Low temperature growth of ultrananocrystalline diamond on glass substrates for field emission applications.

PDF Version Also Available for Download.

Description

Recent studies of field emission from diamond have focused on the feasibility of growing diamond films on glass substrates, which are the preferred choice for cost-effective, large area flat panel displays. However, diamond growth on glass requires temperatures {le} 500 C, which is much lower than the temperature needed for growing conventional microwave plasma chemical vapor deposition (CVD) diamond films. In addition, it is desirable to minimize the deposition time for cost-effective processing. The authors have grown ultrananocrystalline diamond (UNCD) films using a unique microwave plasma technique that involves CH{sub 4}-Ar gas mixtures, as opposed to the conventional CH{sub 4}-H{sub ... continued below

Physical Description

7 p.

Creation Information

Corrigan, T. D.; Krauss, A. R.; Gruen, D. M.; Auciello, O. & Chang, R. P. H. January 17, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Recent studies of field emission from diamond have focused on the feasibility of growing diamond films on glass substrates, which are the preferred choice for cost-effective, large area flat panel displays. However, diamond growth on glass requires temperatures {le} 500 C, which is much lower than the temperature needed for growing conventional microwave plasma chemical vapor deposition (CVD) diamond films. In addition, it is desirable to minimize the deposition time for cost-effective processing. The authors have grown ultrananocrystalline diamond (UNCD) films using a unique microwave plasma technique that involves CH{sub 4}-Ar gas mixtures, as opposed to the conventional CH{sub 4}-H{sub 2} plasma CVD method. The growth species in the CH{sub 4}-Ar CVD method are C{sub 2} dimers, resulting in lower activation energies and consequently the ability to grow diamond at lower temperatures than conventional CVD diamond processes. For the work discussed here, the UNCD films were grown with plasma-enhanced chemical vapor deposition (PECVD) at low temperatures on glass substrates coated with Ti thin films. The turn-on field was as low as 3 V/{mu}m for a film grown at 500 C with a gas chemistry of 1%CH{sub 4}/99%/Ar at 100 Torr, and 7 V/{mu}m for a film grown at 350 C. UV Raman spectroscopy revealed the presence of high quality diamond in the films.

Physical Description

7 p.

Notes

OSTI as DE00751844

Medium: P; Size: 7 pages

Source

  • MRS '99 Fall Meeting, Boston, MA (US), 11/29/1999--12/03/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/CHM/CP-99666
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 751844
  • Archival Resource Key: ark:/67531/metadc712149

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 17, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 11, 2017, 3:33 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 10

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Corrigan, T. D.; Krauss, A. R.; Gruen, D. M.; Auciello, O. & Chang, R. P. H. Low temperature growth of ultrananocrystalline diamond on glass substrates for field emission applications., article, January 17, 2000; Illinois. (digital.library.unt.edu/ark:/67531/metadc712149/: accessed November 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.