAL PROCEDURE	HAW	-008

$\underset{\text { PAGE }}{\#}$	TAsk	ERAORCODE	HBBOB. DESCAPTION N	ACTON INVOLVED		EOUIPMENT
19	6	OPRQ73-1RNA\#	Operator incorrectly reads		HAW	
\square	5	OPRQ73-TACLA\#	OPR transfers too much TBP to 8.3 - doesn't watch transfer		HAW	08

	10	우
	$\stackrel{\rightharpoonup}{0}$	$\stackrel{4}{80}$
		-
	후후훙	
\mid	8	N

ATTACHMENT 4

PAGE \#	$\begin{array}{\|c\|c\|} \hline \text { TASK } \\ \text { N } \\ \hline \end{array}$		\qquad	ACTION:INVOLVED	OPERATOR ACTOR	EQUIPMENT
15		OPR147LEMCNA\#	Calibration error - level Instrument is claibrated to give a false reading14.7		E\&dtechnician	
15		OPRTK147ACNA\#	Operator fills tank 14.7 (Level procedurally controlled)		Solvent Recov. operator; Engineering can specify quantity of solvent to add If inventory appears low	

ATTACHMENT 5

BATCH (7.6E) tree

The primary operations duties in the BATCH tree are performed by the LAW operator and the Solvent Recovery operator. On occasion, these two duties may be performed by a single operator. All events below

OPR event couplings	Level $\mathrm{p}=$?	Operator	
OPRTK128DENA\#, OPRG138-ACNA\#,	HD	0.5	Solvent Rec.
OPR12.8-ACHA\# \&OPRG137TACHA\# (may transfer too much to 13.8 \& on to 13.7 - inattention)			Solvent Rec.
OPR12.8-ACHA\#\# and OPRTK128DENA\# (may transfer too much b/c inattentive \& misses diagnosis too)	HD	0.5	Sol
OPRS12.8ACLA\# and OPRG138-ACHA\# (not settle first tank, may increase prob. of not settle second)	CD	1.0	Solvent Rec.

CONTAQ3X.CAF (8.5E) tree

The primary operations duties in the 8.5 E tree are performed by the LAW operator and the 2nd Pu cycle operator. Because of the attention demands on the 2nd Pu cycle operator when the cycle is up and running, the two positions are not usually shared by a single operator.

OPR event couplings	Level_p=?	Operator	
ORG11.7CSLA\# \& OPRLV906ACNA\#	MD	0.15	2nd Pu
OPR8.7AGACNA\# \& OPRPUMPAVRNA\#	HD	0.5	LAW
OPRG8.7-ACNA\# \& OPRPUMPAVRNA\#	HD	0.5	LAW
OPR175AGACNA\# \& OPRPUMPAVRNA\#	MD	0.15	HAW(Rerun)/LAW

Dependence Between Operator Events by Trees

CONT9.3.CAF tree

The primary operations duties in the 9.3E tree(s) are performed by the HAW and Solvent Recovery operators. Additional human error events involve lab technicians, sample aisle, and Outside Facilities operators.

OPR event couplings	Level_p=?		Operator
OPRTK147ACNA\# \& OPRQESPGACNA\# (HAW expects SR to do inventory control correctly)	HD	0.5	HAW/SR
OPRTK147ACNA\# \& OPRQESPGIRNA\# (HAW expects no excess solvent, so overshoots "break")	HD	0.5	SR/HAW
OPRTK904ACNA\# \& OPRQESPGACNA\#	MD	0.15	OF/HAW
OPRQ8.3-IRNA\# \& OPRQBLOCCSNA\# (if incorrectly reads spg, won't expect alarms)	HD	0.5	HAW
OPRQLOSEILNA\# \& OPRQOPCOACNA\#	MD	0.15	SR/Lab
OPRTK904ACNA\# \& OPRQESPGIRNA\#	HD	0.5	OF/HAW

(HAW expects no excess solvent, so overshoots "break")

CONT17.7.CAF tree

The primary operations duties in the 17.7 E tree are performed by the 2nd U Cycle and Solvent Recovery(SR) operators. An additional human error event involves the Shift Technical Engineer (STE).

OPR event couplings

OPRRESPGDENA\# \& OPRTK147ACNA\#
OPRTK147ACNA\# \& OPRRESPGACNA\# (2nd U operator expects SR to control inventory correctly)

OPRTK147ACNA\# \& OPRRESPGIRNA\# (HAW expects no excess solvent, so overshoots "break")

OPRCLN--ACNA\# \& OPRBLOCCSNA\#
(thinks 18.5 is clean \& doesn't expect TBP \& investigates instrumentation failure)

OPRTK147ACNA\# \& OPRRA147ACNA\#

Level $p=$?
HD 0.5
HD 0.5

HD 0.5

MD 0.15

MD 0.15
SR

DISTRIBUTION

J.M. Low, 707-F

D.F. Chostner, 221-F
D.A.Sharp, 992-1W (2 Copies)
J.H. Starling, 992-1W
R.E. Vail, 992-1W
C.R. Lux, 992-1W

[^0]:
 3
 \vdots

