The AGS Complex

AGS Experiments 1995 • 1996 • 1997
AGS Experiments - 1995 • 1996 • 1997

J.C. Depken and P. Lo Presti

December 1997

AGS Department
Experimental Planning and Support Division

Brookhaven National Laboratory
Associated Universities, Inc.
Upton, New York 11973-5000
United States of America
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency, contractor, or subcontractor thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency, contractor or subcontractor thereof.

This report contains:

Page:

I ✓ FY 1995 AGS Schedule as Run
II ✓ FY 1996 AGS Schedule as Run
III ✓ FY 1997 AGS Schedule as Run
IV ✓ FY 1998-1999 AGS Schedule (proposed)
V ✓ AGS Beams 1997
VI ✓ AGS Experimental Area FY 1995 Physics Program
VII ✓ AGS Experimental Area FY 1996 Physics Program
VIII ✓ AGS Experimental Area FY 1997 Physics Program
IX ✓ AGS Experimental Area FY 1998-1999 Physics Program (proposed)
i ✓ A listing of experiments by number
105 ✓ Two-page summaries of each experiment, in order by number
147 ✓ Listing of publications of AGS experiments

This is the fourteenth. Please forward suggestions and changes for future editions to:

Division Head, EP&S Division
Brookhaven National Laboratory
Building 911B
Upton, New York 11973-5000 U.S.A.

The cutoff date for approved experiments included in this edition is December 1997.
AGS Schedule – As Run, FY1995

By: K. Gardner Date: 10–1–95

FY95

<table>
<thead>
<tr>
<th>AGS Mode</th>
<th>Hours</th>
<th>Au</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Exp</td>
<td>Experiment</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>AGS Startup</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>AGS Booster Studies</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>BISP</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>Chung/Canion</td>
<td>1470/1900</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>Planar</td>
<td>16/1000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>Zeller</td>
<td>2528/3500</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>Sandweiss</td>
<td>68/3500</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>Cheung/Hamagaki</td>
<td>1529/2500</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>Gould/cecil</td>
<td>1560</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>TestBeau</td>
<td>1765</td>
<td>131/2100</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>Mohon/Ritchie/Weinfield/Kond</td>
<td>4512/7000</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>Carroll/Heppelmann</td>
<td>2772/1600</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>C</td>
<td>Littenberg-Smith/Bryan</td>
<td>101290/1500</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>C</td>
<td>Haun-Munzinger</td>
<td>1795/2500</td>
<td>11/600</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>High</td>
<td>1355</td>
<td>1600</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>Neher/Cinko/Peng</td>
<td>1812/1519</td>
<td>72/600</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>Hussey/Tippens</td>
<td>72/600</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>D</td>
<td>Franklin/Hamilton</td>
<td>4515/679</td>
<td>6/2000</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>D</td>
<td>Rundell/Hamilton</td>
<td>259/220</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>Small/Heavy ion Experiments</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>A</td>
<td>Price</td>
<td>25/50</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>A</td>
<td>Ewingmore/Scott</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>B</td>
<td>Price</td>
<td>33/50</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>C</td>
<td>Adams</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

AGS_AS_RUN_FY95.BW
AGS As Run Schedule, FY1996

Experiment Table

<table>
<thead>
<tr>
<th>AGS Mode</th>
<th>Exp #</th>
<th>Experiment</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>895</td>
<td>C.M.</td>
<td>1300</td>
</tr>
<tr>
<td>A1</td>
<td>510</td>
<td>C.M.</td>
<td>1592</td>
</tr>
<tr>
<td>A1</td>
<td>8920</td>
<td>B.C.</td>
<td>179</td>
</tr>
<tr>
<td>A2</td>
<td>865</td>
<td>Zeller</td>
<td>143</td>
</tr>
<tr>
<td>A3</td>
<td>864</td>
<td>Sandweg</td>
<td>154</td>
</tr>
<tr>
<td>A3</td>
<td>898</td>
<td>Miller/Kossenberg/Nelson</td>
<td>138</td>
</tr>
<tr>
<td>B1</td>
<td>865</td>
<td>Chouman/Whitman</td>
<td>154</td>
</tr>
<tr>
<td>B1</td>
<td>917</td>
<td>Seo/Murayev</td>
<td>138</td>
</tr>
<tr>
<td>B2</td>
<td>871</td>
<td>Test Beam</td>
<td>1058</td>
</tr>
<tr>
<td>B3</td>
<td>871</td>
<td>Moloza/Riche/Lojek/Wonne</td>
<td>6178</td>
</tr>
<tr>
<td>C1</td>
<td>850</td>
<td>Carroll/Hepischmann</td>
<td>284</td>
</tr>
<tr>
<td>C4</td>
<td>787</td>
<td>Littenberg/Smith/Bryan</td>
<td>1915</td>
</tr>
<tr>
<td>C5</td>
<td>877</td>
<td>Bran-Munzinger</td>
<td>270</td>
</tr>
<tr>
<td>C6</td>
<td>900</td>
<td>Viola</td>
<td>937</td>
</tr>
<tr>
<td>C6</td>
<td>895</td>
<td>Crawford/Hallmut</td>
<td>422</td>
</tr>
<tr>
<td>C6</td>
<td>905</td>
<td>Vaine</td>
<td>751</td>
</tr>
<tr>
<td>C8</td>
<td>907</td>
<td>Hunterford/Enns</td>
<td>649</td>
</tr>
<tr>
<td>C8</td>
<td>885</td>
<td>Moyer/Franklin/Davis</td>
<td>1617</td>
</tr>
<tr>
<td>D</td>
<td>892</td>
<td>Gould</td>
<td>165</td>
</tr>
<tr>
<td>V1</td>
<td>821</td>
<td>Moore/Hughes/Roberts</td>
<td>198</td>
</tr>
<tr>
<td>AGS</td>
<td>880</td>
<td>Rose/lee</td>
<td>343</td>
</tr>
<tr>
<td>B1</td>
<td>869</td>
<td>Waddington</td>
<td>2897</td>
</tr>
<tr>
<td>B1</td>
<td>891</td>
<td>Waddington</td>
<td>1517</td>
</tr>
<tr>
<td>B1</td>
<td>891</td>
<td>Thompson</td>
<td>10/7</td>
</tr>
<tr>
<td>B1</td>
<td>895</td>
<td>Marshall</td>
<td>265</td>
</tr>
<tr>
<td>B1</td>
<td>895</td>
<td>Bae</td>
<td>272</td>
</tr>
</tbody>
</table>

Legend

- Detector Tests
- Single Cycle Fast Extracted Beam
- Slow Extracted Beam

By: M. Blaskiewicz **Date:** 10-1-96
AGS As Run Schedule, FY1997

By: Ralf Priel Date: 2-11-97

FY97

AGS Beam Mode

<table>
<thead>
<tr>
<th>Beam</th>
<th>Exp #</th>
<th>Experiment Spokespersons</th>
<th>Charged Hours</th>
<th>Approved Hours</th>
<th>Fs</th>
<th>Lo</th>
<th>E</th>
<th>Au</th>
<th>S</th>
<th>G</th>
<th>p (FEB)</th>
<th>p (FEB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>652</td>
<td>Chung/Ceson</td>
<td></td>
<td>5309</td>
<td>6109</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>655</td>
<td>Rui</td>
<td></td>
<td>875</td>
<td>1688</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>653</td>
<td>Zeller</td>
<td></td>
<td>5181</td>
<td>6500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>654</td>
<td>Sandweiss</td>
<td></td>
<td>2191</td>
<td>5500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>898</td>
<td>Mill/Kronenberg/Hilton</td>
<td></td>
<td>338</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>917</td>
<td>Betas/Magnity</td>
<td></td>
<td>1451</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>935</td>
<td>Mondays/Tedeson</td>
<td></td>
<td>128</td>
<td>264</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>936</td>
<td>Liften/Bryman/Zeller</td>
<td></td>
<td>163</td>
<td>8000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>PHENIX</td>
<td>Guny</td>
<td></td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td></td>
<td>Test Beam</td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>939</td>
<td>Kuang</td>
<td></td>
<td>786</td>
<td>1300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>690</td>
<td>Carrell/Heppelman</td>
<td></td>
<td>2844</td>
<td>4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>787</td>
<td>Liften/Bryman</td>
<td></td>
<td>12931</td>
<td>13500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>932</td>
<td>Quaggar</td>
<td></td>
<td>36</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>896</td>
<td>Crawford/Halman</td>
<td></td>
<td>428</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>934</td>
<td>Binns</td>
<td></td>
<td>16</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>913</td>
<td>Tippins/Satter</td>
<td></td>
<td>320</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>914</td>
<td>Nelken/Kyia/Kruglov</td>
<td></td>
<td>72</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>907</td>
<td>Hungerford/Penning</td>
<td></td>
<td>1093</td>
<td>1450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>905</td>
<td>Fukuda/Chrien</td>
<td></td>
<td>88</td>
<td>1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>937</td>
<td>Peterson</td>
<td></td>
<td>16</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>929</td>
<td>Kohimoto</td>
<td></td>
<td>38</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>938</td>
<td>Hastings/Bauer/Watanabe/Halke</td>
<td></td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>939</td>
<td>King/Hansen</td>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1</td>
<td>821</td>
<td>Morse/Kings/Hughes/Roberts</td>
<td></td>
<td>742</td>
<td>2100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGS</td>
<td>880</td>
<td>Roper/lee</td>
<td></td>
<td>448</td>
<td>320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGS</td>
<td>932</td>
<td>Norim</td>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend

- **S**: Scheduled Shutdown
- **B**: Beam
- **p**: Proton beam (25 GeV/c)
- **pp**: Polarized proton beam
- **SB**: Slow beam extracted
- **EB**: Fast beam extracted
- **LE Au**: 6 & 6 GeV nucleon gold beam

Note: The table and diagram provide a detailed schedule of AGS beam operations for FY1997, including experimenters, charged and approved hours, and specific dates for various runs.
AGS Beams, March 97

<table>
<thead>
<tr>
<th>Beam</th>
<th>GeV/c</th>
<th>(\text{Sp/p} (% \text{ fwhm}))</th>
<th>Prod. Angle (\Delta \Omega) (deg)</th>
<th>(\text{Flux} / 10^{13}) 24 GeV/c protons on target</th>
<th>(\text{GeV/c})</th>
<th>Purity</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separated Charged Particle Beams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>(\leq 0.83)</td>
<td>4</td>
<td>0</td>
<td>12.0</td>
<td>4.6x10^6 1.5x10^6 1.5x10^6 1.0x10^6 6.0x10^9 6.0x10^9</td>
<td>0.80</td>
<td>(\pi^-/K^+ = 0.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 1x10^9 stopped K^+/10^13 protons</td>
</tr>
<tr>
<td>C6,C8</td>
<td>(\leq 0.75)</td>
<td>5</td>
<td>5</td>
<td>10.0</td>
<td>1.0x10^6 3.3x10^8 3.3x10^8 4.6x10^6 2.0x10^9 2.0x10^9</td>
<td>0.70</td>
<td>(\pi^+/K^- = 5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\pi^+/K^- = 1)</td>
</tr>
<tr>
<td>D6</td>
<td>(\leq 1.9)</td>
<td>6</td>
<td>5</td>
<td>1.6</td>
<td>5.5x10^6 2.3x10^6 3.0x10^8 1.1x10^6 4.9x10^9 4.1x10^9</td>
<td>1.80</td>
<td>(\pi^-/K^- = 0.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\pi^-/\bar{p} = 0.07)</td>
</tr>
</tbody>
</table>

Unseparated Charged Particle Beams							
A1*	5–28	3	0	0.2	1.9x10^6 2.9x10^4 5.0x10^9 2.3x10^3 3.0x10^7 1.0x10^7	18	L = 130 m to MPS – "HEUB"
A2	< 6.5	5	3.5	0.75	5.8x10^7 1.9x10^7 6.9x10^8 6.3x10^6 1.3x10^9 8.8x10^9	6	L = 34 m – "6GEV"
A3*	1–28	4	0	0.1	6.0x10^8 1.0x10^8 4.0x10^7	14	Primarily HI "OR" with A1
B1*	5–28	3	0	0.05	3.0x10^8 3.0x10^7 2.0x10^7	14	Primarily HI "OR" with B5
BI	0.5–28	8	3	0.001	3.0x10^8 6.0x10^8 4.0x10^7	14	L = 96 m – Test Beam
B2	< 9	5	6	0.5	3.4x10^10 1.2x10^9 8.5x10^8 9.5x10^4 1.2x10^7 9.0x10^7	4	L = 140 m – Test Beam
CI	1–20	5	0	0.8	3.0x10^7 3.5x10^6 1.0x10^5 0.7x10^6 3.5x10^6 1.6x10^6	13	L = 100 m – "OR" with C5
CS*	1–28	2	0	0.15	1.0x10^8	13	L = 81 m – "OR" with CI

| **Neutral Beam** | | | | | | | |
| BS | 2–20 | 1–4.5 | 0.1 | | K^0_L flux = 1.3x10^8 @ 3.75° | 2–20 | \(n/K^0_L = 20\) | L = 10 m – "OR" with B1 |

| **Muon Channel** | | | | | | | |
| D2 | 0.025–0.15 | 9 (\pi) | 135 (\pi) | 24 (\pi) | Surface \(\mu^+\) flux = 2.0x10^6 | L = 12 m | Inactive, not yet commissioned |

Neutrino Beam							
U					T^_X flux = 2.0 x 10^{10}/m^{2} (Wide Band)	Not Presently Available	
					T^_Y flux = 1.4 x 10^{10}/m^{2} (Wide Band)		

| **\(\bar{e}^-\bar{\mu}\) Transfer Line** | | | | | | | |
| V1 | < 3.0 | 0.6 | 0 | | \(\pi^+\) flux = 1.7x10^8 | 3.0 | L = 120, for injection to \(\bar{e}^-\bar{\mu}\) ring commissioned in 1996 |

\(\text{K^+_L flux = 1.3x10^8 @ 3.75°}\)

\(n/K^0_L = 20\)

\(\text{Surface } \mu^+ \text{ flux = 2.0x10^6}\)

\(\text{Not Presently Available}\)

\(<K> = 1.4 \text{ GeV/c}^{2} \text{ Wide Band}\)

\(\text{L = 120, for injection to } \bar{e}^-\bar{\mu}\text{ ring commissioned in 1996}\)

* These \(0^0\) beam lines can be used for full energy polarized protons and/or heavy ion beams.
AGS Experimental Area

FY95 Physics Program – As Run
1 Oct 95

HI: 1 Sept – 31 Oct 94, 11.6 GeV/c/nucleon Au
Proton: 1 Dec 94 – 18 June 95, 24 GeV/c

Experiment Multiplicity
SEB ≤ 10
SEB+FEB ≤ 12

E821, μ^-, construction
V1, π^μ Beam Line, construction
RHIC Transfer Line construction

I10, E880
Partial Snake

D2-μ Channel

D6-2GeV,
E813, H Search
E885, $\Lambda\Lambda$ Hypernuclei
A2-6GeV, E865, $K^+ \rightarrow \pi^+\mu^+\nu$
A3, E864, Strangelets (HI)

A-E903, penning effects (HI)
E882D, track detector (HI)

C4-LESBIII
E787, $K^+ \rightarrow \pi^+\nu\bar{\nu}$

C8-LESBII
E890 and E909, η Physics

C6-LESBII
Hypernuclear Spectrometer

Proton: 1 Dec 94 – 18 June 95, 24 GeV/c
AGS Experimental Area

FY96 Physics Program – As Run
30 Sep 96

NASA: 1 Oct – 13 Oct 95, 1 GeV/nucleon Fe
proton: 1 Mar – 27 Jun 96, 24 GeV/c

polarized protons (ring): 10 – 15 Jul 96

Experiment Multiplicity
SEB ≤ 10
SEB+FEB ≤ 12
AGS Experimental Area

FY97 Physics Program – As Run

11 Aug 97

NASA: 21 – 30 Oct 96, 1 GeV/nucleon Fe

HI: 4 Nov – 2 Dec 96, 6 & 8 GeV/nucleon Au

3 Dec 96 – 31 Jan 97, 11.7 GeV/c/nucleon Au

Proton (SEB): 1 Apr – 3 Jun 97, 25 GeV/c

Polarized Proton (AGS Ring): 12–18 Jul 97

Experiment Multiplicity

SEB ≤ 10
SEB + FEB ≤ 12

E821, μ g-2

V1, π-μ Beam Line

E938, Neutron Spallation

U Line

RHIC Transfer Line

E926, K0 → π+π- (Tests)

Test Beam – PHENIX

B5, E935, Gluino Search

C1-EVA

C6-LESBII
E913, E914, Baryon Spectroscopy – Crystal Ball
AGS Experimental Area
FY98–99 Physics Program – Planned
19 Nov 97

Proton: 25 weeks 24 GeV/c SEB
8 weeks 24 GeV/c FEB
4 weeks 24 GeV/c Polarized Protons

HI: 5–6 weeks 11.7 GeV/c/nucleon Au
8 weeks RHIC Commissioning

NASA: 2 weeks 1 GeV/nucleon Fe

Experiment Multiplicity
SEB ≤ 10
SEB+FEB ≤ 12

E821, μ g-2

V1, π-μ Beam Line

P933, Proton Radiography (DP)
U, E938, Neutron Spallation (BES)
E939, APT (DP)

RHIC Transfer Line

E906, ΛΛ Hypernuclei - CDS
E929, Λ Hypernuclei - NaI Detector
E930, Λ Hypernuclei - Ge Detectors
E937, π- Electronic Upsets

E919, NASA Radiobiology
E864, Strangelets (HI)
E941, p-A Collisions

A1-MPS E900, ISIS
E852, Exotic Mesons

B2-Test Beam (many users)
B1- E925 & Test Beam
B5 (Idle)

C1-EVA, E850
Color Transparency

C6-LESBII
E913, E914, Baryon Spectroscopy - Crystal Ball
LIST OF EXPERIMENTS

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Collaboration/Spokesmen</th>
<th>Page</th>
</tr>
</thead>
</table>
| 787 | A Study of the Decay $K^+ \rightarrow \pi^+\nu\bar{\nu}$
BNL/Fukui/KEK/Osaka/Princeton/TRIUMF/Alberta
Bryman, Littenberg, and Smith | 1 |
| 813 | Search for a Strangeness -2 Dibaryon
Carnegie-Mellon/Alberta/Birmingham/BNL/Freiburg/IUCF/Kyoto/Kyoto-Sangyo/LAMPF/Manitoba/New Mexico/TRIUMF/Vassar/Yale
Franklin and Barnes | 3 |
| 821 | A New Precision Measurement of the Muon g-2 at the Level of 0.35 PPM
Boston/BNL/Budker Institute/Cornell/Fairfield/Heidelberg/Illinois/LBL/Max Planck Inst/Minnesota/KEK/Riken/Tokyo/Yale
Hughes, Morse, and Roberts | 5 |
| 850 | EVA, A Solenoidal Detector for Large Angle Exclusive Reactions. Experiment 850-
Determining Color Transparency to 22 GeV/c
Auckland/BNL/JINR/Mt. Holyoke/Penn St/Massachusetts
-Dartmouth/Tel-Aviv
Carroll and Heppelmann | 7 |
| 852 | Search for Mesons with Unusual Quantum Numbers
BNL/Indiana/Massachusetts-Dartmouth/Moscow St/Northwestern
-Notre Dame/IHEP-Protvino/RPI
Cason and Chung | 9 |
| 856 | Exploration of the Biomedical Potential of Antiprotons
BNL/Case Western Reserve/Harvard Cyclotron Lab/Loma Linda/Massachusetts/Syracuse/SUNY Health Science Center
Kalogeropoulos | 11 |
| 864 | Production of Rare Composite Objects in Relativistic Heavy Ion Collisions
BNL/Iowa St/Ames Lab/MIT/Penn St/Purdue/Bari/Massachusetts/Vanderbilt
-Wayne St/Yale/UCLA
Sandweiss | 13 |
| 865 | Proposal to Perform an Improved Search for the Decay $K^+ \rightarrow \pi^+\nu\bar{\nu}$
BNL/Bern/Connecticut/Hampton/INR-Moscow/New Mexico/Paul Scherrer Inst/Basel/Pittsburgh/Tbilisi St/Yale/Zurich
Zeller | 15 |
<table>
<thead>
<tr>
<th>Exp.</th>
<th>Collaboration/Spokesmen</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>866</td>
<td>Studies of Particle Production at High Baryon Density Using the Au Beam</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>BNL/Columbia/INS-Tokyo/Kyoto/LLL/Maryland/MIT/NYU/UC-Space Sciences Lab/UC-Riverside/Kyoto/Tsukuba/Yonsei Chasman, Hamagaki, and Steadman</td>
<td></td>
</tr>
<tr>
<td>868</td>
<td>Interactions of 10.6 GeV/nucleon 197Au Nuclei in Nuclear Emulsions</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Minnesota/Louisiana St/INP-Krakow/ITEP-Moscow Waddington</td>
<td></td>
</tr>
<tr>
<td>869</td>
<td>Measurement of Fragment Yields for 14 GeV/nucleon Au + X Collisions</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Minnesota/Washington/Caltech</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waddington</td>
<td></td>
</tr>
<tr>
<td>871</td>
<td>A New Search for Very Rare K_L Decays</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>UC-Irvine/Richmond/Stanford/Texas-Austin/William and Mary Kane, Molzon, Ritchie and Wojcicki</td>
<td></td>
</tr>
<tr>
<td>877</td>
<td>Study of Relativistic Nuclear Collisions with Heavy Beams Using the E814 4π Calorimetry and Modified Forward Spectrometer</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>BNL/GSI-Darmstadt/Idaho Nat. Eng. Lab./McGill/Pittsburgh/São Paulo/SUNY-Stony Brook/Wayne St Braun-Munzinger</td>
<td></td>
</tr>
<tr>
<td>880</td>
<td>The Effects of a Partial Siberian Snake on Polarization at the AGS</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>IUCF/BNL/ANL/TRIUMF/Fermilab/KEK/IHEP-Serpukhov/Riken Lee and Roser</td>
<td></td>
</tr>
<tr>
<td>885</td>
<td>Experiment to Detect $\Delta \Delta$ Hypermultiplets</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>BNL/CMU/Freiburg/KEK/Kyoto-Sangyo/LANL/Manitoba/New Mexico/Rutgers/TRIUMF May, Franklin, and Davis</td>
<td></td>
</tr>
<tr>
<td>890</td>
<td>A New Test of Charged Symmetry in Eta Production on Deuterium</td>
<td>31</td>
</tr>
<tr>
<td>891</td>
<td>A Search for Quark Matter (QGP) and Other New Phenomena Utilizing Au-Au Collisions at the AGS</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>BNL/City College of New York/UC-Berkeley/Rice Platner</td>
<td></td>
</tr>
<tr>
<td>892</td>
<td>Capture from Pair Production</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Lawrence Berkeley Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gould</td>
<td></td>
</tr>
<tr>
<td>Exp.</td>
<td>Collaboration/Spokesmen</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>------</td>
</tr>
</tbody>
</table>
| 893 | Temperature/Zenith Angle Calibration of Polycarbonate Tract Detectors
Dublin Institute for Advanced Studies
Thompson | 37 |
| 895 | Exclusive Study of Nuclear Collisions at the AGS
LBL/UC-Davis/Kent St/SUNY-Stony Brook/Ohio St/Purdue/CMU/BNL/Columbia/Harbin Inst/Auckland
Rai | 39 |
| 896 | A Proposal to the BNL AGS: To Search for a Short-Lived H, Dibaryon, Short-Lived Strange Matter, and to Investigate Hyperon Production in 11.6 A GeV/c AuAu Collision
SSL/BNL/UCLA/Carnegie-Mellon/Catania/CERN/Johns Hopkins/LBL/Michigan/NASA-Goddard Space Flight Center/Ohio St/Texas-Austin/Rice/Wayne St/Yale
Crawford and Hallman | 41 |
| 898 | Radiobiology and Biophysics with High Energy Heavy Ions
Colorado St/BNL/Jet Propulsion Laboratory/LBL/LANL/NASA-Johnson Space Ctr/MD/MD. School of Medicine/Georgetown Med. Ctr/UC/columbia/Pacific NWNL/Bemidji
Miller/Kronenberg/Nelson | 43 |
| 900 | Energy Dissipation and Multifragmentation in H+A Reactions Between 2 & 24 GeV/c
Indiana/Simon Fraser/Maryland/Texas A&M/BNL/LANL/ANL/Warsaw Kwiatkowski and Viola | 45 |
| 903 | A Study of Domain Wall Pinning in Irradiated Samples of Nd,Fe,B
BNL/Ames Laboratory
Snead and Finnemore | 47 |
| 904 | A Study of Columnar Pinning Centers in High T_c Superconductor
Houston/Texas Southern/IUCF
Weinstein | 49 |
| 905 | Search for a Σ Hypernuclear Bound State in 'He (K, π^+) Reactions
Nagae | 51 |
| 906 | Experiment to Detect Double-Λ Hypernuclei by Observing Characteristic π-Mesonic Decays
INS-Tokyo/BNL/Carnegie-Mellon/Gifu/Freiburg/TNR-Russia/Kyoto/Kyoto-Sangyo/NC A&T/Osaka/Temple/New Mexico
Fukuda and Chrien | 53 |
<table>
<thead>
<tr>
<th>Exp.</th>
<th>Collaboration/Spokesmen</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>907</td>
<td>Investigation of Light Hypernuclei Using the (K_{STOP}^{+}, π^0)** Reaction**
Arizona St/BNL/UCLA/CMU/CEBAF/Colorado/G.Washington/Houston/Kentucky/ LANL/Louisiana Tech/Maryland/Minnesota/North Carolina A&T/R. Boskovic Inst/Texas-Austin/Tohoku/Zagreb
Hungerford and Peng</td>
<td>55</td>
</tr>
<tr>
<td>909</td>
<td>ETA Production and Threshold in the Reactions (\pi p \rightarrow \eta n) and (K p \rightarrow \Delta n)**
G. Washington/UCLA/BNL/Abilene Christian/R. Boskovic Inst/JINR-Dubna/PNPI-Gatchina
Briscoe and Tippens</td>
<td>57</td>
</tr>
<tr>
<td>910</td>
<td>A Facility to Study Proton-Nucleus and Heavy Ion Collisions Using a Large-Acceptance Detector with Particle Identification Capabilities
BNL/Columbia/Florida St/Kent St/LBL/LLNL/SUNY-Stony Brook/Tennessee/Tsukuba/Yonsei
Boskovic</td>
<td>59</td>
</tr>
<tr>
<td>913</td>
<td>Baryon Spectroscopy with the Crystal Ball
Abilene Christian /ANL/Arizona State U/BNL/UCLA/G. Washington/Kent St/ PNPI-Gatchina/R. Boskovic Inst/Colo/Karlsruhe/Regina/Valparaiso
Sadler and Tippens</td>
<td>61</td>
</tr>
<tr>
<td>915</td>
<td>Proposal for 11.4 GeV Au Exposure at the AGS-The Trek Collaboration
UC-Berkeley/Space Research Institute (IKI)-Moscow
Westphal</td>
<td>65</td>
</tr>
<tr>
<td>916</td>
<td>Study of Projectile Fragmentation for (^{157}\text{Au}) Ions at ~ 4A GeV in Various Targets
UC-Berkeley
He</td>
<td>67</td>
</tr>
<tr>
<td>917</td>
<td>Studies of High Density Baryon Matter Using Rare Probes
ANL/BNL/UC-Riverside/Columbia (Nevis Lab)/Maryland/MIT/Yonsei Illinois/Rochester
Seto and Mignerey</td>
<td>69</td>
</tr>
<tr>
<td>Exp.</td>
<td>Collaboration/Spokesmen</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>------</td>
</tr>
</tbody>
</table>
| 919 | A Study of the Genetic and Epigenetic Effects Produced by High Energy Heavy Ions
BNL/LBNL/Colorado St/USAF Armstrong Lab/Maryland-Baltimore County/
Maryland-Baltimore/Georgetown U. Medical Center/Loma Linda/LANL/
NASA-Johnson Space Ctr/UC/Columbia/Pacific NWNL/Washington St/
Case Western Reserve/NIRS-Japan/Texas/Alabama Agr. & Mech.
Vazquez | 71 |
| 920 | Lens Test for Proton Radiography
Los Alamos National Laboratory
Zumbro | 73 |
National Aeronautics and Space Administration
Culpepper | 75 |
| 923 | Search for T Violating Muon Polarization in $K^+ \rightarrow \mu^+\nu\bar{\nu}$ Decay
BNL/INR-Moscow/Louisiana Tech/Yale
Adair, Diwan and Ma | 77 |
| 924 | Study of the $\xi(2220)$ in $\bar{p}p \rightarrow$ neutral final states using the Crystal Ball in the AGS D6 line
Illinois at Urbana-Champaign/Karlsruhe/Kent St/Maryland/Northwestern/
Petersburg Nuclear Physics Inst/Regina/UCLA/Valparaiso/William and Mary
Hertzog | 79 |
| 925 | Asymmetries in Inclusive Pion Production at Large $X_p = (0.5$ to 0.8) and $P_T \approx 0.8$ GeV/c with a Polarized Beam for a RHIC Polarimeter
ANL/BNL/IHEP-Protvino/ITEP-Moscow/Indiana/UCLA/Iowa/RIKEN/Tokyo
Makdisi and Yokosawa | 81 |
| 926 | Measurement of $K_L^0 \rightarrow \pi^0\nu\bar{\nu}$
BNL/INR- Moscow/Kyoto/New Mexico/Thomas Jefferson National Accelerator Facility/TRIUMF/Yale/U.British Columbia/VPI
Bryman, Littenberg and Zeller | 83 |
| 929 | Spin-orbit splitting of single Λ state studied by the $^{13}C(K,\pi\gamma)$ reaction
Osaka U./Tokyo/Tokyo-INS/Tohoku/KEK/BNL/Houston/N.C. A&T/
Hampton/Manitoba
Kishimoto | 85 |
<table>
<thead>
<tr>
<th>Exp.</th>
<th>Collaboration/Spokesmen</th>
<th>Page</th>
</tr>
</thead>
</table>
| 930 | High-Resolution γ Spectroscopy of Hypernuclei using Large-Acceptance Germanium Detector
Tokyo/Osaka/KEK/Tohoku/BNL/North Carolina A&T/Hampton
Tamura | 87 |
| 931 | Study of the $\Delta I=\frac{1}{2}$ Rule in the Weak Decay of S-Shell Hypernuclei
Houston/Kentucky/LANL/La. Tech. /Maryland/Minnesota/NCA&T/
R. Boskovic Inst/Tex-Austin/Tohoku U/U. Zagreb
Dehnard, Hungerford, Zeps | 89 |
| 932 | Study of RF Bunching Techniques
ANL/Fermi/BNL/KEK
Norem | 91 |
| 933 | Proton Radiography
LANL/LLNL/Bechtal
Morris and Hartouni | 93 |
| 934 | Proposal for Brookhaven Calibration of Detectors for Use on ACCESS
Washington Univ. in St. Louis/Caltech/Minnesota/Goddard Space Flight Center/Penn St
Binns | 95 |
| 935 | A Decay Search for a Light Gluino Bound State in the B5 Line
UC-Irvine/William and Mary/RPI/Richmond
Kuang | 97 |
| 936 | Search for T-Violation in the $K^+ \rightarrow \pi^+\mu^+\nu$ Decay Using Stopped Kaons
KEK/SUT/Tsukuba/British Columbia and TRIUMF/Saskatchewan/Montreal/VPI
Imazato | 99 |
| 937 | A Study of the Occurrence of Radiation-Induced Soft Error Upsets (SEU)
Colorado
Peterson | 101 |
| 938 | Spallation Neutron Target Studies at the AGS
ANL/BNL/Julich/KEK/JARI/LANL/ORNL/PSI
Bauer, Haines, Hastings, Watanabe | 103 |
| 939 | Experiments for the DOE Accelerator Production of Tritium (APT) Project
BNL/LLNL/LANL/DOE/Bechtel Nevada/CEA/LNS-CNRS
King and Hanson | 105 |
940 Search for $\mu N\rightarrow eN$ with Sensitivity Below 10^{16}
 UC-Irvine/Houston/Inst.Nuclear Research/NYU/Pennsylvania/Purdue
 Molzon

941 Study of Charged and Neutral Leading Particles in p+A Collisions at the BNL-AGS
 Columbia/Iowa/MIT/Mass/Purdue/UCLA/Vanderbilt/Wayne State/
 Yale
 Huang and Majka
Summaries

of

Experiments
Experiment 787 - A Study of the Decay $K^+ - \pi^+\nu\bar{\nu}$
Spokesmen: D. A. Bryman, L. S. Littenberg, A. J. S. Smith

- Brookhaven National Laboratory
 S. Adler, M. S. Atiya, I-H. Chiang, M. Diwan, J. S. Frank, J. S. Haggerty, V. Jain,
 S. Kettell, T. F. Kycia, K. K. Li, L. S. Littenberg, C. F. Ng, R. C. Strand, C. Witzig

- Fukui University
 M. Miyajima, Y. Tamagawa

- KEK-National Laboratory for High Energy Physics
 M. Aoki, T. Inagaki, S. Kabe, M. Kobayashi, T. K. Komatsubara, Y. Kuno, M. Kuriki,
 S. Sugimoto, K. Ukai, Y. Yoshimura

- Osaka University - T. Nakano

- Princeton University

- TRIUMF
 P. Bergbusch, E. W. Blackmore, D. A. Bryman, P. Kapinus, A. Konaka, J. A. Macdonald,
 J. Mildenberger, T. Numao, J.-M. Poutissou, R. Poutissou, G. Redlinger

- University of Alberta
 P. Kitching, S. Ng, R. Soluk

Experiment 787 is a search for reactions of the type $K^+ - \pi^+XX'$, where X is a weakly interacting light neutral particle. The experiment is sensitive to such decays at the 10^{10} level. The prime candidate is $K^+ - \pi^+\nu\bar{\nu}$ which provides a uniquely stringent test of the Standard Model and its parameters because it is the only experimentally accessible process that is dominated by an unambiguously calculable higher order weak interaction. Two body decays $K^+ - \pi^+X$ are also searched for to place constraints on the existence of a variety of hypothetical particles such as axions, familons, hyperphotons and supersymmetric neutrals predicted by extensions to the SM. Several other rare decays including $K^+ - \pi^+\gamma\gamma$, $K^+ - \pi^+\mu^+\mu^-$, $\pi^0 - \nu\bar{\nu}$, and $\pi^0 - \gammaXX$ are also being investigated. The former two, $K^+ - \pi^+\gamma\gamma$ and $K^+ - \pi^+\mu^+\mu^-$, were discovered by this experiment. Recently a candidate for $K^+ - \pi^+\nu\bar{\nu}$ was observed by E787.
Schematic elevation view of 48D48 spectrometer.

Plan view of the neutron detectors surrounding the target area.
Motivated by Jaffe's 1977 prediction of a six-quark object with strangeness -2 and $J^P=0^+$ at a mass of 2150, this experiment proposed to study the strangeness of -2 two-baryon mass spectrum from 100 MeV below the mass of the lightest known two-baryon strangeness -2 system, $\Lambda\Lambda$ mass. This particle, called the "H," has been predicted by later bag models as well. Although the mass calculation is model dependent, the predictions are considered within the expected range of sensitivity. The possibility of resonances near the $\Lambda\Lambda$ mass due to conventional meson exchange forces can also be explored using the experiment covers the region both above and below the $\Lambda\Lambda$ mass.
EXPERIMENT 821 - A NEW PRECISION MEASUREMENT OF THE MUON G-2
AT THE LEVEL OF 0.35 PPM
Spokesmen: V.W. Hughes, W.M. Morse, B.L. Roberts

- Boston University - R.M. Carey, W. Earle, E. Efstathiadis, M. Hare, E.S. Hazen, F. Krienen, J.P. Miller, O. Rind, B.L. Roberts, L.R. Sulak, A. Trofimov
- Cornell University - T. Kinoshita, Y. Orlov
- Fairfield University - D. Winn
- Lawrence Berkeley Lab./Brookhaven National Lab. - M.A. Green
- Max Planck Institut fur Physik - U. Haeberlen
- National Laboratory for High Energy Physics (KEK) - A. Yamamoto
- Tokyo Institute of Technology - M. Iwasaki, M. Kawamura
- University of Heidelberg - A. Grossmann, K. Jungmann, G. zu Putlitz
- University of Illinois - P. Debevec, W. Deninger, D.W. Hertzog, C. Polly, S. Sedyky, D. Urner
- University of Minnesota - P. Cushman, L. Duong, S. Giron, J. Kindem, R. McNabb, D. Miller, C. Timmermans, D. Zimmerman

The anomalous gyromagnetic ratio of the muon (g-2) will be measured to 0.35 ppm or a factor of 20 times better than it is currently known. The predicted contribution to (g-2) from the first and second order W^± and Z^0 radiative corrections is predicted to be 1.3 ppm, so this experiment will provide a direct test of the electroweak radiative corrections, and hence of the renormalizability of the Glashow-Weinberg-Salam theory. Since a_µ is sensitive to a wide range of non-standard model effects there is a window in which to search for new physics. W or muon substructure, super-symmetry and the existence of new gauge bosons are several possibilities. A 14 m diameter superferric muon storage ring is now operational. Data collection began in FY 1997.
EVA, A SOLENOIDAL DETECTOR FOR LARGE ANGLE EXCLUSIVE REACTIONS
EXPERIMENT 850 - DETERMINING COLOR TRANSPARENCY
Spokesmen: A.S. Carroll and S. Heppelmann

- **Brookhaven National Laboratory**
 D.S. Barton, G. Bunce, A.S. Carroll, S. Gushue, Y.I. Makdisi, T. Roser

- **J.I.N.R., Dubna**
 Y. Panebratsev, S. Shimanskiy, I. O. Tsvetkov

- **Mt. Holyoke College - H. Nicholson, C. S. Sutton**

- **Pennsylvania State University**
 V. Baturin, S. Heppelmann, A. Leksanov, E. Minor, A. Ogawa, D. Tsalov

- **Tel-Aviv University**
 H. Aclander, J. Alster, S. Durant, E. Kosonovsky, I. Mardor, Y. Mardor, I. Navon, E. Piasetzky

- **University of Auckland - N. Christensen**

- **University of Massachusetts-Dartmouth - J.J. Russell**

In order to extend the range and sensitivity of measurements of large angle exclusive reactions, a new solenoidal detector, EVA, has been built. This detector increases the solid angle acceptance by over a factor of 20 over the existing dipole detector of E834, and provides for momentum measurements of all outgoing particles. The initial experiment, E850, has made new determinations of color transparency for carbon nuclei. Also measurements of carbon spectral functions at large momentum transfers were made. With a neutron detector, the correlations of neutrons associated with quasi-elastic (p,2p) reactions were determined. The solenoidal magnet which has not had reliable operation, has been substantially rebuilt, and now performs in a satisfactory manner.
Despite a number of experimental searches there is still no unambiguous candidate for a glueball, hybrid or four-quark state, although QCD predicts such objects. However, there are some tantalizing states, among them the $M^*(1405)$ which has exotic $J^{PC} = 1^-$ and the scalar $G(1590)$ which has unusual branching ratios for a quark-antiquark state.

The experimenters will study these and other states, concentrating on decay modes of mesons with multi photons and 0, 1 or 2 charged particles. The detector is built around the MPS. The target will be sur-rounded by a CsI veto, charged particle detectors and a scintillation counter. The target will be followed by charged particle detectors, a Cerenkov counter and a 3000-element lead glass calorimeter to detect photons from meson decays. This experiment aims to search for exotic mesons that cannot be a pair of a quark and an anti-quark. These include glueballs (no valence quarks), multi-quarks (two or more pairs of a quark and an anti-quark) and hybrids (a pair of a quark and an anti-quark, plus a valence gluon).
EXPERIMENT 856
Home Page • http:

[Diagram of an experiment setup with labels: GMX (1), GMX (2), TARGET, Si, JVD, Pb, A, and a 1.5m scale.]
EXPERIMENT 856 - EXPLORATION OF THE BIOMEDICAL POTENTIAL OF ANTIPROTONS
Spokesman: T. Kalogeropoulos

- **Brookhaven National Laboratory**
 S. Bart, G. Bennett, R. Chrien, M. Sakitt, R. Sawanta, R. Sutter
- **Case Western Reserve University** - W. Fickinger, D. K. Robinson
- **Harvard Cyclotron Laboratory** - A. Koehler
- **Loma Linda University** - J. Archambeau
- **Syracuse University** - T. Kalogeropoulos, J. Reed, Z. Sobolewski
- **SUNY Health Science Center** - D. Bassano, S. Manglos, S. C. Prasad
- **University of Massachusetts** - A. B. Brill

The potential of antiprotons for practical applications within present antiproton collection capabilities is promising. Suggested applications include direct 3D electron density imaging, 3D multi-elemental imaging, guiding precise and easy delivery of ion beams to targets, and radiation therapy.

In this initial phase of the research, the following physics questions will be addressed: (a) Comparison of antiproton capture rates in complex targets with the Z-law; (b) Studies of the annihilation mechanism in nuclei. These studies of physics are interesting on their own right and will provide basic information in evaluating the proposed applications as well.
E864, Strangelet Search Experiment

The E864 "Spectrometer" measures:
- Charge (Z) and Mass (M)
- Strangelets from $M > 7$ GeV/c2 with $Z/M < 0.3$ e/GeV/c2

Elevation View

Plan View

M1 & M2 = dipole spectrometer magnets
I1, I2 & I3 = scintillation hodoscopes
S1, S2 & S3 = straw tube arrays
The experimenters have begun to carry out a systematic set of measurements and searches for "composite" objects produced in high energy heavy ion collisions. These measurements are aimed at studies utilizing the heaviest ions available at the AGS, including gold ions. A major focus of the experiment is on charged composites; however, studies of neutral systems are also considered significant in the study. The experiment is designed to study particles produced in the central region of rapidity which are produced in central collisions. Since composite systems must be produced by the overlap of particles produced in the collision, it is expected that composites will be made mostly in the central rapidity region where overlaps would be most probable.
EXPERIMENT 865

Home Page • http://pony.phy.bnl.gov/~hma/hma/html

E865 Apparatus Plan Diagram
Experiment 865 - Proposal to Perform an Improved Search for the Decay
\(K^+ \rightarrow \pi^+\mu^+\epsilon^- \)

Spokesman: M. E. Zeller

- Brookhaven National Laboratory - D. Lazarus, L. Leipuner, H. Ma, B. Magurno, P. Rehak
- Hampton University - K. Assamagan, K. Baker
- Institute for Nuclear Research, Academy of Sciences of Russia (Moscow) - G. S. Atoian, S. N. Gninenko, V. V. Issakov, V. Lebedev, A. A. Poblandev, V. Postoev, A. Proskuryakov
- Paul Scherrer Institute - J. Egger, W. D. Herold, H. Kaspar, H. Weyer
- Yale University - D. Bergman, S. Dhawan, H. Do, W. Majid, M. E. Zeller
- University of Basel - W. Menzel
- University of Bern - J. Gasser
- University of Connecticut - J. Lozano
- University of New Mexico - J. Armendariz, B. Bassalleck, S. Eilerts, H. Fischer, J. Lowe, R. Stotzer, D. Wolfe
- University of Zurich - S. Pislak, P. Robmann, P. Truoel

E865, a second generation search for \(K^+ \rightarrow \pi^+\mu^+\epsilon^- \) at the branching ratio level of \(-3 \times 10^{12}\), a factor of 70 improvement over the previous limit of \(2.1 \times 10^{10}\). Data obtained in the FY95 run show a clear \(K^+ \rightarrow \pi^+\epsilon^-\epsilon^- \) signal above background visible on one data tape or about one shift of running. The branching ratio for this decay was measured to be \(2.8 \times 10^7\) in E851 and a few hours of running gathers more events than the world sample of 41 events that existed prior to the BNL rare kaon decay program. From this rate and those for \(K^+ \rightarrow \pi^+\pi^+\pi^- \) and \(K^+ \rightarrow \pi^+\pi^0 \) followed by \(\pi^0 \rightarrow \epsilon^+\epsilon^-\gamma \) we estimate our current branching ratio sensitivity to be \(< 5 \times 10^{11}\) for \(K^+ \rightarrow \pi^+\mu^+\epsilon^- \), well beyond \(2.2 \times 10^{10}\) obtained in E777.

An upgrade of the data acquisition system should result in a factor of two increase in data rate in FY96. Additions to the experiment include special triggering electronics for the decay \(K^+ \rightarrow \pi^+\mu^+\epsilon^- \) and a beam tracking detector in order to improve vertex reconstruction and sensitivity to rare decays with missing energy.
Beam: B1
Status: Completed FY 1996
Hours Charged/Approved: 2698/2600

EXPERIMENT 866 - STUDIES OF PARTICLE PRODUCTION AT HIGH BARYON DENSITY USING THE AU BEAM

Co-Spokesmen: C. Chasman

Alternating Co-Spokesmen: H. Hamagaki and S. Steadman

- **Institute for Nuclear Study-University of Tokyo** - Y. Akiba, H. Hamagaki, S. Homma, H. Sako
- **Kyoto University** - H. Kaneko
- **Massachusetts Institute of Technology** - L. Ahle, M. Baker, V. Cianciolo, J. Dunlop, G. Heintzelman, C. Ogilvie, J. Ryan, S. G. Steadman, G. S. F. Stephans, D. Woodruff, H. Yao
- **New York University** - B. Budick
- **Yonsei University** - J. Kang, E. J. Kim
- **University of California, Space Sciences Laboratory** - H. J. Crawford, J. Engelage, E. Judd
- **University of California at Riverside** - J. Chang, W. Eldredge, S.-Y. Fung, H. Liu, R. Seto, H. Xiang, Q. Xu, Q. Zhu
- **University of Maryland** - E. Garcia, A. Mignerey, J. Shea
- **University of Tokyo** - R. S. Hayano
- **University of Tsukuba** - A. Kumagai, K. Kurita, Y. Miake, S. Sato, K. Yagi

In keeping with the original purpose of E802 and E859, this experiment will continue the investigation of semi-inclusive single particle spectra using the gold beam: (1) to measure the particle momentum spectra as a function of p_t and y' (2) to find how these cross sections vary with "central" or "peripheral" collisions as taken from the event characterizing detectors; (3) to measure two-particle correlations; (4) to look for systemic variations in the cross sections with different beams and targets so as to clarify the reaction dynamics; and (5) to seek evidence in this measurement for the production of very dense nuclear matter, or ultimately, the quark-gluon plasma.
Schematic diagram of the emulsion stack exposures.

Schematic diagram of the emulsion chamber exposures.
EXPERIMENT 868 - INTERACTIONS OF 10.6 GeV/NUCLEON 197AU NUCLEI IN NUCLEAR EMULSIONS

Spokesman: C.J. Waddington

- Institute of Nuclear Physics, Krakow
 A. Dambrowska, R. Holynski, A. Jurak, A. Olszewski, M. Szarska, A. Trzupek,
 B. Wilczynska, H. Wilczynski, W. Wolter, B. Wosiek, K. Wozniak

- Institute of Theory and Experimental Physics Moscow
 A.I. Dubinina, O.K. Egorov, E.D. Kolganova, E.A. Pozharova, T.Yu. Skorotko,
 V.A. Smirnitski

- Louisiana State University
 M.L. Cherry, P. Dienes-Jones, W.V. Jones, K. Sengupta, J.P. Wefel

- University of Minnesota - C.J. Waddington

The Krakow-Louisiana-Minnesota (KLMM) collaboration has previously exposed small stacks of nuclear emulsions to the light nuclei beams available from the AGS, Exp. 808. The results of this work, when combined with similar exposures of stacks and chambers made at CERN to higher energy beams, EMU07, have been reported in a number of published papers. In April 1992, when beams of heavier nuclei became available with the commissioning of the Booster, the collaboration exposed stacks and chambers of nuclear emulsions to a beam of gold nuclei with a nominal energy of 10.6 GeV/nucleon. Excellent exposures were obtained and the emulsions successfully processed at Dubna. Analysis by Minnesota and Krakow of the interactions in these emulsions has been completed and some of the results published. Further analysis of specific aspects is continuing and further publications can be expected.

Another exposure, conducted by Minnesota, was made in January 1996 to a beam of 4.0 GeV/n gold nuclei. These emulsions have been processed in Dubna and returned to Krakow, where they will be analyzed. No analysis will be possible in Minnesota due to a lack of funding. Inspection of these emulsions show that they were successfully exposed but are characterized by a heavy background.
Schematic diagram of the detector setup used for the April 1992 AGS gold run. Ion chambers I - 0 to 4 are four gap parallel plate chambers filled with P10 gas. Cherenkov counters C - 0 to 3 contain radiators of Pilot 425 plastic mounted in white diffusion boxes. The multiwire proportional counters MW have 1 mm wire spacing. The target holder can place any of the targets in the beam by remote command. Thirty-two channels of data are recorded for each event at rates of up to 1,000 events/sec.
EXPERIMENT 869 - MEASUREMENT OF FRAGMENT YIELDS FOR 14 GEV/NUCLEON

AU + X COLLISIONS

Spokesman: C. J. Waddington

- Caltech - J. R. Cummings, T. L. Garrard, E. C. Stone
- Washington University - W. R. Binns, L. Y. Geer, J. Klarmann
- University of Minnesota - B.S. Nilsen, C. J. Waddington

This experiment was proposed in order to continue a study of the fragmentation of ultra heavy, UH, nuclei begun at the Bevalac as part of a program of cosmic ray studies. It required additional experiments using the new Booster facility at the Brookhaven AGS. The experiments at the AGS would extend the energy range of the measurements upwards to match the energies of the majority of observed cosmic ray nuclei. These measurements would improve our ability to predict the partial cross sections for the production of fragments and allow better calculations of the abundances of the cosmic ray UH nuclei at the sources by taking account of the effects of propagation on the observed abundances. These measurements would also extend our current studies of the nuclear physics topics of factorization, limiting fragmentation, charge pickup, Coulomb dissociation and fission.

The detector array used during exposures to the AGS gold beam in April 1992 and January 1996 is shown. It consists of a combination of ion chambers and Cherenkov counters which identify the particles entering a target and then measure the sum of the charges emitted from interactions in the targets. During the 1992 exposure, 10.6 GeV/n gold projectiles were allowed to fall on targets of polyethylene, carbon, aluminum, copper, tin and lead. In each case sufficient data was taken to determine partial cross sections of 10 mb with better than 10% accuracy. In addition, a fragmentor was placed in the primary beam, generating secondary beams of fragments. Sufficient of these fragments were generated to allow partial cross sections to be determined in the targets for all projectiles between Z = 79 and 70. The excellent resolution of the detector array allows the identification of fragments with charges as low as Z = 50 coming from gold projectiles.

In January 1996 a beam of 4.0 GeV/n gold nuclei was used in a similar set-up. In addition, data were taken at seven other lower energies using a combination of internal and external degraders. These results will allow a determination of the energy dependence of the partial cross sections, which will be very important in modeling the propagation of the heavy cosmic ray nuclei through the interstellar medium. The analysis of these data has only just begun.
EXPERIMENT 871 - A NEW SEARCH FOR VERY RARE K_L^0 DECAYS

- College of William and Mary
 M. Eckhause, A.D. Hancock, C. Hoff, J.R. Kane, Y. Kuang, R.D. Martin, R.E. Welsh, E. Wolin

- Stanford University
 K. Ecklund, C. Hartman, M. Hebert, G.M. Irwin, M. Pommot-Maia, S. G. Wojcicki

- University of California at Irvine
 M. Bachman, D. Connor, P. DeCecco, N. Kanematsu, R. Lee, W. R. Molzon

- University of Richmond - P. Rubin

- University of Texas at Austin

This group is carrying out a new search for the decays $K_L^0 \rightarrow \mu e$ and $K_L^0 \rightarrow ee$, building on the experience from the recently completed experiment, E791. The $K_L^0 - \mu \mu$ branching ratio measurement will also be improved. The final E791 single event sensitivity for $K_L^0 \rightarrow \mu e$ was about $1-2 \times 10^{-11}$. The new experiment will reach a single event sensitivity below 10^{-12}, and if no events are observed, will set an upper limit of about 2×10^{-12}. About 10,000 $K_L^0 \rightarrow \mu \mu$ decays will also be observed.

The experiment takes the novel approach of stopping the neutral beam in a beam stop near the upstream end of the spectrometer.
EXPERIMENT 877
Home Page • http://skipper.physics.sunysb.edu/~e877/E877.html
EXPERIMENT 877 - STUDY OF RELATIVISTIC NUCLEAR COLLISIONS
WITH HEAVY BEAMS USING THE E814 4π CALORIMETRY
AND MODIFIED FORWARD SPECTROMETER
Spokesman: P. Braun-Munzinger

- Brookhaven National Laboratory
 G. David, T. Ludlam, S. McCorkle, E. O'Brien, M. Rosati, C. Woody

- GSI, Darmstadt - N. Herrmann

- Idaho National Engineering Laboratory - J. Cole, M. Drigert, E. Reber

- McGill University - J. Barrette, Y. Dai, R. Lacasse, S. K. Mark, L. Normand, N. Starinsky

- SUNY at Stony Brook - R. Bersch, P. Braun-Munzinger, T. K. Hemmick, B. Hong,
 S. Johnson, Y. Kwon, D. Miskowiec, S. Panitkin, P. Paul, T. Piazza, J. Stachel,
 M. Trzaska, T. Vongpaseuth, J. Wessels, Y. Zhang, C. Zou

- Wayne State University
 R. Bellwied, T. Budny, T. Cormier, A. French, F. Gang, J. Hall, B. Kim, K. Lahab,
 Q. Li, C. Pruneau, J. Sheen, H. Xiong

- University of Pittsburgh - W. Cleland, M. Clemen, U. Sonnadara, S. Voloshin

- University of São Paulo - N. DaSilva, O. Dietzsch, M. Takagui

Using an upgraded E814 set-up, this experiment proposes to study central collisions between heavy
nuclei and projectiles from the Booster/AGS accelerators. The main emphasis is on a detailed study
of the energy flow into 4π and measurements of the spectra of nucleons and produced particles for
rapidities \(y > 1.5 \) and low transverse momenta, with event characterization over the full solid angle.
In addition, nucleons, nuclear fragments and produced particles in the target fragmentation region will
be measured.
Polarized Proton Experiments in the AGS with a Partial Siberian Snake (E880)

(ANL, BNL, INDIANA, TRIUMF, KEK, RIKEN, IHEP)
EXPERIMENT 880 - THE EFFECTS OF A PARTIAL SIBERIAN SNAKE ON POLARIZATION AT THE AGS
Spokesmen: S. Y. Lee and T. Roser

This group has built a 4.7 Tesla-meter room temperature solenoid which has been installed in a 10-foot long AGS straight section. AGS polarized proton beam time is used to perform partial snake experiments. These experiments tested successfully the idea of using a partial snake to correct all de-polarizing imperfection resonances. Intrinsic depolarizing resonances are successfully overcome by using an AC vertical dipole to generate coherent betatron oscillation.

(1) Also at Indiana University
(2) Present address: SLAC

(28)
Detector configuration for AA experiment. Drift chambers ID1, ID2, and ID3 determine incoming K⁻ trajectory and are combined with upstream hodoscope data to determine K⁻ momentum. Drift Chambers FD1, FD2, FD3, BD1 and BD2 determine K⁺ momentum. Scintillators IT and BT determine K⁺ time-of-flight. Hodoscopes FP and BP determine spectrometer acceptance. Aerogel Čerenkovs IC1, IC2, FC, and BC reject pions. Hydrogen Čerenkov FCH rejects protons.
BEAM: D6
Status: Complete in FY 1996
Hours Charged/Approved: 1617/2000

EXPERIMENT 885 - EXPERIMENT TO DETECT ΛΛ HYPERNUCLEI
Spokesmen: M. May, G. Franklin and C. Davis

- Brookhaven National Laboratory - D. Alburger, R. E. Chrien, M. May, P. H. Pile, A. Rusek, R. Sawafü, R. Sutter
- Freiburg University - T. Bürger, H. Fischer, J. Franz, K. Königsmann, H. Schmidt
- KEK - T. Iijima
- Kyoto University - A. Ichikawa, K. Imai, Y. Kondo, K. Yamamoto, Y. Yosoi
- Los Alamos National Laboratory - P. Barnes, F. Merrill
- Rutgers University - R. Ransome
- TRIUMF - C. Davis, J. Doornbos
- University of Kentucky - V. Zeps
- University of Kyoto-Sangyo - F. Takeutchi
- University of Manitoba - J. Birchall, L. Gan, M. Landry, L. Lee, S. Page, D. Ramsay, V. Sum, W. van Oers
- University of New Mexico - B. Bassalleck, R. Stotzer

The existence and properties of ΛΛ hypernuclei are intimately related to the H particle, a proposed six quark state (uuddss) and the question of strange matter and strangelets. If the H exists and is sufficiently bound, two Λs in a hypernucleus will fuse to form an H. The collaboration has built an experiment to form and detect ΛΛ hypernuclei by stopping many more X− than in any previous attempt.

Running of the experiment to date has primarily utilized a diamond target for high stopping rate of short-lived X−. K− at 1.8 GeV/c incident on a diamond target form X− which stop in the diamond and K+ which are detected in the spectrometer. Capture of X− by carbon nuclei form ΛΛ hypernuclei. A scintillating fiber array tracks hypernuclear decay products, and a large TOF array detects the formation neutron. If H particles are formed, their decays can be detected. S = -2 systems formed in the initial K− interaction will also be studied.

30
The experimenters have measured the ratio of \(\eta \) production on deuterium by positive and negative pions over the momentum range from 640 MeV/c to 755 MeV/c. This range spans the onset of the \(S_{11}(1535) \) resonance, which has a very large branching ratio for \(\eta \) decay. The \(\eta s \) are observed by detection of the photons from the neutral decay of the \(\eta \) into two photons.

The measurement of this ratio is a direct test of the validity of charge symmetry in this unexplored domain of nuclear physics. Violations of the symmetry are to be expected because of \(\pi^0-\eta \) mixing.

The experiment showed large asymmetries, ranging up to over 10% at the highest momentum pions.

A preliminary fit of the data to a model of \(\eta \) production which includes \(\pi^0-\eta \) mixing as the only adjustable parameter requires a value for the mixing angle of \(^\circ 1-2 \). This is the first direct evidence of \(\pi^0-\eta \) mixing in a nuclear environment.

The experiment also demonstrated the power of the AGS as a potent source of \(\eta \) mesons.
EXPERIMENT 891 - A SEARCH FOR QUARK MATTER (QGP) AND OTHER NEW PHENOMENA UTILIZING AU-AU COLLISIONS AT THE AGS

Spokesmen: E. D. Platner

<table>
<thead>
<tr>
<th>Spokesmen</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. E. Eiseman, A. Etkin, K. J. Foley, R. W. Hackenburg, R. S. Longacre, W. A. Love, A. C. Saulys</td>
<td>Brookhaven National Laboratory</td>
</tr>
<tr>
<td>C. S. Chan, E. Efstathiadis, M. A. Kramer, S. J. Lindenbaum*, K. Zhao, Y. Zhu</td>
<td>City College of New York</td>
</tr>
<tr>
<td>S. Ahmad, B. E. Bonner, J. A. Buchanan, J. M. Clement, G. S. Mutchler, E. D. Platner</td>
<td>Rice University</td>
</tr>
<tr>
<td>J. Marx, L. Schroeder</td>
<td>University of California, Berkeley</td>
</tr>
</tbody>
</table>

A program is underway to study Au-Au collisions at the AGS by measuring the angles and momenta of charged tracks, K^0_S's and Λ's using the TPC's and trigger detectors from E810. In order to handle the higher track multiplicities produced by Au beams, a modified geometric arrangement of the TPC modules is used. This program allows the experimenters to look for anomalous behavior in rapidities (or pseudorapidities), multiplicity, strangeness enhancements, $P_\perp (E_\perp)$, energy flow; possibly observe Hanbury-Brown and Twiss effects and other new phenomena. These observations are on an event-by-event basis so that particularly interesting classes of events can be selected and added together to search for new effects (like strangelets) implying a QGP or other new states of matter in a manner which tends to maximize signal-to-background ratios.

* Also associated with Brookhaven National Laboratory
Schematic diagram of the apparatus. The adiabatically decreasing solenoid field (shown schematically by the coil height) transports and focuses the positrons. Small dipoles at either end deflect the positrons and electrons into the scintillator detectors. These detectors measure the positron energy and, from time of flight, determine the emission angle of the positron. Positrons are verified by the 511 keV annihilation radiation detected in the gamma detectors. A large dipole magnet(s) located downstream from the APS separates the charge states of the emerging ions.
The experiment measures the cross section for capture from pair production and free pair production of 10 GeV/n Au$^{79+}$ on Au collisions. This provides the first measurement of capture from pair production at energies above the 1 GeV/n region. The results are essential to understand the process, to guide ongoing efforts, to develop a nonperturbative theory, and to supply important data for the operations of RHIC. Capture from pair production is the process in which an electron-positron pair is produced by the transient electromagnetic field from a relativistic heavy-ion atomic collision (no nuclear contact) and the electron emerges bound to the projectile ion. It is unique because it is the only recombination process in which the cross section increases with energy at relativistic energies. At sufficiently high energies it is predicted to become the dominant re-combination mechanism.
EXPERIMENT 893 - TEMPERATURE/ZENITH ANGLE CALIBRATION
OF POLYCARBONATE TRACK DETECTORS
Spokesman: A. Thompson

Dublin Institute for Advanced Studies

This experiment proposes to measure the track response of polycarbonate track detectors to relativistic Au ions at -20°C and to investigate the isotropy of track response to Au at the same energy. This is a continuation of a program to calibrate polycarbonate SSNTD systems and to optimize their resolving power with special reference to the long term exposure which took place during the NASA LDEF Mission.
EXPERIMENT 895
Home Page • http://cnr2.kent.edu/~e895/

Gold Event - TPC
EXPERIMENT 895 - EXCLUSIVE STUDY OF NUCLEAR COLLISIONS AT THE AGS
Spokesman: G. Rai

- Brookhaven National Laboratory - S. Gushue
- Columbia University - B. Cole
- Harbin Institute of Technology - L. Huo, Y. M. Liu, W. N. Zhang
- Kent State University - M. Justice, D. Keane, H. Liu, S. Panitkin, S. Wang, R. Witt
- Ohio State University - A. Das, M. Lisa, R. Wells
- Purdue University - A. Hirsh, E. Hjort, M. Gilkes,* N. Porile, B. Srivastava, R. Scharenberg
- State University of New York at Stony Brook - N. Ajitanand, J. Alexander, P. Chung, R. Lacey, R. McGrath, C. Pinkenburg
- University of Auckland - D. Krofcheck
- University of California-Davis

The experimenters are carrying out a systematic and exclusive measurement of the energy (2-10 A GeV) and mass dependence of particle production, correlations, and collective flow effects in Au+Au collisions. They seek to determine the highest compression achievable in nuclear matter and to study its properties and they will search for evidence for an exotic Equation of State, that is, new physics such as Resonance Matter, Exotica, and QGP. The experimenters are also interested in signatures of critical phenomena in dilute nuclear matter.

It is proposed to measure the four-momentum of light mass particles (π±, K±, K0, Λ, n, p, d, 3He, 4He, 6He, and the isotopes of Li and Be), projectile fragments from Z=6 to Z=79, and anti-proton production. The majority of the data will be acquired, on an event by event basis, from a state-of-the-art Time Projection Chamber (EOS TPC) built and used at LBL by the EOS collaboration. The TPC provides continuous tracking, almost 4π acceptance and particle identification for the light mass particles.

* Deputy at the AGS
The experiment is a search for the HO di-baryon and for new states of nuclear matter produced in nucleus-nucleus (AA) collisions at the AGS. The experiment enhances the existing AA program by extending the search into regions of shorter lifetime and complements the existing double-strangeness-exchange program by offering access to a new, more probable doorway channel, the coalescence of two Λ’s into a bound di-Λ. The detector is capable of unambiguously identifying the topological signature of unstable particle decays as well as the rigidity of each particle produced, affording a sensitive search for new metastable states and investigation of the properties of known strange particles such as the Λ polarization and $\Lambda\Lambda$ potential.
EXP E R I M E N T 8 9 8 - R A D I O B I O L O G Y A N D B I O P H Y S I C S W I T H
H I G H E N E R G Y H E A V Y I O N S
S p o k e s m e n : J . M i l l e r , A . K r o n e n b e r g , G . A . N e l s o n

- B e m i d j i S t a t e U n i v e r s i t y - A . L . L i n d g r e n
- B r o o k h a v e n N a t i o n a l L a b o r a t o r y - B . M . S u t h e r l a n d , M . E . V a z q u e z
- C o l o r a d o S t a t e U n i v e r s i t y - J . T . L e t t , C . W a l d r e n
- C o l u m b i a U n i v e r s i t y - T . K . H e i
- G e o r g e t o w n U n i v e r s i t y M e d i c a l C e n t e r - T . J . J o r g e n s e n
- J e t P r o p u l s i o n L a b o r a t o r y - G . A . N e l s o n
- L a w r e n c e B e r k e l e y L a b o r a t o r y - M . H . B a r c e l l o s - H o f f , P . C o o p e r , A . K r o n e n b e r g ,
 J . M i l l e r
- L o s A l a m o s N a t i o n a l L a b o r a t o r y - D . J . C h e n
- N A S A J o h n s o n S p a c e C e n t e r - T . C - h Y a n g
- P a c i f i c N o r t h w e s t N a t i o n a l L a b o r a t o r y - N . F . M e t t i n g
- U n i v e r s i t y o f C a l i f o r n i a - L . H . L u t z e - M a n n
- U n i v e r s i t y o f M a r y l a n d - B . M . R a b i n
- U n i v e r s i t y o f M a r y l a n d S c h o o l o f M e d i c i n e - E . K . B a l d e r - K u b i c z e k

This experiment studies effects produced by heavy ions (principally 1 GeV/u56Fe) in a hierarchy of biological systems. The biological effects of densely ionizing radiation are studied for a number of genetic and cellular endpoints, constituting a broad range of quantifiable endpoints for the molecular to the whole animal level, in some cases including genetic responses over several generations. The biology experiments are supported by physics components designed to provide basic dosimetric information as well as the detailed characterization of the radiation field essential for the accurate interpretation of biological data.

E898 differs from a typical AGS experiment in that it actually consists of a number of more or less independent biology and physics experiments. The list of experiments and PI's may vary from year to year. Please contact Dr. Marcelo Vazquez (BNL x 3443) for a list of investigators for 1995-1996.
EXPERIMENT 900 - ENERGY DISSIPATION AND MULTIFRAGMENTATION IN
H + A REACTIONS BETWEEN 2 AND 24 GEV/C
Spokesmen: K. Kwiatkowski and V. E. Viola

- Argonne National Laboratory - B. Back
- Brookhaven National Laboratory - S. Gushue, L. P. Remsberg
- Indiana University - W.-Ch Hsi, K. Kwiatkowski, T. Lefort, V. E. Viola, N. R. Yoder
- Los Alamos National Laboratory - D. S. Bracken, K. B. Morley
- Simon Fraser University - R. Korteling
- Texas A&M University - F. Gimeno-Nogues, E. Ramakrishnan, D. Rowland, S. J. Yennello
- Warsaw University - L. Pienkowski
- University of Maryland - H. Breuer

Exclusive studies of target fragmentation in 2 - 24 GeV/c hadron (p, \(\bar{p}\) and \(\pi^-\))-induced reactions have started. Measurements are performed with the Indiana Silicon Sphere 4\(\pi\) detector array, capable of identifying H and He isotopes and \(Z = 3 - 20\) fragments for target rapidity ejectiles over a wide dynamic range. The primary physics objectives are twofold: (1) to improve the understanding of energy dissipation phenomena for central collisions in the \(h + A\) reaction at relativistic energies, and (2) to examine the decay modes of hot nuclear matter excited by simple hadron probes. The bombarding energy regime is chosen to overlap the region in which previous inclusive measurements at AGS have been interpreted in terms of a liquid-gas phase transition in hot finite nuclei. It is in this energy region that the excitation of \(\Delta\), \(N^*\) and higher resonances provide an effective means of dissipating projectile energy into internal excitation energy of the target nucleus. Thus, these data will place fresh constraints on the new generation of transport codes, as well as current models of multifragmentation. During the 1996 proton cycle, studies were successfully completed on the \(p + ^{197}\text{Au}\) system at 6.0, 10.0, 12.0 and 14.6 GeV/c and \(\pi^- + ^{197}\text{Au}\) at 5.0, 9.2 and 11.0 GeV/c. These measurements demonstrated an independence of energy deposition on projectile momentum and type for these reactions. In 1998 it is intended to measure the 7 GeV/c \(\bar{p} + ^{197}\text{Au}\) reaction to search for enhanced energy deposition with antiproton beams.
EXPERIMENT 903
Home Page • http:
The experimenters proposed to irradiate specimens of permanent-magnet materials so that the defect pinning of magnetic domain walls due to particle tracks can be evaluated.

An assortment of 10 samples ranging in thickness from 0.1 to 1.0 mm, each being about 1 mm square were used. The most interesting spacing for the damage tracks is in the range of 10 to 100 nm which implies irradiation to a dose of about 10^{10} ions per cm2. After the samples had been irradiated and characterized, annealing experiments were carried out to determine the microstructural changes induced by the annealing and the corresponding changes in domain wall pinning and performance characteristics of the material. Some samples were irradiated parallel to the c-axis and others at 45° to the c-axis.

The above has been completed.
EXPERIMENT 904
Home Page • http:
EXPERIMENT 904 - A STUDY OF COLUMNAR PINNING CENTERS
IN HIGH Tc SUPERCONDUCTOR
Spokesman: R. Weinstein

- Indiana University Cyclotron Facility - C. C. Foster
- Texas Southern University - V. Obot
- University of Houston - J. Liu, D. Parks, Y. Ren, R-P Sawh, R. Weinstein

The experimenters will irradiate several stacks of YBCO tiles. The chemistry (Y_{1.7}Ba_{2}Cu_{3}Pt_{0.01}) of these tiles, and their heat processing and oxygen annealing, are the best known at present for field trapping. One set of tiles will each be 20 mm in diameter and 8 mm thick. A stack of several such tiles will be used. As the Au ions penetrate, dE/dx increases. The ions will first form string-of-beads defects. This experiment will provide a string-of-beads test for the first time and will provide the materials to produce a trapped field magnet (TFM) of greater field than any previously achieved. The experimenters estimate that the field will be 5 Tesla at 77K, and 12.5 Tesla at 65K.

In addition, 4 sets of smaller tiles (3.7 mm in diameter and 2 mm thick) will also be irradiated. The small size of the tiles in these runs is suitable to VSM or SQUID measurement of the magnetic moment and hence Jc. These runs will provide a desirable cross check on the large scale analysis of Jc via trapped field. In order to get the same fluence as in the case of 20 mm diameter tiles, these smaller tiles require 1/16 of the beam x time. The 4 sets of tiles will be run at 4 values of fluence.
A comparison of the in-flight (BNL) observations of the Σ-structure in 4He and the stopped kaon experiments at KEK. In both sets, the structure is present in (K^-,π^-) reactions, but not for (K^-,π^+).

51
EXPERIMENT 905 - SEARCH FOR A Σ HYPERNUCLEAR BOUND STATE IN $^4\text{He} (K^-, \pi^\pm)$ REACTIONS
Spokesman: T. Nagae

- Brookhaven National Laboratory - R. E. Chrien, A. Rusek, R. Sutter
- George Washington University - W. Briscoe
- Hampton University - W. Naing
- INS-University of Tokyo
- North Carolina A&T - R. Sawafa
- Zagreb University - M. Planinic
- University of Houston - T. Empl, E. V. Hungerford
- University of North Carolina - K. Johnston, C. Neerman
- University of Tokyo - R. S. Hayano, K. Kubota, Y. Shimizu, H. Tamura

The evidence for the existence of Σ (bound)-nuclei derives from three experiments: the first in a ^4He bubble chamber at the AGS, the second at KEK with stopped K^- in ^4He, and the third, BNL experiment E774. The purpose of E905 is to remeasure helium, using in-flight reactions to verify the existence of a bound state and to obtain the binding energy and width with high precision. This will be accomplished by making use of experience gained in BNL's E774 and E887 to get better control of systematic errors, suppress backgrounds due to electrons and muons and to obtain increased statistics. The precise measurement of the position and width of the postulated bound state may allow a definite allocation of the structure observed in these experiments to a bound state or to a threshold cusp, which is an alternative explanation. The precise measurement of the Σ-production cross sections in the bound and unbound regions will allow a choice between competing model explanations.
EXPERIMENT 906 - EXPERIMENT TO DETECT DOUBLE-Λ HYPERNUCLEI
BY OBSERVING CHARACTERISTIC II - MESONIC DECAYS
Spokesmen: T. Fukuda and R. E. Chrien

- Brookhaven National Laboratory - R. E. Chrien, M. May, P. Pile, A. Rusek, R. Sutter
- Carnegie-Mellon University - A. Berdoz, D. Carman, G. B. Franklin, B. P. Quinn, R. A. Schumacher
- Gifu University - M. Hanabata, K. Nakazawa
- INR-Russia - M. Prohvatilov, V. Rasin
- Kyoto University - K. Imai, K. Yamamoto, M. Yosoi
- Kyoto-Sangyo University - K. Okada, T. Kishimoto, F. Takeutchi
- North Carolina A&T University - R. Sawafta
- Osaka University - S. Ajimura, T. Kishimoto
- Temple University - E. Meziani
- University of Freiburg - H. Fischer, J. Franz, K. Konigsmann, H. Schmitt
- University of New Mexico - B. Bassalleck, H. Fischer, J. Lowe, D. M. Wolfe

The experimenters propose a new way to produce and to identify several hundred double-Λ hypernuclei by observing two (successive) mesonic-decay pions with about 1.7 MeV resolution. The rate is larger by two orders of magnitude than other experiments done so far and will enable us to open a new spectroscopy of double-Λ hypernuclei.

Double-Λ hypernuclei will be produced at the (K−, K+) reaction point through multi-step processes and successive mesonic-decay pions will be detected by a cylindrical detector system and solenoidal magnetic spectrometer (CDS) surrounding the target. The 2 GeV/c kaon beam line and the same experimental setup used for E813 and E836 (with some minor modifications), will be used for this experiment.
Schematic layout of the experimental setup.
The experimenters propose to use the combination of a multi-layer active target and the Neutral Meson Spectrometer (NMS) to detect π^-s in order to study hypernuclear physics. The reaction to be used is $(K^-_{\text{stop}}, \pi^-)$, with stopping K^- obtained from the LESB-II(C) beam line at the AGS. The NMS has been moved from LAMPF to BNL for this experiment.
The threshold for \(\eta \) production in the reactions \(\pi^- p \rightarrow \eta n \) and \(K^- p \rightarrow \Lambda \eta \) is close to the mass of the \(S_{11}(N^*(1535)) \) and \(S_{01}(\Lambda^*(1670)) \) resonances, respectively. The cross section for \(\eta \) production in both reactions is unexpectedly large as are other \(\eta \) threshold production cross sections. Better quality data, particularly angular distributions which are currently lacking, in both the \(K^-p \) and \(\pi^-p \) reactions are needed to understand the role of these resonances near the \(\eta \) threshold. There is a factor of four discrepancy in the determination of the \(\eta N \) scattering length and the \(\eta \Lambda \) scattering length is unknown due to a lack of precise threshold cross section data. New, precision data at threshold would allow better determinations of these scattering lengths.

The experimenters propose to measure total cross section, as well as angular distributions for \(\eta \) production in both of these reactions from threshold \((P_\pi = 685 \text{ MeV/c}, \text{ and } P_K = 723 \text{ MeV/c}) \) up to 760 MeV/c. The \(\eta \) particles are detected via the \(2\gamma \) decay mode using the improved \(\eta \) spectrometer currently in operation on the C8 beam line.
Plan view of the proposed experiment

EOS - pA Plan View

- **Magnet**
- **Target**
- **EOS TPC**
- **TOF1**
- **TOF2**
- **DCs**
- **Cherenkov**

100 cm
Experiment 910 - A Facility to Study Proton-Nucleus and Heavy Ion Collisions Using a Large-Acceptance Detector with Particle Identification Capabilities

Spokesman: B. A. Cole

- **Brookhaven National Laboratory** - R. Fernow, S. Gushue, H. Kirk, L. Remsberg, M. Rosati, Y. Torun
- **Columbia University** - I. Chemakin, B. A. Cole, H. Hiejima, M. Moulson, D. Winter, X. Yang, W. A. Zajc, Y. Zhang
- **Florida State University** - A. D. Frawley
- **Kent State University** - M. Justice, D. Keane
- **Lawrence Berkeley Laboratory** - G. Rai
- **Lawrence Livermore National Laboratory** - V. Cianciolo, M. Kreisler, M. N. Nambooridiri, T. C. Sangster, R. Soltz, J. Thomas
- **State University of New York at Stony Brook** - M. Gilkes, R. L. McGrath
- **Yonsei University** - J. H. Kang, Y. H. Shin
- **University of Tennessee** - S. Mioduszewski, D. Morrison, K. Read, S. Sorensen
- **University of Tsukuba- Institute of Physics** - K. Kurita, Y. Miaske

The experimenters are studying proton-nucleus (p-A) and heavy ion collisions at the AGS using a large-acceptance detector. The main focus of the experiment is measurement of strange particle production and a search for H^0 dibaryon formation in p-A collisions. The strange-particle production measurements will provide data for comparison to recent measurements in heavy-ion collisions and also allow more detailed studies of the mechanisms that are responsible for strangeness enhancement in p-A and heavy-ion collisions. The main component of the proposed detector is the EOS TPC, a part of Exp. 895. The TPC will be augmented with downstream tracking, a high-resolution time-of-flight wall and a second-level trigger capable of triggering on kaons in the final state. The apparatus will provide a dedicated facility for the EOS TPC which would allow the detector to be employed during all modes of AGS running.
This is a comprehensive experimental program in baryon spectroscopy using the SLAC Crystal Ball detector to make precision measurements of total and differential cross sections for neutral final states in πp interactions using pion beams in the momentum range 0.4 - 1.9 GeV/c. The angular distributions of all the neutral final states such as γn, π^0 are measured simultaneously. The purpose is to improve the mass, width, and neutral branching fractions for the N' resonances in this energy region. The Crystal Ball detector is a nearly 4π multi-photon spectrometer which is used to analyze events by reconstructing the invariant mass and, in conjunction with the measured beam momentum, the missing mass of the produced γ rays.
EXPERIMENT 914 - NEUTRAL HYPERON SPECTROSCOPY
Spokesmen: B.M.K. Nefkens, T. Kycia, S.P. Kruglov

- Abilene Christian University - R. Bagga, B. Draper, J. Huddleston, D. Isenhower, Z. Mulkey, M. Sadler
- Argonne National Laboratory - T. Kasprzyk, H. Spinka
- Arizona State University - J. Comfort, K. Craig, A. Ramirez
- Brookhaven National Laboratory - T. Kycia
- George Washington University - W. J. Briscoe, A. Shafi
- Kent State University - D. M. Manley
- Petersburg Nuclear Physics Institute-Gatchina - V. Abaev, V. Bekrenev, S. Kruglov, A. Kulbardis, I. Lopatin, A. Starostin
- Rudjer Boskovic Institute - I. Šlaus, I. Supek
- Valparaiso University - A. Gibson, D. Grosnick, D.D. Koetke, R. Manweiler, P. Nord, S. Stanislaus
- University of California-Los Angeles - M. Clajus, S. McDonald, A. Marusic, B.M.K. Nefkens, M. Pulver, W. B. Tippens
- University of Colorado - J. Patterson, J. Peterson
- Universität Karlsruhe - H. Staudenmaier
- University of Regina - N. Knecht, G. Lolos, Z. Papandreou

This experiment proposes to investigate the spectrum of Λ^* and Σ^* resonances via their neutral decays in the reactions:

\[
\begin{align*}
K^- P & \rightarrow \Delta \gamma & 600-1800 \text{ MeV/c (p}_{\text{lab}}) \\
K^- P & \rightarrow \Delta \pi^0 & \\
K^- P & \rightarrow \Delta 2\pi^0 & \\
K^- P & \rightarrow \Delta \eta & 720-1800 \text{ MeV/c (p}_{\text{lab}}) \\
K^- P & \rightarrow \Sigma^0\gamma & 600-1800 \text{ MeV/c (p}_{\text{lab}}) \\
K^- P & \rightarrow \Sigma^0\pi^0 & \\
K^- P & \rightarrow \Sigma^0 2\pi^0 & \\
K^- P & \rightarrow \Sigma^0 \eta & 890-1800 \text{ MeV/c (p}_{\text{lab}}) \\
\end{align*}
\]

Measurements of total and differential cross sections of these reactions will be made simultaneously over the full angular range, using the Crystal Ball multi photon spectrometer and a LH2 target. The Crystal Ball has a 94% solid angle coverage and good energy and angular resolution. The incident beam momentum is varied in steps of 25-50 MeV/c from 600 MeV/c in the C-line to the maximum momentum of 1.8 GeV/c in the D-line.
EXPERIMENT 915 - Proposal for 11.4 A GeV Au Exposure at the AGS

The Trek Collaboration
Spokesman: A. Westphal

- University of California at Berkeley - A. Westphal
- Space Research Institute at Moscow - V. V. Akimov

The Trek Collaboration proposes to use the 11.4 A GeV Au beam at the AGS to calibrate the large collector of the Trek experiment. Trek is a collaborative experiment consisting of the physicists at Berkeley and at the Space Research Institute in Moscow. Trek consists of two detectors. The small detector (0.09 m² in area) was mounted on an outside wall of the living quarters of the space station and has already been returned to earth for analysis. Its goal is to measure the isotopic abundances of iron-group elements in the galactic cosmic-rays. A large collector for ultraheavy galactic cosmic rays was mounted on the outside of the Kvant-2 module for the Mir Space Station to two cosmonauts in an EVA in June 1991. The goals of the large Trek collector are to resolve and measure the composition of both odd-Z and even-Z cosmic-ray nuclei from tin (Z=50) through uranium (Z=92) and to search for transuranic nuclei and exotic particles such as strangelets. The experimenters propose to calibrate the detectors with a highly relativistic gold beam at the AGS at the first opportunity after recovery.
EXPERIMENT 916 - STUDY OF PROJECTILE FRAGMENTATION FOR 197Au IONS AT \sim4A GeV IN VARIOUS TARGETS
Spokesman: Y. D. He

- University of California - Berkeley - Y. D. He, P. B. Price

This is a small-scale experiment with 197Au ions at \sim4A GeV. We exposed 10 BP-1 glass detectors interleaved with targets ranging from C to Pb to a defocused low intensity beam over an area of 5 cm x 5 cm at a density of 1200 ± 200 cm$^{-2}$. Using our automated scanning system, the charge resolution from one single measurement is found to be \sim 0.14 charge unit. The charge resolution for beam particles and projectile fragments obtained from 5 plates of detectors is \sim 0.06 charge unit (see figure). This charge resolution is more than adequate to identify fragments and hence to measure cross sections for charge-changing interactions. With this experiment, we hope to accomplish the following:

1. **Fragmentation Study:**

 We will study nuclear reactions that we have previously studied at \sim1 A GeV at BEVALAC and \sim11 A GeV at AGS. In particular, we will measure cross sections at \sim4 A GeV for fragmentation both nuclear and electromagnetic, for charge pickup reaction, and for other processes in collisions of \sim4 A GeV on various targets. We hope to establish the energy dependence of these cross sections, which may enable us to understand the physics in peripheral collisions of relativistic heavy ions.

2. **Detector Response Study:**

 Another interesting topic is the study of the response of BP-1 glass detectors to relativistic heavy ions with different energies. We have previously established the dependence of the detector response on charge Z for a given velocity βc. The response is empirically known to be a complicated function of $(Z/\beta)^2$, to a good approximation, for a limited range of β tested. However, the dependence of the response on Lorentz factor γ for a wide range of β remains unknown. With this experiment, we expect to study the dependence of the detector response on β for a given Z. This set of data will permit an interesting examination of the dependence of restricted energy loss on γ in addition to $(Z/\beta)^2$ term.
The proposed experiment will study the physics of the high-baryon density matter being created in Au-Au collisions at the AGS. through the systematic measurement of short lived vector mesons and baryons, the measurement of strange anti-baryons and anti-protons, and high statistics HBT studies.
EXPERIMENT 919- A STUDY OF THE GENETIC AND EPIGENIC EFFECTS PRODUCED BY HIGH ENERGY HEAVY IONS
Spokesmen: M. Vazquez

- Alabama Agr. and Mechanical University - P. Kale
- Brookhaven National Laboratory - J. Bullis, J. Gatley, B. Sutherland, M. Vazquez
- Case Western Reserve University - H. Evans
- Colorado State University - T. Borak, G. Mariano, C. A. Waldren
- Columbia University - T. K. Hei
- Georgetown University medical Center - T. Jorgensen
- Lawrence Berkeley National Laboratory - P. Cooper, A. Kronenberg, J. Miller
- Loma Linda University - G. Nelson
- Los Alamos National Laboratory - D. J. Chen
- NASA Johnson Space Center - T. C-h Yang
- Natl. Inst. Of Radiological Sciences, Japan - Y. Furusawa
- Pacific Northwest National Laboratory - N. F. Metting
- USAF Armstrong Laboratory - A. Cox
- Washington State University - A. Brooks
- University of California - L. H. Luze-Mann, W. Morgan
- University of Maryland Baltimore - E. Balcer-Kubiczek, B. Rabin
- University of Texas - M. Natarajan

This is a NASA effort in the AGS to study the genetic and epigenetic effects produced by high energy heavy ions. There will be two runs labeled BNL-3, 4 (E919) for the period of October 1, 1996 to September 31, 1998. Each run provides 150 hours of 1GeV/nucleon Fe ions.
Schematic of a MCS radiographic detector system. The beam is first prepared with a diffuser and matching lens to meet optics requirements. It then passes through the object to be radiographed. The transmitted beam passes through an iris, or aperture, is focused on the first detector, then passes through a smaller diameter iris and is focused on a second detector. The ratio of the first and second detector intensities provides both the density profile and material composition of the object.
The goal of this experiment is to provide data for standard test objects which can be benchmarked against models of proton transport and magnetic optics. Additionally the performance of proton radiography will be directly compared with X-ray measurements on the same set of objects.
NASA has elected to pursue the development of an integrated global positioning system (GPS) and inertial navigation system (INS) (GPS/INS) for use as common hardware on the International Space Station (ISS), the Space Shuttle Orbiter and the ISS Crew Return Vehicle (CRV). NASA’s Johnson Space Center (JSC) is the lead center for this activity. This GPS/INS will perform the prime state vector estimation and navigation functions for the flight vehicles involved and is considered a criticality 1 subsystem, i.e., impacts crew safety, vehicle survivability and mission success.

A facility producing heavy ions with sufficient energy per nucleon is needed to perform system level tests with heavy ions similar to the IUCF proton tests to establish latchup susceptibility for the proposed hardware. The 10-11 GeV gold ion beam scheduled at the AGS in the fall/winter of 1996 is the only American resource known that can accomplish this special testing.
Schematic of the experiment. A typical $K^+ \rightarrow \mu^+\pi^0\nu$ event is superimposed.
EXPERIMENT 923 - SEARCH FOR T VIOLATING MUON POLARIZATION IN $K^+ \rightarrow \mu^+ \pi^0 \nu_\mu$ DECAY

Spokesmen: R. Adair, M. V. Diwan, Hong Ma

- **Brookhaven National Laboratory** - A. S. Carroll, M. V. Diwan, J. Frank, A. Gordeev, S. Kettell, L. Leipuner, L. Littenberg, H. Ma, V. Polychronakas

- **Institute for Nuclear Research, Moscow, Russia**
 G. Atoyan, V. Issakov, O. Karavichev, S. Laptev, A. Poblaguev, A. Proskuryakov

- **Louisiana Tech University** - M. Elaasar, D. Greenwood, K. Johnston

- **Yale University** - R. Adair, R. Larsen

This experiment proposes a new search for the time reversal violating polarization of the muon normal to the decay plane of the $K^+ \rightarrow \mu^+ \pi^0 \nu_\mu$ decay. The experiment will be performed with in-flight decays in an intense ($2 \times 10^7 K^+ \text{ per sec}$) 2 GeV/c separated kaon beam in an existing beam-line at the AGS. The central piece of the detector will be a new polarimeter which will consist of 128 carbon wedges, with active detector elements (either scintillator or wire chambers) between the wedges, arranged in a cylindrical manner around the kaon beam. More than 10^9 events are expected to be analyzed to obtain sensitivity to the T-violating polarization of ± 0.0007 to $\text{Im} \xi$, an improvement by approximately 40 over the previous best limit.
EXPERIMENT 924 - STUDY OF THE $\xi(2220)$ IN $\bar{p}p$ → NEUTRAL FINAL STATES USING THE CRYSTAL BALL IN THE AGS D6 LINE

Spokesman: D. W. Hertzog

- **Boston University** - J. Miller
- **Brookhaven National Laboratory** - T. Kycia, P. Pile
- **Carnegie-Mellon University** - G. Franklin, C. Meyer, B. Quinn, R. A. Schumacher
- **College of William and Mary in Virginia** - M. Eckhouse, J. Kane, R. Welsh
- **George Washington University** - C. Bennhold, W. J. Briscoe
- **Kent State University** - D. M. Manley
- **Northwestern University** - K. Seth
- **Petersburg Nuclear Physics Institute** - V. V. Abaev, V. S. Bekrenev, N. G. Kozlenko, S. P. Kruglov, I. V. Lopatin, A. B. Starostin
- **Valparaiso University** - D. Grosnick, D. D. Koetke, R. W. Manweiler, S. Stanislaus
- **University of California at Los Angeles** - M. Clajus, S. C. McDonald, A. Marušić, B. M. K. Nefkens, W. B. Tippens
- **University of Colorado** - R. J. Peterson
- **University of Connecticut** - R. T. Jones
- **University of Illinois at Urbana-Champaign** - P. Debevec, D. W. Hertzog, P. E. Reimer, J. Ritter, S. Sedykh, D. Urner
- **University of Karlsruhe** - H. M. Staudenmaier
- **University of Maryland** - D. Peaslee
- **University of Regina** - G. J. Lolos, Z. Papandreou

The experimenters propose to study the reactions $\bar{p}p \rightarrow \pi^+\pi^-$, $\bar{p}p \rightarrow \pi^0\eta$, $\bar{p}p \rightarrow \eta\eta$, and $\bar{p}p \rightarrow \eta'\eta$ in the region of the ξ using the high-resolution Crystal Ball detector and the D6 (antiproton) beam line.
Sketch of the experimental setup for the proposed inclusive pion experiment.
EXPERIMENT 925 - ASYMMETRIES IN INCLUSIVE PION PRODUCTION AT LARGE $X_F = (0.5$ TO $0.8)$ AND $P_T \geq 0.8$ GeV/C WITH A POLARIZED BEAM FOR A RHIC POLARIMETER

SPOKESMEN: Y. MAKDISI AND A. YOKOSAWA

- Argonne National Laboratory - K. Krueger, T. LeCompte, H. Spinka, D. Underwood, A. Yokosawa
- Indiana University - M. Bai*, S. Y. Lee
- Institute for Theoretical and Experimental Physics (ITEP), Moscow - I. G. Alekseev, V. P. Kanavets, D. N. Svirda
- University of California-Los Angeles - K. Barish, L. Betev, V. Ghazikhanian, H. Huang, G. Igo, S. Trentlage, C. Whitten
- University of Iowa - N. Akchurin
- University of Tokyo - H. Okamura, H. Sakai, T. Wakasa
- * Also Argonne National Laboratory
- ** Also Kyoto University, Japan

The experimenters propose to measure asymmetries in the inclusive reactions,

$$p \pi^- \rightarrow \pi^+ \text{ anything}, \hspace{1cm} p \pi^- \rightarrow \pi^- \text{ anything}$$

using a transversely polarized beam, a liquid hydrogen target, and a carbon target. The measurements would be made using the 23-GeV/c proton beam in an extracted beam line from the AGS, a spectrometer consisting of an analyzing magnet, scintillation hodoscopes, scintillation trigger counters, and a gas threshold Cerenkov counter. The kinematic range covered by the experiments would be p_T up to 1.0 GeV/c and $x_F = p_L/p_{max} = 0.5$ to 0.8.

The purpose of this proposal is to obtain basic information in order to design a polarimeter for the RHIC polarized beams. The RHIC polarimeter is a crucial item for the success of the RHIC spin program.
Layout of the $K^0_L \rightarrow \pi^0 \nu \bar{\nu}$ experiment.
EXPERIMENT 926 - MEASUREMENT OF $K_L^0 \rightarrow \pi^0 \nu \bar{\nu}$
SPOKESMEN: D. BRYMAN, L. LITTENBERG, M. ZELLER

- INR-Moscow - D. Dementyev, A. Ivashkin, A. Khotjanzev, Y. Kudenko, O. Mineev
- Kyoto University - T. Fujiwara, H. Kurashige, N. Sasao
- Thomas Jefferson National Accelerator Facility - M. Ito
- Virginia Polytechnic Institute - M. Blecher, K. Kinoshita, M. Pitt
- Yale University - S. Dhawan, H. Kaspar, W. Majid, M. Zeller
- University of British Columbia - M. Hasinoff
- University of New Mexico - B. Bassalleck, J. Lowe

This experiment will be a measurement of the rare decay $K_L \rightarrow \pi^0 \nu \bar{\nu}$. The method employs kaon time-of-flight and full kinematic reconstruction of the π^0 to suppress backgrounds to a level well below an anticipated signal in the range of $3 \pm 2 \times 10^{-11}$.
Schematic layout of the target region and the detector are shown.
The experimenters propose to measure the spin-orbit (ls) splitting of single Λ particle states in a hypernucleus.
The experimenters propose a high-resolution γ-ray spectroscopy measurement of several light Λ hypernuclei employing a large-acceptance germanium detector system which is being constructed in Japan. Λ hypernuclei are produced by the (K^-, π^-) reaction and their γ transitions are detected in coincidence. They will use K^- beam at C6 beam line together with the present spectrometer. The aim is to determine ΔN spin-dependent interactions through γ spectroscopy of some light hypernuclei. Data will be taken with 9Be, 16O, 12C and 7Li targets and to study γ transitions of 15N, 10Be, 16O, 12C, 7Li, which will give information on the spin-spin, spin-orbit, and tensor interactions between Λ and nucleon.
Figure 1: Experimental Layout for the weak decay of \(^{4}\text{He}\) measurement. The beamline elements are labeled according to their type; S2-5 are scintillator elements, LC designates lucite Cherenkov detectors for \(K/\pi\) separation, and CH designates tracking chambers to determine the direction of the incoming kaon.
EXPERIMENT 931 - STUDY OF THE $\Delta I = \frac{1}{2}$ RULE IN THE WEAK DECAY OF S-SHELL HYPERNUCLEI

SPOKESMAN: D. Dehnhard, E. Hungerford, V. Zeps

- Arizona State University - J. R. Comfort, C. Gauland
- Brookhaven National Laboratory - R. E. Chrien, J. Gerald, M. May, P. H. Pile, A. Rusek, R. Sutter, W. B. Tippens
- Carnegie-Mellon University - G. B. Franklin, B. Quinn
- CEBAF - L. Tang
- George Washington University - W. Briscoe
- Louisiana Tech University - M. Barakat, K. Johnston
- North Carolina A&T - R. Sawafita
- R. Boskovic Institute - I. Supek
- Tohoku University - O. Hashimoto
- University of California at Los Angeles - B. Nefkens
- University of Colorado - G. A. Peterson
- University of Houston - M. Ahmed, X. Cui, A. Empl, E. V. Hungerford, A. Lan, B. Mayes, L. Pinsky
- University of Kentucky - V. Zeps
- University of Maryland - P. G. Roos
- University of Minnesota - D. Dehnhard
- University of Texas at Austin - G. Glass, C. Fred Moore, H. Ward
- University of Zagreb - D. Androic, M. Furic, T. Petkovic, M. Planinic

This experiment addresses an unresolved, fundamental question of "why" and "when" to apply the $\Delta I = \frac{1}{2}$ rule to the weak decay of strange hadrons. An opportunity now exists to determine if this apparently universal rule applies to the non-mesonic weak decay of a Λ, by studying particle emission from an important problem which can only be addressed through the coupling of the NMS spectrometer to the C8 beam line.
This experiment studied rf bunching techniques that would be relevant to the operating modes for a muon collider driver.
Proton radiography is being investigated as a promising new technology for hydrodynamic testing in support of a science based stockpile stewardship program. It has the potential to outperform traditional X-ray Techniques in meeting the full range of requirements that are being developed by a DOE-DP charted tri-lab working group. This group was established to identify technical approaches by which an advanced hydrodynamic testing capability could certify the stockpile in the absence of underground testing.
EXPERIMENT 934 - PROPOSAL FOR BROOKHAVEN CALIBRATION OF DETECTORS
FOR USE ON ACCESS
Spokesman: W. R. Binns

- Caltech - T. L. Garrard, R. A. Leske, R. A. Mewaldt, S. M. Schindler, M. E. Wiedenbeck
- Pennsylvania State University - J. J. Beatty, M. Douvernoi
- Washington University in St. Louis - W. R. Binns, P. L. Hink, M. H. Israel
- University of Minnesota - C. J. Waddington

The purpose of this proposed calibration run at Brookhaven is to test and calibrate detectors to determine if they are capable of making precision measurements of the elemental abundances and energy spectra of galactic cosmic rays with $10^5 < Z < 92$. The Advanced Cosmic Ray Composition Experiment for Space Station (ACCESS) has been approved by NASA for a Mission Concept Study over the next two years. The present concept includes detectors which will be used to precisely measure the charge of these ultra-heavy nuclei.

Experimental goals of the ultra-heavy portion of the mission are: to determine whether the chemical fractionation pattern of GCRs is better organized by FIP or volatility; test whether galactic cosmic rays originate from interstellar dust grains, mass loss from main sequence star, freshly synthesized supernova debris, special sources, such as Wolf-Rayet stars; determine whether $Z > 30$ and $Z \geq 30$ nuclei have a common source; test if r-processes that contributed to GCRs were driven further than those that formed the solar system mix by measuring the r/s-process mix as a function of charge.

The detectors are Li-drifted silicon wafer detectors for dE/dx, waveshifter readout plastic scintillators for dE/dx, scintillating fibers for time-of-flight, and waveshifter readout Cerenkov counters.
EXPERIMENT 935
Home Page • http://wmheg1.physics.wm.edu/e935

[Diagram of experimental setup with labeled components: R Production Target, Precision Collimators, Sweeping Magnets, Evacuated Decay Volume, Shielding, Neutral Beam Dump, Straws Chambers, Magnet ($\Delta p_\perp = +416$ MeV), Straw Chambers, Magnet ($\Delta p_\perp = +172$ MeV), Drift Chambers, H_2 Threshold Cherenkov, Lead Glass Calorimeter, Muon Hodoscope.]
EXPERIMENT 935 - A DECAY SEARCH FOR A LIGHT GLUINO BOUND STATE IN THE B5 LINE
Spokesman: Y. Kuang

- College of William and Mary
 M. Eckhause, D. Hancock, K. Hern, J. Kane, Y. Kuang, A. Norman, R. Welsh
- Rensselaer Polytechnic Institute - M. Witkowski
- University of California, Irvine - M. Bachman, G. Kagel, R. Lee, T. Liu, W. Molzon
- University of Richmond - P. Rubin

The experimenters propose to search at the AGS for the supersymmetry-based R^0 hadron in terms of a decay channel involving a photino and two charged pions with a sensitivity in the product of production cross section and branching fraction of 5×10^{-8} cm2/GeV2. A positive signal would be a first observation of a supersymmetric particle.

The detector facility assembled by the E871 collaboration to conduct rare kaon decay studies offers the highest flux neutral beam available and a detector that has acceptable sensitivity to the decay of the R^0-hadron. The E871 detector in its present configuration would be used to look for two-pion vertex events originating in the decay volume. Achieving an improved vacuum decay tank of $< 10^{-6}$ torr is the main modification required for the detector system.
Cross-Section View of the E936 Detector Set Up

- Cryostat
- Iron Pole
- Pb Shield
- Cherenkov
- CsI(Tl) crystal barrel
- Fiducial Counters
- SCIFI target
- Degrader BeO
- Ring Counters
- Muon Stopper
- MWPC
- Muon Degrader

0 0.5 m
An experiment is proposed to search for T-violation in the $K^+ \rightarrow \pi^0 \mu^+ \nu$ decay using a stopped beam method. The muon transverse polarization will be examined with high precision and with small systematic errors. The experimental setup will be transferred from the KEK E246 T-violation experiment after the completion of data taking early in 1999. After 3000 hours of running at AGS, the sensitivity of $\Delta P_\tau = 3.5 \times 10^{-4}$ will be obtained corresponding to the sensitivity of $\Delta m\xi = 1.5 \times 10^{-3}$.

EXPERIMENT 936 - SEARCH FOR T-VIOLATION IN THE $K^+ \rightarrow \pi^0 \mu^+ \nu$ DECAY USING STOPPED KAONS

Spokesman: J. Imazato

- National Laboratory for High Energy Physics (KEK) - M. Aoki, M. Chapman, J. Imazato
- Science University of Tokyo - K. Nakai
- Virginia Polytechnic Institute and State University - M. Blecher
- University of British Columbia and TRIUMF - M. Hasinoff, J. A. Macdonald
- University of Montreal - P. Depommier
- University of Saskatchewan - C. Rangacharyulu, B. Shin
- University of Tsukuba - I. Arai, Y. Asano
EXPERIMENT 937 - A STUDY OF THE OCCURRENCE OF RADIATION-INDUCED
SOFT ERROR UPSETS (SEU)
Spokesman: R. J. Peterson

- University of Colorado - C. J. Gelderloos, R. J. Peterson

We exposed one sample of a 16 Mbit high density memory chip to negative pion beams of 1.2 and 1.8 Gev/c on the D-line. A plastic scintillator with the same dimensions as the chip was used to monitor the pion fluence. Cross sections for soft errors, changing the bit content of the chip without permanent damage, were found to be much smaller than observed at lower pion momenta. The experiment was truncated by a major equipment problem, and will not be extended because the information obtained is sufficient for the needs to understand avionics failures in commercial aircraft.
BNL-AGS Target Test Experiment

Schematic section along beam center line

Volume of target container: 40 liters (544 kg Hg)
Total Mercury in system: 50 liters (680 kg Hg)
Capacity of drain tank: 60 liters
There is a worldwide effort in planning and designing the next generation neutron source; the focus is on spallation source with average power of up to 5 MW and single pulse energies of 100 kJoules. The design issues center around the heavy metal target; liquid mercury is the current first choice. The AGS is a unique resource to study in detail neutron production, pressure wave mitigation and other issues in target design. It is the only proton source in the world with the energy per pulse equal to the proposed future sources.

The experiment will initially measure the neutron production and energy deposition in liquid mercury as a function of incident proton energy. The pressure wave behavior under peak power loading will then be measured and proposed mitigation measures evaluated. Finally, the performance of a liquid mercury target in conjunction with a lead reflector and moderators will be measured to study the complete system performance. The total proton flux required at a given proton energy is minimal (typically a few times 10^{14}) for the first two proposed measurement periods.
EXPERIMENT 939
Home Page • http://

Accelerator
- Produces and accelerates proton beam

Target/Blanket
- Produces neutrons from proton beam
- Converts 3He (or 6Li) into tritium

High-Energy Beam Transport
- Proton beam delivery to Target/Blanket
- Expands and shapes beam

Tritium Processing
- Continuous tritium extraction
- Purification to weapons grade tritium
The purpose of this experiment is to advance the R&D work for the accelerator production of tritium in the national program now underway in this subject. Using fast extracted protons, various materials will be exposed to proton beams of 800, 1200, 1600 and 2000 MeV to measure the production cross sections for 27Al($p,3n)^{24}$Na.
EXPERIMENT 940
Home Page • http://plato.ps.uci.edu/~meco/
This experiment proposes to search for the process $\mu N - e^+ N$ with a significantly improved sensitivity with respect to past and proposed future searches. Interest is in searching for violations of additive quantum numbers associated with each type of lepton. Violation of these quantum numbers is commonly referred to as lepton flavor violation (LFV). The process will provide direct evidence of muon and electron number violation.

The experiment will be conducted in a new μ beam line produced using a pulsed proton beam. The proton energy will be chosen in the range 8-20 GeV to optimize the μ flux per unit time and minimize operating costs of the experiment. The expected sensitivity, normalized to the kinematically similar process of μ capture on the nucleus, is one event for a branching fraction of 2×10^{-17}.
The E864 "Spectrometer" measures:
- Charge (Σ) and Mass (M)
- Strangelets from $M > 7$ GeV/c² with $\Sigma/M < 0.3$ e/GeV/c²

Elevation View

Plan View

- M1 & M2 = dipole spectrometer magnets
- H1, H2 & H3 = scintillation hodoscopes
- S1, S2 & S3 = straw tube arrays

- Shield, Flange and Vacuum Window
- Vacuum Chamber Above Detectors
- Calorimeter
- Neutral Line
- Vacuum Window and Flange
- Shield for Flange

- S1, M1, S2, H1, H2, S3, H3

Home Page: http://
EXPERIMENT 941 - STUDY OF CHARGED AND NEUTRAL LEADING PARTICLES IN P+A COLLISIONS AT THE BNL-AGS
Spokesmen: H. Huang, R. Majka

- Columbia University - J. Nagle
- Iowa State University - B. Fadem, J. Hill, R. Hoversten, J. Lajoie, A. Petridis, H. Skank, G. Sleege, F. Whohn,
- Massachusetts Institute of Technology - I. Pless, G. Van Buren
- Vanderbilt University - V. Grene, C. Magbuire, T. Miller, J. Reid, A. Rose
- Wayne State University - S. Bennett, T. Cormier, P. Fachini, H. Jaradat, M. Munhoz, C. Pruneau
- University of Massachusetts - M. Rabin
- University of California at Los Angeles - K. Barish, H. Huang, H. Long, E. Yamamoto

Although charged leading particles in p+A collisions have been studied extensively at the beginning of the era for ultra-relativistic heavy ion collisions, neutral leading particles have not been measured accurately and systematically. Neutral leading particles represent a significant fraction of the cross sections for incident proton fragmentation. When the incident proton is described by its quark content and is broken up during nuclear collisions, the emerging leading particles can be combinations of neutron + π⁺ or proton + π⁰ in the framework of a diquark-quark breakup scenario. This experiment plans to measure both charged and neutral leading particles in p+Pt, p+Cu, p+al and p+Be collisions at the beam momenta of 18 and 12 GeV/c with the E864 spectrometer.

The experiment will be conducted in a new μ beam line produced using a pulsed proton beam. The proton energy will be chosen in the range 8-20 GeV to optimize the μ flux per unit time and minimize operating costs of the experiment. The expected sensitivity, normalized to the kinematically similar process of μ capture on the nucleus, is one event for a branching fraction of 2 x 10⁻⁷².

110
List of Publications of AGS Experiments
This listing was originally prepared using the SLAC data base SPIRES; we now rely on the experimenters themselves to supply us with information. It is easy to miss publications in such a wide search and we apologize for any left out or misidentified. Please let us know about these as well as keeping us posted on your recent publications of AGS experiments.

Publications

E. P. Hartouni, et al., *Some preliminary results from BNL E766 on \(pp - pp K^0 K\pi \)*. Contribution to the BNL Workshop on Glueballs, Hybrids and Exotic Hadrons, August 29-September 1, 1988.

Shlomit Tarem, Physics Department, Brandeis University, 1987. PHD Thesis.

H.B. Greenlee, et al., *A Search for KKπ - μ+e and KKπ - e+e-. BNL 40452.*

Publications

M.S. Atiya, et al., Search for the decay $K^+ \rightarrow \pi^+\nu\bar{\nu}$, Phys. Rev. Lett. 64, 21-4 (1990).

M.S. Atiya, et al., Search for the decay $K^+ \rightarrow \pi^+\gamma\gamma$, Phys. Rev. Lett. 65, 1188-91 (1990).

M.S. Atiya, et al., Search for the flavor-changing neutral current decay $K^- \rightarrow \pi^+\nu\bar{\nu}$, Proc. 15th APS Division of Particles and Fields General Meeting, Houston, Texas, Jan. 3-6, 1990.

M.S. Atiya, et al., Search for the decay $K^+ \rightarrow \pi^+\nu\bar{\nu}$, Phys. Rev. Lett. 64, 21-4 (1990).

M.S. Atiya, et al., Search for the decays $K^+ \rightarrow \pi^+\nu\bar{\nu}$ and $K^+ \rightarrow \pi^+X_0$ for $150 < M_\pi^2 < 250 MeV/c^2$, Phys. Rev. D48, R1 (1993).

M.S. Atiya, et al., An improved search for the decay $K^+ \rightarrow \pi^+\nu\bar{\nu}$, Phys. Rev. Lett. 70, 2521 (1993).

J.S. Frank, Status and future plans for BNL Experiment E787 ($K^+ \rightarrow \pi^+\nu\bar{\nu}$). Proc. of the Workshop on Future Directions in Particle and Nuclear Physics at Multi-GeV Hadron Beam Facilities, D. F. Geesaman, Editor, pp. 428-33, 1993.

Publications

S. Adler, *Status report on the search for $K^+ - \pi^\pm \nu\bar{\nu}$ and prospects for the search for $K^0_L - \pi^\pm \nu\bar{\nu}$*, Proc. Of 16th Intl. Workshop on Weak Interactions and Neutrinos (WIN 97), 1997.

788 J.J. Szymanski, *Weak decay of A^0 hypernuclei*, Proc. of the 2nd Conf. on the Intersections between Particle and Nuclear Physics, Lake Louise, Alberta, Canada, May 24, 1986.

Y.J. Uemura, et al., *Muon spin relation in CeCu'Si and muon knight shift in various heavy-fermion systems*, 4th Int. Conf. on Muon Spin Rotation, Relaxation and Resonance, Uppsala, Sweden, June 1, 1986.

Publications

Publications

Publications

S. DePanfilis, et al., Limits on the abundance and coupling of cosmic axions at $4.5 < m_a < 5.0 \mu eV$, Phys. Rev. Letts. 59, 839 (1987).

Publications

Publications

Toru Iijima, *H-Dibaryon search in the reaction $\Xi^-d \rightarrow Hn$ at rest by measuring the neutron in coincidence with the Ξ^-*, Memoirs of the Faculty of Science, Kyoto University, Series A of Physics, Astrophysics, Geophysics and Chemistry, Vol. XXXIX, No. 2, Article 1, 1995.

Publications

B. Shiva Kumar, et al., *What can we learn from studies of proton and antiproton distributions at AGS energies?* Proc. 7th Winter Workshop on Nuclear Dynamics, Key West, Jan. 1991, J. Kapusta and W. Bauer, editors.

130

Publications

E. Ganssauge, et al., *Contribution of the EMU01 collaboration to the research for a quark gluon plasma (QGP)*, Proc. XV Int. Conf. on Particle Tracks in Solids, Marburg, FRG, September 3-7, 1990.

E. Stenlund, et al., *Recent results from EMU01*, Proc. Workshop on Heavy Ion Physics at the AGS, HIPAGS’90, Brookhaven National Laboratory, Upton, NY, March 5-7, 1990, pp. 70, BNL-44911. (Ed.: O. Hansen.)

M. I. Adamovich, et al., Charged particle density distributions in Au induced interactions with emulsion nuclei at 10.7 A GeV, accepted for publication in Phys. Lett. B.

Publications

Y. Mardor, *K^+ total cross sections and swelling in nuclei*. Thesis submitted toward the M.Sc. degree in at Tel-Aviv University (1990).

Publications

A. Deshpande, et al., *Determination of the branching ratio of the decay $\pi^\circ \rightarrow e^+e^-$, DFT 1993*, The Fermilab Meeting.

Publications

Publications

J. Lowe, et al., *The reaction $\pi^0 n$ near threshold and chiral symmetry breaking*, abstract contributed to the Fourth Conference on Intersections between Particle and Nuclear Physics, Tucson AZ, May 24-29, 1991.

H. Burkhardt and J. Lowe, *Amplitudes for $\pi N N$ reactions*, submitted to NuN Newsletter.

142
Publications

Publications

E. Stenlund, et al., A search for non-statistical particle density fluctuations in \(^{16}\text{O} + \text{Ag(}\text{Br)}\) and \(^{32}\text{S} + \text{Au}\) interactions at 200 \(\text{A GeV}\), Nucl. Phys. A498, 541c (1989).

M.I. Adamovich, et al., Target nucleus fragmentation in \(^{16}\text{O} + (\text{Ag,Br})\) interactions at 200 \(\text{A GeV}\), Phys. Lett. 234B, 180 (1990).

E. Ganssauge, et al., Contribution of the EMU01-collaboration to the research for a Quark Gluon Plasma (QGP), Proc. XV Int. Conf. on Particle Tracks in Solids, Marburg, FRG, Sept. 3-7, 1990.

145
Publications

K. Barish, et al., *The E864 lead-scintillating fiber hadronic calorimeter*, accepted for publication by Nucl. Instrum. and Methods. (Accepted 1997)

R. Debebe, C. Muentz, J.B. Cummings, *A high resolution quark Cerenkov detector for relativistic heavy ion beams*, Nucl. Instrum. Meth. (Submitted)

KLMM Collaboration

Publications

869 UHIC Collaboration

Publications

Publications

M. Bai, et al., Overcoming the intrinsic spin resonance using resonance island created by RF dipole, to be submitted to Physical Review (1997).

Publications

Publications

Publications

907 M. W. Ahmed (for the E907 collaboration), Characteristics of an active chamber target to locate the reaction vertex in the (K^-, π^0) reaction, proc. of the conf. on Kaon and Hypernuclear Physics, BNL, 1997.

A. Rusek (for the E907 collaboration), NMS studies of the $(K^-\pi^0)$ reaction, proc. of the conf. on Kaon and Hypernuclear Physics, BNL, 1997.

W. B. Tippens, (for the 913 collaboration), Hadron spectroscopy with the crystal ball at the AGS, Presented at Hadron 97, S. U. Chung, ed. (to be published) 1997.

A. Starostin, Eta production in the reaction $\pi^0 p \to \eta N$ near threshold, Presented at Hadron 97, S. U. Chung, ed. (to be published) 1997.

W. B. Tippens, (for the 913 collaboration) Recent results from the crystal ball program at BNL, proc. Of GW/TJNAF Workshop on N Physics, Oct. 30 - Nov. 1, 1997 (to be published).

158

List of AGS Experimenters

- Name
- Affiliation
- Experiment(s)
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Code Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abaev, V. V.</td>
<td>Petersburg Nuclear Physics Institute</td>
<td>924, 914, 913, 909, 890</td>
</tr>
<tr>
<td>Ables, E.</td>
<td>Lawrence Livermore National Laboratory</td>
<td>933</td>
</tr>
<tr>
<td>Aclander, H.</td>
<td>Tel-Aviv University</td>
<td>850</td>
</tr>
<tr>
<td>Adair, R.</td>
<td>Yale University</td>
<td>923</td>
</tr>
<tr>
<td>Adams, G.</td>
<td>Rensselaer Polytechnic Institute</td>
<td>852</td>
</tr>
<tr>
<td>Adams, T.</td>
<td>University of Notre Dame</td>
<td>852</td>
</tr>
<tr>
<td>Adler, S.</td>
<td>Brookhaven National Laboratory</td>
<td>787</td>
</tr>
<tr>
<td>Ahle, L.</td>
<td>Massachusetts Institute of Technology</td>
<td>866</td>
</tr>
<tr>
<td>Ahmad, S.</td>
<td>Rice University</td>
<td>891</td>
</tr>
<tr>
<td>Ahmed, M.</td>
<td>University of Houston</td>
<td>931, 929, 907</td>
</tr>
<tr>
<td>Ahrens, L.</td>
<td>Brookhaven National Laboratory</td>
<td>925, 880</td>
</tr>
<tr>
<td>Ajimura, S.</td>
<td>Osaka University</td>
<td>930, 929, 906</td>
</tr>
<tr>
<td>Ajitanand, N.</td>
<td>State University of New York-Stony Brook</td>
<td>895</td>
</tr>
<tr>
<td>Akchurin, N.</td>
<td>University of Iowa</td>
<td>925</td>
</tr>
<tr>
<td>Akekseev, I. G.</td>
<td>Institute for Theoretical and Experimental Physics-Moscow</td>
<td>925</td>
</tr>
<tr>
<td>Akiha, Y.</td>
<td>Institute for Nuclear Study-University of Tokyo</td>
<td>917, 866</td>
</tr>
<tr>
<td>Akikawa, S.</td>
<td>INS-University of Tokyo</td>
<td>906</td>
</tr>
<tr>
<td>Alberger, D.</td>
<td>Brookhaven National Laboratory</td>
<td>885</td>
</tr>
<tr>
<td>Albers, S.</td>
<td>University of Catania</td>
<td>896</td>
</tr>
<tr>
<td>Albritton, D.</td>
<td>Brookhaven National Laboratory</td>
<td>925, 880</td>
</tr>
<tr>
<td>Alexander, J.</td>
<td>State University of New York-Stony Brook</td>
<td>895</td>
</tr>
<tr>
<td>Allgower, C.</td>
<td>Argonne National Laboratory</td>
<td>880</td>
</tr>
<tr>
<td>Alrick, K.</td>
<td>Los Alamos National Laboratory</td>
<td>939</td>
</tr>
<tr>
<td>Alster, J.</td>
<td>Tel-Aviv University</td>
<td>850</td>
</tr>
<tr>
<td>Amaglobeli, N.</td>
<td>Fermi National Laboratory</td>
<td>932</td>
</tr>
<tr>
<td>Alexander, J.</td>
<td>HEP Inst. Tbilisi State University</td>
<td>865</td>
</tr>
<tr>
<td>Amann, J.</td>
<td>Los Alamos National Laboratory</td>
<td>933, 931, 907</td>
</tr>
<tr>
<td>Ambrose, D.</td>
<td>University of Texas at Austin</td>
<td>871</td>
</tr>
<tr>
<td>Androic, D.</td>
<td>University of Zagreb</td>
<td>931, 907</td>
</tr>
<tr>
<td>Ankenbrandt, C.</td>
<td>KEK, National Laboratory for High Energy Physics</td>
<td>936, 787</td>
</tr>
<tr>
<td>Aoki, M.</td>
<td>University of Pittsburgh</td>
<td>865</td>
</tr>
<tr>
<td>Appel, R.</td>
<td>University of Tsukuba</td>
<td>936</td>
</tr>
<tr>
<td>Araki, Y.</td>
<td>Loma Linda University</td>
<td>856</td>
</tr>
<tr>
<td>Ardelbili, M.</td>
<td>Princeton University</td>
<td>787</td>
</tr>
<tr>
<td>Armendariz, J.</td>
<td>University of New Mexico</td>
<td>865</td>
</tr>
<tr>
<td>Armstrong, T.</td>
<td>Penn State University</td>
<td>864</td>
</tr>
<tr>
<td>Asano, Y.</td>
<td>University of Tsukuba</td>
<td>936</td>
</tr>
<tr>
<td>Ashktorab, K.</td>
<td>Brookhaven National Laboratory</td>
<td>866</td>
</tr>
<tr>
<td>Assamagan, K.</td>
<td>Hampton University</td>
<td>865</td>
</tr>
<tr>
<td>Atiya, M. S.</td>
<td>Brookhaven National Laboratory</td>
<td>787</td>
</tr>
<tr>
<td>Attoy, G. S.</td>
<td>Inst. for Nuclear Research, Moscow</td>
<td>923, 865</td>
</tr>
<tr>
<td>Aufderheide, M. B.</td>
<td>Lawrence Livermore National Laboratory</td>
<td>933</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Code Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachman, M.</td>
<td>University of California-Irvine</td>
<td>940, 935, 871</td>
</tr>
<tr>
<td>Back, B.</td>
<td>Argonne National Laboratory</td>
<td>917, 900</td>
</tr>
</tbody>
</table>
Bagaturia, Y.
Bagga, R.
Bai, M.
Baker, K.
Baker, M.
Balcer-Kubiczek, E.
Balder-Kubiczek, E.K.
Barakat, M.
Barber, R.
Barbier, L. M.
Barcellos-Hoff, M. H.
Barish, K.
Barkov, L. M.
Barnes, P.
Barnes Jr., P. D.
Barrette, J.
Bart, S.
Barton, D. S.
Bar-Yam, Z.
Bassalleck, B.
Bassano, D.
Batici, M.
Batsouli, S.
Baturin, V.
Bauer, G.
Bazanko, A.
Beatty, J. J.
Beavis, D.
Bekrenev, V. S.
Belikov, N. I.
Belkacem, A.
Bellwied, R.
Belzer, L. I.
Benante, J.
Bennhold, C.
Bennett, B.
Bennett, G.
Bennett, M.
Bennett, S.
Berdoz, A.
Bergbusch, P.
Bergman, D.
Bersch, R.
Best, D.
Betev, L.
Betts, R.
Bharadwaj, V.
Biglan, A.
Binns, W. R.
Bionta, R. M.

HEP Inst. Tbilisi State University
Abilene Christian University
Argonne National Laboratory/Indiana University
Hampton University
Massachusetts Institute of Technology
University of Maryland Baltimore County
U. Of Maryland School of Medicine
Louisiana Tech University
University of Houston
Goddard Space Flight Center
Lawrence Berkeley Laboratory
University of California-Los Angeles
Budker Inst. For Nuclear Physics
Los Alamos National Laboratory
McGill University
Brookhaven National Laboratory
Ruder Boskovic Institute
Yale University
Pennsylvania State University
Paul Scherrrer Institute
Princeton University
Pennsylvania State University
Brookhaven National Laboratory
Petersburg Nuclear Physics Institute
Institute for High Energy Physics-Protvino
Lawrence Berkeley Laboratory
Wayne State University
Moscow State University
Brookhaven National Laboratory
George Washington University
Wayne State University
Brookhaven National Laboratory
Space Science Laboratory
Wayne State University
Carnegie-Mellon University
TRIUMF
Yale University
SUNY at Stony Brook
Lawrence Berkeley National Laboratory
University of California-Los Angeles
University of Illinois-Chicago
Fermilab
Carnegie-Mellon University
Washington University in St. Louis
Lawrence Livermore National Laboratory

865
914, 913
925, 880
865
866
919
898
931, 907
929
934
898
941, 925, 864
821
933
933
852
938
787
934
866
924, 914, 913, 909, 890
925
892
896, 877, 864
852
821
924, 909
864
856, 821
896
941
906, 885, 813
787
865
877
895
925
917
880
885
934, 869
933
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birchall, J.</td>
<td>University of Manitoba</td>
<td>906, 885</td>
</tr>
<tr>
<td>Bishop, J. M.</td>
<td>University of Notre Dame</td>
<td>852</td>
</tr>
<tr>
<td>Blackmore, E.</td>
<td>TRIUMF</td>
<td>926, 787</td>
</tr>
<tr>
<td>Blecher, M.</td>
<td>Virginia Polytechnic Institute</td>
<td>936, 926</td>
</tr>
<tr>
<td>Bodyagain, V. A.</td>
<td>Moscow State University</td>
<td>852</td>
</tr>
<tr>
<td>Bonni, D.</td>
<td>University of Catania</td>
<td>896</td>
</tr>
<tr>
<td>Bonner, B. E.</td>
<td>Rice University</td>
<td>896, 891</td>
</tr>
<tr>
<td>Borak, T.</td>
<td>Colorado State University</td>
<td>919</td>
</tr>
<tr>
<td>Boudrie, D.</td>
<td>Los Alamos National Laboratory</td>
<td>931, 907</td>
</tr>
<tr>
<td>Boudrie, R. L.</td>
<td>Los Alamos National Laboratory</td>
<td>933</td>
</tr>
<tr>
<td>Brabson, B. B.</td>
<td>Indiana University</td>
<td>852</td>
</tr>
<tr>
<td>Bracken, D. S.</td>
<td>Los Alamos National Laboratory</td>
<td>900</td>
</tr>
<tr>
<td>Brady, P.</td>
<td>University of California-Davis</td>
<td>895</td>
</tr>
<tr>
<td>Braun-Munzinger, P.</td>
<td>SUNY at Stony Brook</td>
<td>877</td>
</tr>
<tr>
<td>Breuer, H.</td>
<td>University of Maryland</td>
<td>900</td>
</tr>
<tr>
<td>Brennan, M.</td>
<td>Brookhaven National Laboratory</td>
<td>932</td>
</tr>
<tr>
<td>Brill, A. B.</td>
<td>University of Massachusetts</td>
<td>856</td>
</tr>
<tr>
<td>Briscoe, W.</td>
<td>George Washington University</td>
<td>931, 924, 914, 913, 909, 907, 905</td>
</tr>
<tr>
<td>Britt, H. C.</td>
<td>Lawrence Livermore Laboratory</td>
<td>866</td>
</tr>
<tr>
<td>Britt, H.</td>
<td>University of Maryland</td>
<td>917</td>
</tr>
<tr>
<td>Brooks, A.</td>
<td>Washington State University</td>
<td>919</td>
</tr>
<tr>
<td>Brown, C.</td>
<td>Carnegie-Mellon University</td>
<td>896</td>
</tr>
<tr>
<td>Brown, D. H.</td>
<td>Boston University</td>
<td>821</td>
</tr>
<tr>
<td>Brown, D. S.</td>
<td>Northwestern University</td>
<td>852</td>
</tr>
<tr>
<td>Brown, H. N.</td>
<td>Brookhaven National Laboratory</td>
<td>821</td>
</tr>
<tr>
<td>Brown, K.</td>
<td>Brookhaven National Laboratory</td>
<td>925, 880</td>
</tr>
<tr>
<td>.Briscoe, W.</td>
<td>George Washington University</td>
<td>890</td>
</tr>
<tr>
<td>Buchanan, J. A.</td>
<td>Rice University</td>
<td>891</td>
</tr>
<tr>
<td>Budick, B.</td>
<td>New York University</td>
<td>866</td>
</tr>
<tr>
<td>Budny, T.</td>
<td>Wayne State University</td>
<td>877</td>
</tr>
<tr>
<td>Bullis, J.</td>
<td>Brookhaven National Laboratory</td>
<td>919</td>
</tr>
<tr>
<td>Bunce, G.</td>
<td>Brookhaven National Laboratory</td>
<td>925, 880, 850, 821</td>
</tr>
<tr>
<td>Burger, M.</td>
<td>Freiburg University</td>
<td>813</td>
</tr>
<tr>
<td>Bürger, T.</td>
<td>Freiburg University</td>
<td>885, 813</td>
</tr>
<tr>
<td>Bryman, D.</td>
<td>TRIUMF</td>
<td>926, 787</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caccia, Z.</td>
<td>University of Catania</td>
<td>896</td>
</tr>
<tr>
<td>Cameron, P.</td>
<td>Brookhaven National Laboratory</td>
<td>925, 880</td>
</tr>
<tr>
<td>Canfield, P. C.</td>
<td>Ames Laboratory</td>
<td>903</td>
</tr>
<tr>
<td>Carabello, S.</td>
<td>Purdue University</td>
<td>940</td>
</tr>
<tr>
<td>Carey, R. M.</td>
<td>Boston University</td>
<td>821</td>
</tr>
<tr>
<td>Carman, D.</td>
<td>Carnegie-Mellon University</td>
<td>906, 885</td>
</tr>
<tr>
<td>Carpenter, J. M.</td>
<td>Argonne National Laboratory</td>
<td>938</td>
</tr>
<tr>
<td>Carroll, A. S.</td>
<td>Brookhaven National Laboratory</td>
<td>923, 850</td>
</tr>
<tr>
<td>Case, T.</td>
<td>Lawrence Berkeley National Laboratory</td>
<td>895</td>
</tr>
<tr>
<td>Caskey, W.</td>
<td>University of California-Davis</td>
<td>895</td>
</tr>
<tr>
<td>Cason, N. M.</td>
<td>University of Notre Dame</td>
<td>852</td>
</tr>
</tbody>
</table>

162
Cebra, D. University of California-Davis 895
Chan, C. S. City College of New York 891
Chance, J. University of California-Davis 895
Chang, J. University of California-Riverside 917, 866
Chang, W. University of California-Riverside 917
Chapman, M. KEK-National Laboratory for High Energy Physics 936, 813
Chasman, C. Brookhaven National Laboratory 866
Chemakin, I. Columbia University 910, 866
Chen, D. J. Los Alamos National Laboratory 919, 898
Chen, Z. Brookhaven National Laboratory 866
Cherry, M. L. Louisiana State University 868
Chertovskikh, A. Budker Inst. For Nuclear Physics 821
Chi, C. Y. Columbia University 917, 866
Chiang, I-H. Brookhaven National Laboratory 926, 787
Chikanian, A. Yale University 941
Chrien, R. E. Brookhaven National Laboratory 931, 930, 929, 909, 907, 906, 905, 890, 885, 856, 813
Christensen, N. University of Auckland 850
Christian, E. R. Goddard Space Flight Center 934
Chu, P. Indiana University IUCF 880
Chu, Y. Y. Brookhaven National Laboratory 917, 866
Chung, P. State University of New York-Stony Brook 895
Chung, S. U. Brookhaven National Laboratory 852
Cianciolo, V. Lawrence Livermore National Laboratory 910
Cianciolo, V. Massachusetts Institute of Technology 866
Cina, G. University of Catania 896
Clajus, M. H. University of California-Los Angeles 924, 914, 913, 909, 890
Claytor, N. Lawrence Berkeley Laboratory 892
Cleland, W. University of Pittsburgh 877
Clemen, M. University of Pittsburgh 877
Clement, J. M. Rice University 891
Coe, S. Yale University 864
Cole, B. Columbia University 910, 895, 866
Cole, J. Idaho National Engineering Laboratory 877
Comfort, J. R. Arizona State University 931, 914, 913, 907
Comer, C. University of Illinois-Chicago 917
Connor, D. University of California-Irvine 871
Conrad, H. Forschungszentrum Jülich 938
Convery, M. Princeton University 787
Cooper, P. Lawrence Berkeley Laboratory 919, 898
Cormier, T. Wayne State University 941, 877, 864
Costa, S. University of Catania 896
Courant, E. D. Brookhaven National Laboratory 880
Courant, H. University of Minnesota 850
Cowan, T. E. Lawrence Livermore National Laboratory 933
Cox, A. USAF Armstrong Laboratory 919
Craig, K. Arizona State University 914, 913
Crawford, H. University of California-Space Science Laboratory 917, 896, 866
Cristie, W. Brookhaven National Laboratory 896
Crittenden, R. R. Indiana University 852
Cronqvist, M. Space Science Laboratory 896
Crowe, K. Lawrence Berkeley National Laboratory 895
Cui, X. University of Houston 931, 907
Cullen, J. Brookhaven National Laboratory 821
Culpepper, W. X. National Aeronautics and Space Administration 922
Cumming, J. B. Brookhaven National Laboratory 917, 866
Cummings, J. P. Rensselaer Polytechnic Institute 852
Cushman, P. University of Minnesota 821
Cverna, F. Los Alamos National Laboratory 939

Dai, Y. McGill University 877
Dambrowska, A. Institute of Nuclear Physics-Krakow 868
Danby, G. T. Brookhaven National Laboratory 821
Danlyo-Blackett, K. Brookhaven National Laboratory 852
Das, A. Ohio State University 895
DaSilva, N. University of Säo Paulo 877
David, G. Brookhaven National Laboratory 877
Davidenko, A. M. Institute for High Energy Physics-Protvino 925
Davies, R. M. Purdue University 864
Davis, C. TRIUMF 885
Davis, C. University of Manitoba 906, 813
Davis, C. L. University of Louisville 852
Debbe, R. Brookhaven National Laboratory 896, 866
Debevec, P. University of Illinois 924, 821
DeCecco, P. University of California-Irvine 896, 871
Dehnhard, D. University of Minnesota 931, 907
Dementyev, D. Institute for Nuclear Research-Moscow 926
Demianoi, A. Moscow State University 852
Deng, H. Yale University 821
Deninger, W. University of Illinois 821
Denisov, S. Institute for High Energy Physics-Protvino 852
Depommer, P. University of Montreal 936
Derevshchikov, A. A. Institute for High Energy Physics-Protvino 925
Dhawan, S. Yale University 926
Dhawan, S. K. Yale University 865, 821
Diebold, G. Yale University 813
Dienes-Jones, P. Louisiana State University 868
Dietzsch, O. University of Säo Paulo 877
Dinneen, T. Lawrence Berkeley Laboratory 892
Diwan, M. Brookhaven National Laboratory 923, 787
Dijkibaev, R. M. Institute for Nuclear Research 940
Do, H. Yale University 865
Doornbos, J. TRIUMF 885
Dorofeev, V. A. Inst. For High Energy Physics - Protvino, Russia 852
Douvernoi, M. Pennsylvania State University 934
Dowd, J. University of Massachusetts-Dartmouth 852
Draper, B. Abilene Christian University 914, 913
Draper, J. University of California-Davis 895
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drigert, M.</td>
<td>Idaho National Engineering Laboratory</td>
<td>877</td>
</tr>
<tr>
<td>Druzhinin, V. P.</td>
<td>Budker Institute for Nuclear Physics</td>
<td>821</td>
</tr>
<tr>
<td>Dubinin, A. I.</td>
<td>Institute of Theory and Experimental Physics-Moscow</td>
<td>868</td>
</tr>
<tr>
<td>Dunlop, J.</td>
<td>Massachusetts Institute of Technology</td>
<td>917, 866</td>
</tr>
<tr>
<td>Duong, L.</td>
<td>University of Minnesota</td>
<td>821</td>
</tr>
<tr>
<td>Durant, S.</td>
<td>Tel-Aviv University</td>
<td>850</td>
</tr>
<tr>
<td>Dushkin, A.</td>
<td>Institute for High Energy Physics-Protvino</td>
<td>852</td>
</tr>
<tr>
<td>Dzierba, A. R.</td>
<td>Indiana University</td>
<td>852</td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earle, W.</td>
<td>Boston University</td>
<td>821</td>
</tr>
<tr>
<td>Eckhause, M.</td>
<td>College of William and Mary</td>
<td>935, 924, 871</td>
</tr>
<tr>
<td>Ecklund, K.</td>
<td>Stanford University</td>
<td>871</td>
</tr>
<tr>
<td>Edwards, C.</td>
<td>Los Alamos National Laboratory</td>
<td>931, 907</td>
</tr>
<tr>
<td>Efendiev, A.</td>
<td>JINR-Dubna</td>
<td>914, 913, 909, 890</td>
</tr>
<tr>
<td>Efros, E.</td>
<td>Boston University</td>
<td>821</td>
</tr>
<tr>
<td>Efros, E.</td>
<td>City College of New York</td>
<td>891</td>
</tr>
<tr>
<td>Egger, J.</td>
<td>Paul Scherrer Institute</td>
<td>865</td>
</tr>
<tr>
<td>Egorov, O. K.</td>
<td>Institute of Theory and Experimental Physics-Moscow</td>
<td>868</td>
</tr>
<tr>
<td>Eiler, S.</td>
<td>University of New Mexico</td>
<td>865</td>
</tr>
<tr>
<td>Eiseman, S. E.</td>
<td>Brookhaven National Laboratory</td>
<td>891</td>
</tr>
<tr>
<td>Elaasar, M.</td>
<td>Louisiana Tech. University</td>
<td>923</td>
</tr>
<tr>
<td>Eldredge, W.</td>
<td>University of California-Riverside</td>
<td>917, 866</td>
</tr>
<tr>
<td>Empl, A.</td>
<td>University of Houston</td>
<td>940, 931, 929, 907, 905</td>
</tr>
<tr>
<td>Endo, K.</td>
<td>KEK</td>
<td>821</td>
</tr>
<tr>
<td>Engelage, J.</td>
<td>Space Science Laboratory</td>
<td>917, 896, 866</td>
</tr>
<tr>
<td>Enyo, H.</td>
<td>University of Kyoto</td>
<td>813</td>
</tr>
<tr>
<td>Erin, S. V.</td>
<td>Institute for High Energy Physics-Protvino</td>
<td>925</td>
</tr>
<tr>
<td>Etkin, A.</td>
<td>Brookhaven National Laboratory</td>
<td>891</td>
</tr>
<tr>
<td>Eugenio, P.</td>
<td>University of Massachusetts-Dartmouth</td>
<td>852</td>
</tr>
<tr>
<td>Evans, H.</td>
<td>Case Western Reserve University</td>
<td>919</td>
</tr>
<tr>
<td>Ewell, L.</td>
<td>Iowa State University</td>
<td>864</td>
</tr>
</tbody>
</table>

F

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachini, P.</td>
<td>Wayne State University</td>
<td>941</td>
</tr>
<tr>
<td>Fadem, B.</td>
<td>Iowa State University</td>
<td>941</td>
</tr>
<tr>
<td>Farley, F. J. M.</td>
<td>Yale University</td>
<td>821</td>
</tr>
<tr>
<td>Fedotovich, G. V.</td>
<td>Budker Institute for Nuclear Physics</td>
<td>821</td>
</tr>
<tr>
<td>Feinberg, B.</td>
<td>Lawrence Berkeley Laboratory</td>
<td>892</td>
</tr>
<tr>
<td>Felder, C.</td>
<td>University of Pittsburgh</td>
<td>865</td>
</tr>
<tr>
<td>Fernow, R.</td>
<td>Brookhaven National Laboratory</td>
<td>910</td>
</tr>
<tr>
<td>Fickinger, W.</td>
<td>Case Western Reserve University</td>
<td>856</td>
</tr>
<tr>
<td>Finch, e.</td>
<td>Yale University</td>
<td>941</td>
</tr>
<tr>
<td>Finnemore, D. K.</td>
<td>Ames Laboratory</td>
<td>903</td>
</tr>
<tr>
<td>Fischer, H.</td>
<td>University of Freiburg</td>
<td>906, 885, 813</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
<td>Code</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Fischer, H.</td>
<td>University of New Mexico</td>
<td>906, 865</td>
</tr>
<tr>
<td>Flores, M.</td>
<td>Space Science Laboratory</td>
<td>896</td>
</tr>
<tr>
<td>Foley, K. J.</td>
<td>Brookhaven National Laboratory</td>
<td>891</td>
</tr>
<tr>
<td>Foster, C. C.</td>
<td>Indiana University Cyclotron Facility</td>
<td>904</td>
</tr>
<tr>
<td>Frank, J. S.</td>
<td>Brookhaven National Laboratory</td>
<td>923, 787</td>
</tr>
<tr>
<td>Franklin, G. B.</td>
<td>Carnegie-Mellon University</td>
<td>931, 924, 907, 906, 885, 813</td>
</tr>
<tr>
<td>Franz, J.</td>
<td>University of Freiburg</td>
<td>906, 885, 813</td>
</tr>
<tr>
<td>Frawley, A. D.</td>
<td>Florida State University</td>
<td>910</td>
</tr>
<tr>
<td>Frehaut, J.</td>
<td>CEA</td>
<td>939</td>
</tr>
<tr>
<td>French, A.</td>
<td>Wayne State University</td>
<td>877</td>
</tr>
<tr>
<td>Fujino, D.</td>
<td>Lawrence Livermore National Laboratory</td>
<td>933</td>
</tr>
<tr>
<td>Fujiwara, T.</td>
<td>Kyoto University</td>
<td>926</td>
</tr>
<tr>
<td>Fukuda, T.</td>
<td>INS-University of Tokyo</td>
<td>930, 929, 906, 905</td>
</tr>
<tr>
<td>Fung, S.-Y.</td>
<td>University of California-Riverside</td>
<td>917, 866</td>
</tr>
<tr>
<td>Furic, M.</td>
<td>University of Zagreb</td>
<td>931, 907</td>
</tr>
<tr>
<td>Furusawa, Y.</td>
<td>Natl. Inst. Of Radiological Sciences, Japan</td>
<td>919</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gabriel, K.</td>
<td>Pennsylvania State University</td>
<td>850</td>
</tr>
<tr>
<td>Gan, L.</td>
<td>University of Manitoba</td>
<td>906, 885, 813</td>
</tr>
<tr>
<td>Gang, F.</td>
<td>Wayne State University</td>
<td>877</td>
</tr>
<tr>
<td>Ganz, R.</td>
<td>University of Illinois-Chicago</td>
<td>917</td>
</tr>
<tr>
<td>Garcia, E.</td>
<td>University of Maryland</td>
<td>917, 866</td>
</tr>
<tr>
<td>Gardner, C.</td>
<td>Brookhaven National Laboratory</td>
<td>821</td>
</tr>
<tr>
<td>Gardner, R.</td>
<td>Indiana University</td>
<td>852</td>
</tr>
<tr>
<td>Garrard, T. L.</td>
<td>Caltech</td>
<td>934, 869</td>
</tr>
<tr>
<td>Gasser, J.</td>
<td>University of Bern</td>
<td>865</td>
</tr>
<tr>
<td>Gatley, J.</td>
<td>Brookhaven National Laboratory</td>
<td>919</td>
</tr>
<tr>
<td>Gauland, C.</td>
<td>Arizona State University</td>
<td>931, 907</td>
</tr>
<tr>
<td>Geer, L. Y.</td>
<td>Washington University</td>
<td>869</td>
</tr>
<tr>
<td>Gelderloos, C. J.</td>
<td>University of Colorado</td>
<td>937</td>
</tr>
<tr>
<td>Geller, J.</td>
<td>Brookhaven National Laboratory</td>
<td>821</td>
</tr>
<tr>
<td>George N.</td>
<td>Yale University</td>
<td>941, 864</td>
</tr>
<tr>
<td>Gerald, J.</td>
<td>Brookhaven National Laboratory</td>
<td>931, 907</td>
</tr>
<tr>
<td>Ghazikhanian, V.</td>
<td>University of California-Los Angeles</td>
<td>925</td>
</tr>
<tr>
<td>Gibson, A.</td>
<td>Valparaiso University</td>
<td>914, 913</td>
</tr>
<tr>
<td>Gibson, B. F.</td>
<td>Los Alamos National Laboratory</td>
<td>931, 907</td>
</tr>
<tr>
<td>Giles, B.</td>
<td>University of Pittsburgh</td>
<td>865</td>
</tr>
<tr>
<td>Gilkes, M.</td>
<td>Purdue University</td>
<td>895</td>
</tr>
<tr>
<td>Gilkes, M.</td>
<td>State University of New York-Stony Brook</td>
<td>910</td>
</tr>
<tr>
<td>Gill, D.</td>
<td>TRIUMF</td>
<td>813</td>
</tr>
<tr>
<td>Gillitzer, A.</td>
<td>Argonne National Laboratory</td>
<td>917</td>
</tr>
<tr>
<td>Gimeno-Nogues, F.</td>
<td>Texas A&M University</td>
<td>900</td>
</tr>
<tr>
<td>Giron, S.</td>
<td>University of Minnesota</td>
<td>821</td>
</tr>
<tr>
<td>Glass, G.</td>
<td>University of Texas at Austin</td>
<td>931, 907</td>
</tr>
<tr>
<td>Glenn, J. W.</td>
<td>Brookhaven National Laboratory</td>
<td>926, 880</td>
</tr>
<tr>
<td>Gninenko, S. N.</td>
<td>Inst. for Nuclear Research, Academy of Sciences of Russia</td>
<td>865</td>
</tr>
</tbody>
</table>

166
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Golubev, V. B.</td>
<td>Budker Inst. For Nuclear Physics</td>
<td>821</td>
</tr>
<tr>
<td>Goncharenko, Yu. M.</td>
<td>Institute for High Energy Physics-Protvino</td>
<td>925</td>
</tr>
<tr>
<td>Gordeev, A.</td>
<td>Brookhaven National Laboratory</td>
<td>923</td>
</tr>
<tr>
<td>Goto, Y.</td>
<td>RIKEN</td>
<td>925</td>
</tr>
<tr>
<td>Gould, H.</td>
<td>Lawrence Berkeley Laboratory</td>
<td>892</td>
</tr>
<tr>
<td>Graessle, S.</td>
<td>University of Texas-Austin</td>
<td>871</td>
</tr>
<tr>
<td>Green, M. A.</td>
<td>Lawrence Berkeley Lab./Brookhaven National Lab.</td>
<td>821</td>
</tr>
<tr>
<td>Greene, G.</td>
<td>Brookhaven National Laboratory</td>
<td>939</td>
</tr>
<tr>
<td>Greene, V. S.</td>
<td>Vanderbilt University</td>
<td>864</td>
</tr>
<tr>
<td>Greenwood, D.</td>
<td>Louisiana Tech. University</td>
<td>923</td>
</tr>
<tr>
<td>Greiner, L.</td>
<td>Space Science Laboratory</td>
<td>896</td>
</tr>
<tr>
<td>Greiner, L.</td>
<td>Lawrence Berkeley Laboratory</td>
<td>896</td>
</tr>
<tr>
<td>Greene, V.</td>
<td>Vanderbilt University</td>
<td>941</td>
</tr>
<tr>
<td>Gribushin, A. M.</td>
<td>Moscow State University</td>
<td>852</td>
</tr>
<tr>
<td>Grigoriev, D. N.</td>
<td>Budker Inst. For Nuclear Physics</td>
<td>821</td>
</tr>
<tr>
<td>Grosmick, D.</td>
<td>Valpariso University</td>
<td>924, 914, 913</td>
</tr>
<tr>
<td>Grosse-Perkekamp, M.</td>
<td>Yale University</td>
<td>821</td>
</tr>
<tr>
<td>Grossmann, A.</td>
<td>University of Heidelberg</td>
<td>821</td>
</tr>
<tr>
<td>Gumpinger, P.</td>
<td>TRIUMF</td>
<td>926</td>
</tr>
<tr>
<td>Gunter, J.</td>
<td>Indiana University</td>
<td>852</td>
</tr>
<tr>
<td>Guo, Y.</td>
<td>Wayne State University</td>
<td>896</td>
</tr>
<tr>
<td>Gupta, M.</td>
<td>Rice University</td>
<td>896</td>
</tr>
<tr>
<td>Gushue, S.</td>
<td>Brookhaven National Laboratory</td>
<td>910, 909, 900, 895, 866, 850</td>
</tr>
<tr>
<td>Hackenburg, R. W.</td>
<td>Brookhaven National Laboratory</td>
<td>891, 871, 852</td>
</tr>
<tr>
<td>Haeberlen, U.</td>
<td>Max Planck Institut for Physik</td>
<td>821</td>
</tr>
<tr>
<td>Hafen, E. S.</td>
<td>Massachusetts Institute of Technology</td>
<td>864</td>
</tr>
<tr>
<td>Haggerty, J. S.</td>
<td>Brookhaven National Laboratory</td>
<td>787</td>
</tr>
<tr>
<td>Haines, J.</td>
<td>Oak Ridge National Laboratory</td>
<td>938</td>
</tr>
<tr>
<td>Hall, J.</td>
<td>Wayne State University</td>
<td>896, 877, 864</td>
</tr>
<tr>
<td>Hallman, T.</td>
<td>Brookhaven National Laboratory</td>
<td>896</td>
</tr>
<tr>
<td>Hamagaki, H.</td>
<td>Institute for Nuclear Study-University of Tokyo</td>
<td>917, 866</td>
</tr>
<tr>
<td>Hamilton, S.</td>
<td>University of Texas-Austin</td>
<td>871</td>
</tr>
<tr>
<td>Hanabata, M.</td>
<td>Gifu University</td>
<td>906</td>
</tr>
<tr>
<td>Hancock, D.</td>
<td>College of William and Mary</td>
<td>935, 871</td>
</tr>
<tr>
<td>Hanson, A. L.</td>
<td>Brookhaven National Laboratory</td>
<td>939</td>
</tr>
<tr>
<td>Hare, M.</td>
<td>Boston University</td>
<td>821</td>
</tr>
<tr>
<td>Haridas, P.</td>
<td>Massachusetts Institute of Technology</td>
<td>864</td>
</tr>
<tr>
<td>Hartman, C.</td>
<td>Stanford University</td>
<td>871</td>
</tr>
<tr>
<td>Hartouni, E. P.</td>
<td>Lawrence Livermore National Laboratory</td>
<td>933</td>
</tr>
<tr>
<td>Hashimoto, O.</td>
<td>Tohoku University</td>
<td>931, 930, 907</td>
</tr>
<tr>
<td>Hasinoff, M.</td>
<td>University of British Columbia - TRIUMF</td>
<td>936, 926</td>
</tr>
<tr>
<td>Hastings, J. B.</td>
<td>Brookhaven National Laboratory</td>
<td>938</td>
</tr>
<tr>
<td>Haversten, K.</td>
<td>Iowa State University</td>
<td>864</td>
</tr>
<tr>
<td>Hayakawa, H.</td>
<td>Osaka University</td>
<td>929</td>
</tr>
<tr>
<td>Hayano, R. S.</td>
<td>University of Tokyo</td>
<td>917, 905, 866</td>
</tr>
<tr>
<td>Hayashi, N.</td>
<td>RIKEN</td>
<td>925</td>
</tr>
</tbody>
</table>
I

Ibeda, H.
Ichihara, T.
Ichii, S.
Ichikawa, A.
Igo, G.
Iijima, T.
Iimina, T.
Ikeda, H.
Imai, K.
Imazato, J.
Inagaki, T.
Ingrassia, P.
Insolia, A.
Irwin, G. M.
Isenhower, L. D.
Ishida, K.
Ishikawa, T.
Isreal, M. H.
Issakov, V. V.
Ito, M.
Ito, M. M.
Ivanov, E. I.
Iwasaki, A.
Iwasaki, M.

High Energy Accelerator Research Org. (KEK)
RIKEN
KEK
Kyoto University
University of California-Los Angeles
University of Kyoto
KEK
KEK
Kyoto University
KEK, National Laboratory for High Energy Physics
KEK, National Laboratory for High Energy Physics
Brookhaven National Laboratory
University of Catania
Stanford University
Abilene Christian University
University of Riken
University of Tokyo
Washington University in St. Louis
Inst. for Nuclear Reserach, Moscow
Thomas Jefferson National Accelerator Facility
Princeton University
University of Notre Dame
Institute for Nuclear Research-Moscow
Tokyo Inst. Of Technology

J

Jackson, J.
Jain, V.
Jaradat, H.
Jensen, P.
Jeon, D.
Jia, L.
Johnson, S.
Johnston, K.
Johnston, K.
Johnstone, C.
Jones, R. T.
Jones, W. V.
Jorgensen, T.
Judd, E.
Jungmann, K.
Jurak, A.
Justice, M.

Brookhaven National Laboratory
Brookhaven National Laboratory
Wayne State University
University of Texas
Indiana University IUCF
Brookhaven National Laboratory
SUNY at Stony Brook
Louisiana Tech University
University of North Carolina
Fermi National Laboratory
University of Connecticut
Louisiana State University
Georgetown University Medical Center
Space Science Laboratory
University of Heidelberg
Institute of Nuclear Physics-Krakow
Kent State University

938
925
821
885
925, 896
813
885
938
906, 885, 813
936
787
880
896
871
914, 913, 909, 890
821
930, 917
934
923, 865
926
787
852
926
821
821
826, 787
941
896
880
821
877
931, 923, 907
905
932
924
868
919, 898
896, 866
821
868
910, 895
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kabe, S.</td>
<td>KEK, National Laboratory for High Energy Physics</td>
</tr>
<tr>
<td>Kachayev, I. A.</td>
<td>Inst. For High Energy Physics - Protvino, Russia</td>
</tr>
<tr>
<td>Kagel, G.</td>
<td>University of California-Irvine</td>
</tr>
<tr>
<td>Kainz, K.</td>
<td>Rice University</td>
</tr>
<tr>
<td>Kalogeronopoulos, T.</td>
<td>Syracuse University</td>
</tr>
<tr>
<td>Kanavets, V. P.</td>
<td>Institute for Theoretical and Experimental Physics-Moscow</td>
</tr>
<tr>
<td>Kane, J.</td>
<td>College of William and Mary</td>
</tr>
<tr>
<td>Kaneko, HJ.</td>
<td>Kyoto University</td>
</tr>
<tr>
<td>Kanematsu, N.</td>
<td>University of California-Irvine</td>
</tr>
<tr>
<td>Kang, J. H.</td>
<td>Yonsei University</td>
</tr>
<tr>
<td>Kapinos, P.</td>
<td>TRIUMF</td>
</tr>
<tr>
<td>Kaplan, M.</td>
<td>Carnegie-Mellon University</td>
</tr>
<tr>
<td>Karavichev, O.</td>
<td>Inst. for Nuclear Research, Moscow</td>
</tr>
<tr>
<td>Karol, P.</td>
<td>Carnegie-Mellon University</td>
</tr>
<tr>
<td>Kaspar, H.</td>
<td>Yale University</td>
</tr>
<tr>
<td>Kaspar, H.</td>
<td>Paul Scherrer Institute</td>
</tr>
<tr>
<td>Kasprzyk, T.</td>
<td>Argonne National Laboratory</td>
</tr>
<tr>
<td>Katayama, T.</td>
<td>RIKEN</td>
</tr>
<tr>
<td>Kawall, D.</td>
<td>Yale University</td>
</tr>
<tr>
<td>Kawamura, M.</td>
<td>Tokyo Inst. of Technology</td>
</tr>
<tr>
<td>Kazumori, M.</td>
<td>INS - University of Tokyo</td>
</tr>
<tr>
<td>Keane, D.</td>
<td>Kent State University</td>
</tr>
<tr>
<td>Kelly, S.</td>
<td>University of California-Los Angeles</td>
</tr>
<tr>
<td>Kern, B.</td>
<td>Indiana University</td>
</tr>
<tr>
<td>Kern, W.</td>
<td>University of Massachusetts-Dartmouth</td>
</tr>
<tr>
<td>Kettel, S.</td>
<td>Brookhaven National Laboratory</td>
</tr>
<tr>
<td>Khaustov, P.</td>
<td>Carnegie-Mellon University</td>
</tr>
<tr>
<td>Khazin, B. I.</td>
<td>Budker Institute for Nuclear Physics</td>
</tr>
<tr>
<td>Khotjanzew, A.</td>
<td>Institute for Nuclear Research-Moscow</td>
</tr>
<tr>
<td>Kim, B.</td>
<td>Wayne State University</td>
</tr>
<tr>
<td>Kim, E. J.</td>
<td>Yonsei University</td>
</tr>
<tr>
<td>Kindem, J.</td>
<td>University of Minnesota</td>
</tr>
<tr>
<td>King, E.</td>
<td>University of Massachusetts-Dartmouth</td>
</tr>
<tr>
<td>King, N. S. P.</td>
<td>Los Alamos National Laboratory</td>
</tr>
<tr>
<td>Kinoshita, K.</td>
<td>Virginia Polytechnic Institute</td>
</tr>
<tr>
<td>Kinoshita, T.</td>
<td>Cornell University</td>
</tr>
<tr>
<td>Kirk, H.</td>
<td>Brookhaven National Laboratory</td>
</tr>
<tr>
<td>Kishi, Y.</td>
<td>Osaka University</td>
</tr>
<tr>
<td>Kishimoto, T.</td>
<td>Osaka University</td>
</tr>
<tr>
<td>Kitching, P.</td>
<td>TRIUMF</td>
</tr>
<tr>
<td>Klarmann, J.</td>
<td>Washington University</td>
</tr>
<tr>
<td>Knecht, N.</td>
<td>University of Regina</td>
</tr>
<tr>
<td>Kobayashi, M.</td>
<td>KEK, National Laboratory for High Energy Physics</td>
</tr>
<tr>
<td>Kochetkov, V.</td>
<td>Institute for High Energy Physics-Protvino</td>
</tr>
<tr>
<td>Kodolva, O. L.</td>
<td>Moscow State University</td>
</tr>
<tr>
<td>Koehler, A.</td>
<td>Harvard Cyclotron Laboratory</td>
</tr>
<tr>
<td>Koetke, D. D.</td>
<td>Valparaiso University</td>
</tr>
<tr>
<td>Kolganova, E. D.</td>
<td>Institute of Theory and Experimental Physics-Moscow</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Koltick, D.</td>
<td>Purdue University</td>
</tr>
<tr>
<td>Komatsubara, T.</td>
<td>National Laboratory for High Energy Physics (KEK)</td>
</tr>
<tr>
<td>Konaka, A.</td>
<td>TRIUMF</td>
</tr>
<tr>
<td>Kondo, Y.</td>
<td>Kyoto University</td>
</tr>
<tr>
<td>Konisgmann, K.</td>
<td>University of Freiburg</td>
</tr>
<tr>
<td>Koran, P.</td>
<td>Carnegie-Mellon University</td>
</tr>
<tr>
<td>Korotkikh, V. L.</td>
<td>Moscow State University</td>
</tr>
<tr>
<td>Korteling, R.</td>
<td>Simon Fraser</td>
</tr>
<tr>
<td>Koslenko, N.</td>
<td>Petersburg Nuclear Physics Institute-Gatchina</td>
</tr>
<tr>
<td>Kosonovsky, E.</td>
<td>Tel-Aviv University</td>
</tr>
<tr>
<td>Kostin, M. A.</td>
<td>Moscow State University</td>
</tr>
<tr>
<td>Kotov, I.</td>
<td>Ohio State University</td>
</tr>
<tr>
<td>Kozlenko, N. G.</td>
<td>Petersburg Nuclear Physics Institute</td>
</tr>
<tr>
<td>Kramer, M. A.</td>
<td>City College of New York</td>
</tr>
<tr>
<td>Kraus, D. E.</td>
<td>University of Pittsburgh</td>
</tr>
<tr>
<td>Kreisler, M.</td>
<td>Lawrence Livermore National Laboratory</td>
</tr>
<tr>
<td>Krienen F.</td>
<td>Boston University</td>
</tr>
<tr>
<td>Krofcheck, D.</td>
<td>University of Auckland</td>
</tr>
<tr>
<td>Kronenberg, A.</td>
<td>Lawrence Berkeley National Laboratory</td>
</tr>
<tr>
<td>Kruger, K.</td>
<td>Argonne National Laboratory</td>
</tr>
<tr>
<td>Kruglov, S. P.</td>
<td>Petersburg Nuclear Physics Institute</td>
</tr>
<tr>
<td>Krueger, K.</td>
<td>Argonne National Laboratory</td>
</tr>
<tr>
<td>Kuang, Y.</td>
<td>College of William and Mary</td>
</tr>
<tr>
<td>Kubota, K.</td>
<td>INS-University of Tokyo</td>
</tr>
<tr>
<td>Kudenko, Y.</td>
<td>Institute for Nuclear Research-Moscow</td>
</tr>
<tr>
<td>Kudomi, N.</td>
<td>Osaka University</td>
</tr>
<tr>
<td>Kuhn, J.</td>
<td>Rensselaer Polytechnic Institute</td>
</tr>
<tr>
<td>Kubardis, A.</td>
<td>Petersburg Nuclear Physics Inst.-Gatchina</td>
</tr>
<tr>
<td>Kumagai, A.</td>
<td>University of Tsukuba</td>
</tr>
<tr>
<td>Kumar, S.</td>
<td>Yale University</td>
</tr>
<tr>
<td>Kume, K.</td>
<td>Osaka University</td>
</tr>
<tr>
<td>Kuno, Y.</td>
<td>KEK, National Laboratory for High Energy Physics</td>
</tr>
<tr>
<td>Kuraev, E. A.</td>
<td>Budker Inst. For Nuclear Physics</td>
</tr>
<tr>
<td>Kurashige, H.</td>
<td>Kyoto University</td>
</tr>
<tr>
<td>Kurglov, N.</td>
<td>Moscow State University</td>
</tr>
<tr>
<td>Kuriki, M.</td>
<td>National Laboratory for High Energy Physics (KEK)</td>
</tr>
<tr>
<td>Kurita, K.</td>
<td>University of Tsukuba</td>
</tr>
<tr>
<td>Kurokawa, S.</td>
<td>KEK</td>
</tr>
<tr>
<td>Kwiatkowski, K.</td>
<td>Indiana University</td>
</tr>
<tr>
<td>Kwon, Y.</td>
<td>SUNY at Stony Brook</td>
</tr>
<tr>
<td>Kwon, Y.</td>
<td>Yonsei University</td>
</tr>
<tr>
<td>Kyecia, T. F.</td>
<td>Brookhaven National Laboratory</td>
</tr>
</tbody>
</table>

Lakas, R.	McGill University	877
Lacey, R.	State University of New York-Stony Brook	895
Lahab, K.	Wayne State University	877

171
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Year Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lajoie, J.</td>
<td>Yale University</td>
<td>864</td>
</tr>
<tr>
<td>Lajoie, J.</td>
<td>Iowa State University</td>
<td>941</td>
</tr>
<tr>
<td>Lamble, W.</td>
<td>Indiana University, IUCF</td>
<td>880</td>
</tr>
<tr>
<td>Lan, A.</td>
<td>University of Houston</td>
<td>931, 929, 907</td>
</tr>
<tr>
<td>Lan, K. J.</td>
<td>University of Houston</td>
<td>940</td>
</tr>
<tr>
<td>Landry, M.</td>
<td>University of Manitoba</td>
<td>885, 813</td>
</tr>
<tr>
<td>Lang, K.</td>
<td>University of Texas-Austin</td>
<td>871</td>
</tr>
<tr>
<td>Laptev, S.</td>
<td>Inst. for Nuclear Research, Moscow</td>
<td>923</td>
</tr>
<tr>
<td>Larsen, R.</td>
<td>Brookhaven National Laboratory</td>
<td>821</td>
</tr>
<tr>
<td>Larsen, R.</td>
<td>Yale University</td>
<td>923</td>
</tr>
<tr>
<td>Lazarus, L.</td>
<td>Brookhaven National Laboratory</td>
<td>932</td>
</tr>
<tr>
<td>Lazarus, D.</td>
<td>Brookhaven National Laboratory</td>
<td>865, 926</td>
</tr>
<tr>
<td>Lebedev, V.</td>
<td>Inst. For Nuclear Research, Academy of Sciences of Russia</td>
<td>865</td>
</tr>
<tr>
<td>LeCompte, T.</td>
<td>Argonne National Laboratory</td>
<td>925</td>
</tr>
<tr>
<td>Lee, J. H.</td>
<td>Brookhaven National Laboratory</td>
<td>866</td>
</tr>
<tr>
<td>Lee, L.</td>
<td>University of Manitoba</td>
<td>929, 906, 885, 813</td>
</tr>
<tr>
<td>Lee, R.</td>
<td>University of California-Irvine</td>
<td>940, 935, 871</td>
</tr>
<tr>
<td>Lee, S. Y.</td>
<td>Indiana University</td>
<td>925, 880, 864</td>
</tr>
<tr>
<td>Lee, Y. Y.</td>
<td>Brookhaven National Laboratory</td>
<td>880, 821</td>
</tr>
<tr>
<td>Lefort, T.</td>
<td>Indiana University</td>
<td>900</td>
</tr>
<tr>
<td>Leipuner, L.</td>
<td>Brookhaven National Laboratory</td>
<td>865, 923</td>
</tr>
<tr>
<td>Leitch, M. H.</td>
<td>Los Alamos National Laboratory</td>
<td>890</td>
</tr>
<tr>
<td>Leksanov, A.</td>
<td>Pennsylvania State University</td>
<td>850</td>
</tr>
<tr>
<td>Leray, S.</td>
<td>LSN-CNRS</td>
<td>939</td>
</tr>
<tr>
<td>Leske, R. A.</td>
<td>Caltech</td>
<td>934</td>
</tr>
<tr>
<td>Lett, J.T.</td>
<td>Colorado State University</td>
<td>898</td>
</tr>
<tr>
<td>LeVine, M.</td>
<td>Brookhaven National Laboratory</td>
<td>866</td>
</tr>
<tr>
<td>Lewis, R. A.</td>
<td>Penn State University</td>
<td>864</td>
</tr>
<tr>
<td>Li, K. K.</td>
<td>Brookhaven National Laboratory</td>
<td>787</td>
</tr>
<tr>
<td>Li, Q.</td>
<td>Wayne State University</td>
<td>877</td>
</tr>
<tr>
<td>Libby, B.</td>
<td>Iowa State University</td>
<td>864</td>
</tr>
<tr>
<td>Liljestrand, R.</td>
<td>Bechtal Nevada</td>
<td>939, 933</td>
</tr>
<tr>
<td>Lindenbaum, S.</td>
<td>Brookhaven National Laboratory and City College of New York</td>
<td>891</td>
</tr>
<tr>
<td>Lindenbusch, R.</td>
<td>Indiana University</td>
<td>852</td>
</tr>
<tr>
<td>Lindgren, A.L.</td>
<td>Bemidji State University</td>
<td>898</td>
</tr>
<tr>
<td>Lindstrom, P.</td>
<td>Lawrence Berkeley Laboratory</td>
<td>896</td>
</tr>
<tr>
<td>Lipaev, V.</td>
<td>Institute for High Energy Physics-Protvino</td>
<td>852</td>
</tr>
<tr>
<td>Lisa, M.</td>
<td>Ohio State University</td>
<td>895</td>
</tr>
<tr>
<td>Littenberg, L. S.</td>
<td>Brookhaven National Laboratory</td>
<td>923, 787</td>
</tr>
<tr>
<td>Littenberg, L.</td>
<td>Brookhaven National Laboratory</td>
<td>926</td>
</tr>
<tr>
<td>Liu, H.</td>
<td>Kent State University</td>
<td>895</td>
</tr>
<tr>
<td>Liu, H.</td>
<td>University of California-Riverside</td>
<td>866</td>
</tr>
<tr>
<td>Liu, J.</td>
<td>University of Houston</td>
<td>904</td>
</tr>
<tr>
<td>Liu, T.</td>
<td>University of California-Irvine</td>
<td>940, 935</td>
</tr>
<tr>
<td>Liu, Y. M.</td>
<td>Harbin University</td>
<td>895</td>
</tr>
<tr>
<td>Ljubicic, T.</td>
<td>Brookhaven National Laboratory</td>
<td>896</td>
</tr>
<tr>
<td>Llope, W.</td>
<td>Rice University</td>
<td>896</td>
</tr>
<tr>
<td>Lobashev, V. M.</td>
<td>Institute for Nuclear Research</td>
<td>940</td>
</tr>
<tr>
<td>LoCurto, G.</td>
<td>Ohio State University</td>
<td>896</td>
</tr>
<tr>
<td>Logashenko, I.</td>
<td>Budker Inst. For Nuclear Physics</td>
<td>821</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>Lolos, G. J.</td>
<td>University of Regina</td>
<td>924, 914, 913</td>
</tr>
<tr>
<td>Long, H.</td>
<td>University of California at Los Angeles</td>
<td>941</td>
</tr>
<tr>
<td>Longacre, R. S.</td>
<td>Brookhaven National Laboratory</td>
<td>896, 891</td>
</tr>
<tr>
<td>Lopatin, I.</td>
<td>Pittsburgh Nuclear Physics Institute</td>
<td>924, 914, 913</td>
</tr>
<tr>
<td>LoSecco, J. M.</td>
<td>University of Notre Dame</td>
<td>852</td>
</tr>
<tr>
<td>Love, W. A.</td>
<td>Brookhaven National Laboratory</td>
<td>896, 891</td>
</tr>
<tr>
<td>Lowe, J.</td>
<td>University of New Mexico</td>
<td>926, 906, 865</td>
</tr>
<tr>
<td>Lowe, J.</td>
<td>University of Birmingham</td>
<td>813</td>
</tr>
<tr>
<td>Lozano, J.</td>
<td>University Connecticut</td>
<td>865</td>
</tr>
<tr>
<td>Luccio, A.</td>
<td>Brookhaven National Laboratory</td>
<td>925, 880</td>
</tr>
<tr>
<td>Ludlam, T.</td>
<td>Brookhaven National Laboratory</td>
<td>877</td>
</tr>
<tr>
<td>Lutze-Mann, L. H.</td>
<td>University of California</td>
<td>919, 898</td>
</tr>
<tr>
<td>Lynn, D.</td>
<td>Brookhaven National Laboratory</td>
<td>896</td>
</tr>
<tr>
<td>Ma, H.</td>
<td>Brookhaven National Laboratory</td>
<td>923, 865</td>
</tr>
<tr>
<td>Madansky, L.</td>
<td>Johns Hopkins University</td>
<td>896</td>
</tr>
<tr>
<td>MacDonald, J.</td>
<td>TRIUMF</td>
<td>936, 926, 787</td>
</tr>
<tr>
<td>Maeda, K.</td>
<td>Tohoku University</td>
<td>929</td>
</tr>
<tr>
<td>Magahiz, R.</td>
<td>Carnegie-Mellon University</td>
<td>885, 813</td>
</tr>
<tr>
<td>Magbuire, C.</td>
<td>Vanderbilt University</td>
<td>941</td>
</tr>
<tr>
<td>Magurno, B.</td>
<td>Brookhaven National Laboratory</td>
<td>865</td>
</tr>
<tr>
<td>Majid, W.</td>
<td>Yale University</td>
<td>926, 865</td>
</tr>
<tr>
<td>Majka, R. D.</td>
<td>Yale University</td>
<td>941, 864</td>
</tr>
<tr>
<td>Maktisi, Y.</td>
<td>Brookhaven National Laboratory</td>
<td>925, 880, 850</td>
</tr>
<tr>
<td>Manak, J. J.</td>
<td>University of Notre Dame</td>
<td>852</td>
</tr>
<tr>
<td>Mane, V.</td>
<td>Brookhaven National Laboratory</td>
<td>932</td>
</tr>
<tr>
<td>Manglos, S.</td>
<td>SUNY Health Science Center</td>
<td>856</td>
</tr>
<tr>
<td>Manley, D. M.</td>
<td>Kent State University</td>
<td>924, 914, 913</td>
</tr>
<tr>
<td>Manweiler, R. W.</td>
<td>Valparaiso University</td>
<td>924, 914, 913</td>
</tr>
<tr>
<td>Marcin, M. R.</td>
<td>University of Texas-Austin</td>
<td>871</td>
</tr>
<tr>
<td>Mardor, Y.</td>
<td>Tel-Aviv University</td>
<td>850</td>
</tr>
<tr>
<td>Mariam, F.</td>
<td>Brookhaven National Laboratory</td>
<td>925, 880</td>
</tr>
<tr>
<td>Mariano, G.</td>
<td>Colorado State University</td>
<td>919</td>
</tr>
<tr>
<td>Mark, S. K.</td>
<td>McGill University</td>
<td>877</td>
</tr>
<tr>
<td>Marlow, D. R.</td>
<td>Princeton University</td>
<td>787</td>
</tr>
<tr>
<td>Marshak, M. L.</td>
<td>University of Minnesota</td>
<td>850</td>
</tr>
<tr>
<td>Martin, R. D.</td>
<td>College of William and Mary</td>
<td>871</td>
</tr>
<tr>
<td>Marušić, A.</td>
<td>Ruder Boskovic Institute/U.Calif-Los Angeles</td>
<td>924, 914, 913, 909, 890</td>
</tr>
<tr>
<td>Marx, J.</td>
<td>University of California-Berkeley</td>
<td>896, 891</td>
</tr>
<tr>
<td>Mashita, K.</td>
<td>KEK</td>
<td>821</td>
</tr>
<tr>
<td>Mathews, A. R.</td>
<td>Los Alamos National Laboratory</td>
<td>933</td>
</tr>
<tr>
<td>Matulenko, Yu. A.</td>
<td>Institute for High Energy Physics-Protvino</td>
<td>925</td>
</tr>
<tr>
<td>May, M.</td>
<td>Brookhaven National Laboratory</td>
<td>931, 930, 929, 907, 906, 885</td>
</tr>
<tr>
<td>Mayer, C.</td>
<td>Carnegie-Mellon University</td>
<td>906</td>
</tr>
<tr>
<td>Mayes, B.</td>
<td>University of Houston</td>
<td>940, 931, 929, 907</td>
</tr>
<tr>
<td>Mazavia, D.</td>
<td>HEP Inst. Tbilis State University</td>
<td>865</td>
</tr>
</tbody>
</table>
McCallum, R. W.
McClaran, J. B.
McCorkle, S.
McCready, R.
McDonald, S.
McDonough, J.
McGrath, R.
McKerley, M.
McLeod, D.
McNabb, R.
McPherson, R.
Meier, R.
Meng, W.-Z.
Menzel, W.
Merrill, F.
Merrzliakov, Yu.
Metting, N. F.
Mewaldt, R. A.
Meyer, C.
Meyers, P. D.
Mika, Y.
Miachi, T.
Mignerey, A.
Mildenberger, J.
Milder, A.
Miller, D.
Miller, J.
Miller, J. P.
Miller, T.
Milosevich, Z.
Mincer, A.
Mineev, O.
Minor, E.
Mioduszewski, S.
Miskowiec, D.
Mitchell, J.
Mitchell, J. W.
Miyachi, T.
Miyajima, M.
Mizumachi, Y.
Mizuno, Y.
Mogavero, E.
Molzon, W.
Moore, C. F.
Morgan, G. L.
Morgan, W.
Mori, Y.
Morikubo, K.
Morimoto, T.
Moriwaki, T.

Ames Laboratory 903
Los Alamos National Laboratory 933
Brookhaven National Laboratory 877
Carnegie-Mellon University 885, 813
University of California-Los Angeles 924, 914, 913, 909, 890
University of Texas-Austin 871
State University of New York-Stony Brook 910, 895
Indiana University 852
University of Illinois-Chicago 917
University of Minnesota 821
Princeton University 787
Brookhaven National Laboratory 821
Brookhaven National Laboratory 821
University of Basel 865
Los Alamos National Laboratory 885, 813
Budker Inst. for Nuclear Physics 821
Pacific NW National Laboratory 919, 898
Caltech 934
Carnegie-Mellon University 924, 885, 813
Princeton University 787
University of Tsukuba 910, 866
INS-University of Tokyo 906
University of Maryland 917, 866
TRIUMF 787
University of Texas-Austin 871
University of Minnesota 821
Lawrence Berkeley National Laboratory 919, 898
Boston University 924, 821
Vanderbilt University 941
Carnegie-Mellon University 896, 895
New York University 940
Institute for Nuclear Research 926
Pennsylvania State University 850
University of Tennessee 910
SUNY at Stony Brook 877
Brookhaven National Laboratory 896
NASA-Goddard Space Flight Center 934, 896
INS-University of Tokyo 905
Fukui University 787
Science University of Tokyo 821
Osaka University 929
Brookhaven National Laboratory 896
University of California-Irvine 940, 935, 871
University of Texas at Austin 931, 907
Los Alamos National Laboratory 939
University of California 919
KEK 880
Osaka University 929
KEK 787
University of California-Los Angeles 914, 913, 909, 890

174
Morley, K. B. Los Alamos National Laboratory 933, 920, 900
Morris, C. Los Alamos National Laboratory 933, 931, 920, 907
Morrison, D. University of Tennessee 910
Morrison, T. George Washington University 914, 913, 909, 890
Morse, W. M. Brookhaven National Laboratory 821
Moskowitz, B. Brookhaven National Laboratory 866
Mottershead, C. T. Los Alamos National Laboratory 933
Moulson, M. Columbia University 910, 866
Mueller, K. Los Alamos National Laboratory 933, 920
Muentz, C. Brookhaven National Laboratory 866
Mullerleile, M. University of Houston 929
Mulkey, Z. Abilene Christian University 914, 913
Munhoz, M. Wayne State University 941
Muramatsu, N. INS-University of Tokyo 787
Mutchler, G. S. Rice University 896, 891
Myuchi, T. INS-University of Tokyo 906

N

Nagae, T. INS-University of Tokyo 930, 929, 906, 905
Nagamiya, S. Columbia University 866
Nagle, J. Columbia University 941
Nagle, J. Yale University 864
Naing, W. Hampton University 905
Nakada, Y. RIKEN 925
Nakai, K. Science University of Tokyo 936
Nakano, T. Osaka University 929, 906, 905, 787
Namboordiri, M. N. Lawrence Livermore National Laboratory 910, 866
Nanal, V. Argonne National Laboratory 917
Napolitano, J. Rensselaer Polytechnic Institute 852
Natarajan, M. University of Texas 919
Navon, I. Tel-Aviv University 850
Nazakawa, K. Gifu University 906
Neerman, C. University of North Carolina 905
Nefkens, B. University of California-Los Angeles 931, 924, 914, 913, 909, 907, 890
Nehmeh, S. Wayne State University 896
Nelson, G. Loma Linda University 919
Nelson, G. A. Jet Propulsion Laboratory 898
Nelson, J. University of Birmingham 813
Nemethy, P. New York University 940
Ng, B. Fermi National Laboratory 932
Ng, C. F. Brookhaven National Laboratory 787
Nicholson, H. Mt. Holyoke College 850
Nilsson, B. S. University of Minnesota 869
Nogach, L. V. Institute for High Energy Physics-Protvino 925
Nomachi, M. Osaka University 929
Nord, P. Valparaiso University 914, 913
Norem, J. H. Argonne National Laboratory 932
Norman, A. College of William and Mary 935
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normand, L.</td>
<td>McGill University</td>
<td>877</td>
</tr>
<tr>
<td>Noumi, H.</td>
<td>KEK</td>
<td>930, 929</td>
</tr>
<tr>
<td>Nozar, M.</td>
<td>Rensselaer Polytechnic Institute</td>
<td>852</td>
</tr>
<tr>
<td>Numao, T.</td>
<td>TRIUMF</td>
<td>926, 787</td>
</tr>
<tr>
<td>Nurushev, S. B.</td>
<td>Institute for High Energy Physics-Protvino</td>
<td>925</td>
</tr>
<tr>
<td>Obot, V.</td>
<td>Texas Southern University</td>
<td>904</td>
</tr>
<tr>
<td>O'Brien, E.</td>
<td>Brookhaven National Laboratory</td>
<td>877</td>
</tr>
<tr>
<td>O'Donnell, J.</td>
<td>Los Alamos National Laboratory</td>
<td>931, 907</td>
</tr>
<tr>
<td>Odyniec, G.</td>
<td>Lawrence Berkeley National Laboratory</td>
<td>895</td>
</tr>
<tr>
<td>Ogawa, A.</td>
<td>Pennsylvania State University</td>
<td>850</td>
</tr>
<tr>
<td>Ogilvie, C.</td>
<td>Massachusetts Institute of Technology</td>
<td>917, 866</td>
</tr>
<tr>
<td>Okada, K.</td>
<td>Kyoto-Sangyo University</td>
<td>906, 813</td>
</tr>
<tr>
<td>Okomura, M.</td>
<td>RIKEN</td>
<td>925, 880</td>
</tr>
<tr>
<td>Okumo, H.</td>
<td>National Laboratory for High Energy Physics (KEK)</td>
<td>787</td>
</tr>
<tr>
<td>Olchanski, K.</td>
<td>Brookhaven National Laboratory</td>
<td>852</td>
</tr>
<tr>
<td>Olness, J.</td>
<td>Brookhaven National Laboratory</td>
<td>866</td>
</tr>
<tr>
<td>Olson, D.</td>
<td>Lawrence Berkeley National Laboratory</td>
<td>895</td>
</tr>
<tr>
<td>Olszewski, A.</td>
<td>Institute of Nuclear Physics-Krakow</td>
<td>868</td>
</tr>
<tr>
<td>Omata, K.</td>
<td>INS-University of Tokyo</td>
<td>906</td>
</tr>
<tr>
<td>Orlov, Y.</td>
<td>Cornell University</td>
<td>821</td>
</tr>
<tr>
<td>Ormes, J. F.</td>
<td>Goddard Space Flight Center</td>
<td>934</td>
</tr>
<tr>
<td>Ostrovidov, A. I.</td>
<td>Moscow State University</td>
<td>852</td>
</tr>
<tr>
<td>Otomo, A.</td>
<td>National Laboratory for High Energy Physics (KEK)</td>
<td>787</td>
</tr>
<tr>
<td>Outa, H.</td>
<td>INS-University of Tokyo</td>
<td>930, 929, 906, 905</td>
</tr>
<tr>
<td>Overlin, M.</td>
<td>University of California at Irvine</td>
<td>940</td>
</tr>
<tr>
<td>Oyama, K.</td>
<td>University of Tokyo</td>
<td>917</td>
</tr>
<tr>
<td>Padley, P.</td>
<td>TRIUMF</td>
<td>787</td>
</tr>
<tr>
<td>Paganis, S.</td>
<td>University of Texas</td>
<td>896</td>
</tr>
<tr>
<td>Page, S.</td>
<td>University of Manitoba</td>
<td>906, 856, 813</td>
</tr>
<tr>
<td>Pai, C.</td>
<td>Brookhaven National Laboratory</td>
<td>821</td>
</tr>
<tr>
<td>Pak, R.</td>
<td>University of Rochester</td>
<td>917</td>
</tr>
<tr>
<td>Pandey, S.</td>
<td>Wayne State University</td>
<td>896</td>
</tr>
<tr>
<td>Panebratsev, Y.</td>
<td>J.I.N.R.-Dubna</td>
<td>850</td>
</tr>
<tr>
<td>Panitkin, S.</td>
<td>SUNY at Stony Brook</td>
<td>877</td>
</tr>
<tr>
<td>Panitkin, S.</td>
<td>Kent State University</td>
<td>895</td>
</tr>
<tr>
<td>Papandreou, Z.</td>
<td>George Washington University</td>
<td>924, 914, 913, 909, 890</td>
</tr>
<tr>
<td>Park, H-S.</td>
<td>Lawrence Livermore National Laboratory</td>
<td>933</td>
</tr>
<tr>
<td>Parks, D.</td>
<td>University of Houston</td>
<td>904</td>
</tr>
<tr>
<td>Paschke, K.</td>
<td>Carnegie-Mellon University</td>
<td>906, 885</td>
</tr>
<tr>
<td>Patterson, J.</td>
<td>University of Colorado</td>
<td>914, 913</td>
</tr>
<tr>
<td>Paul, P.</td>
<td>SUNY at Stony Brook</td>
<td>877</td>
</tr>
<tr>
<td>Pavlinov, A. I.</td>
<td>Institute for High Energy Physics-Protvino</td>
<td>925</td>
</tr>
<tr>
<td>Peaslee, D.</td>
<td>University of Maryland</td>
<td>924</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Pedlar, T.</td>
<td>Northwestern University</td>
<td>852</td>
</tr>
<tr>
<td>Peng, J.-C.</td>
<td>Los Alamos National Laboratory</td>
<td>931, 907, 890</td>
</tr>
<tr>
<td>Perepechkin, Y.</td>
<td>INR - Russia</td>
<td>906</td>
</tr>
<tr>
<td>Peterson, G. A.</td>
<td>University of Colorado</td>
<td>931, 937, 924, 907</td>
</tr>
<tr>
<td>Peterson, J.</td>
<td>University of Colorado</td>
<td>914, 913</td>
</tr>
<tr>
<td>Peterson, R. J.</td>
<td>University of Colorado</td>
<td>937</td>
</tr>
<tr>
<td>Petkovic, T.</td>
<td>University of Zagreb</td>
<td>931, 907</td>
</tr>
<tr>
<td>Petridis, A.</td>
<td>Iowa State University</td>
<td>941</td>
</tr>
<tr>
<td>Phillips, S.</td>
<td>George Washington University</td>
<td>909</td>
</tr>
<tr>
<td>Piaseczky, E.</td>
<td>Tel-Aviv University</td>
<td>850</td>
</tr>
<tr>
<td>Piazza, T.</td>
<td>SUNY at Stony Brook</td>
<td>877</td>
</tr>
<tr>
<td>Pienkowski, L.</td>
<td>Warsaw University</td>
<td>900</td>
</tr>
<tr>
<td>Pile, P. H.</td>
<td>Brookhaven National Laboratory</td>
<td>931, 930, 929, 924, 907, 906, 885, 813</td>
</tr>
<tr>
<td>Pinkenburg, C.</td>
<td>State University of New York-Stony Brook</td>
<td>895</td>
</tr>
<tr>
<td>Pinsky, L.</td>
<td>University of Houston</td>
<td>940, 931, 929, 907</td>
</tr>
<tr>
<td>Pilsak, S.</td>
<td>University of Zurich</td>
<td>865</td>
</tr>
<tr>
<td>Pitt, M.</td>
<td>Virginia Polytechnic Institute</td>
<td>926</td>
</tr>
<tr>
<td>Planinic, M.</td>
<td>University of Zagreb</td>
<td>931, 907, 905</td>
</tr>
<tr>
<td>Platner, E. D.</td>
<td>Rice University</td>
<td>896, 891</td>
</tr>
<tr>
<td>Pless, I.</td>
<td>Massachusetts Institute of Technology</td>
<td>941, 864</td>
</tr>
<tr>
<td>Poblaev, A. A.</td>
<td>Inst. For Nuclear Research, Academy of Sciences of Russia</td>
<td>865</td>
</tr>
<tr>
<td>Polk, I.</td>
<td>Brookhaven National Laboratory</td>
<td>821</td>
</tr>
<tr>
<td>Polly, C.</td>
<td>University of Illinois</td>
<td>821</td>
</tr>
<tr>
<td>Polychronakas, V.</td>
<td>Brookhaven National Laboratory</td>
<td>923</td>
</tr>
<tr>
<td>Pommot-Maia, M.</td>
<td>Stanford University</td>
<td>871</td>
</tr>
<tr>
<td>Pope, J. K.</td>
<td>Yale University</td>
<td>864</td>
</tr>
<tr>
<td>Poblaev, A.</td>
<td>Inst. for Nuclear Research, Moscow</td>
<td>923</td>
</tr>
<tr>
<td>Popov, A. V.</td>
<td>Inst. For High Energy Physics, Protvino, Russia</td>
<td>852</td>
</tr>
<tr>
<td>Popovic, M.</td>
<td>Fermi National Laboratory</td>
<td>932</td>
</tr>
<tr>
<td>Porile, N. T.</td>
<td>Purdue University</td>
<td>895, 864</td>
</tr>
<tr>
<td>Postoev, V.</td>
<td>Inst. For Nuclear Research, Academy of Sciences of Russia</td>
<td>865</td>
</tr>
<tr>
<td>Potenza, R.</td>
<td>University of Catania</td>
<td>896</td>
</tr>
<tr>
<td>Poutissou, J-M.</td>
<td>TRIUMF</td>
<td>787</td>
</tr>
<tr>
<td>Poutissou, R.</td>
<td>TRIUMF</td>
<td>787, 926</td>
</tr>
<tr>
<td>Pozharova, E. A.</td>
<td>Institute of Theory and Experimental Physics-Moscow</td>
<td>868</td>
</tr>
<tr>
<td>Prasad, S. C.</td>
<td>SUNY Health Science Center</td>
<td>856</td>
</tr>
<tr>
<td>Pratt, R.</td>
<td>George Washington University</td>
<td>909</td>
</tr>
<tr>
<td>Price, J. W.</td>
<td>University of California-Los Angeles</td>
<td>890</td>
</tr>
<tr>
<td>Price, P. B.</td>
<td>University of California-Berkeley</td>
<td>916</td>
</tr>
<tr>
<td>Prigl, R.</td>
<td>Brookhaven National Laboratory</td>
<td>821</td>
</tr>
<tr>
<td>Prohvativol, M.</td>
<td>INR-Russia</td>
<td>906</td>
</tr>
<tr>
<td>Prokop, J.</td>
<td>George Washington University</td>
<td>909</td>
</tr>
<tr>
<td>Proskuryakov, A.</td>
<td>Moscow State University</td>
<td>923, 852, 865</td>
</tr>
<tr>
<td>Pruneau, C.</td>
<td>Wayne State University</td>
<td>941, 877, 864</td>
</tr>
<tr>
<td>Pulver, M.</td>
<td>University of California-Los Angeles</td>
<td>914, 913</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>Qian, Z.</td>
<td>Fermi National Laboratory</td>
<td>932</td>
</tr>
<tr>
<td>Quinn, B.</td>
<td>Carnegie-Mellon University</td>
<td>931, 924, 907, 906, 885, 813</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabin, B.</td>
<td>University of Maryland Baltimore County</td>
<td>919, 898</td>
</tr>
<tr>
<td>Rabin, M. S. Z.</td>
<td>University of Massachusetts</td>
<td>941, 864</td>
</tr>
<tr>
<td>Rai, G.</td>
<td>Lawrence Berkeley National Laboratory</td>
<td>910, 895</td>
</tr>
<tr>
<td>Ramakrishnan, E.</td>
<td>Texas A&M University</td>
<td>900</td>
</tr>
<tr>
<td>Ramirez, A.</td>
<td>Arizona State University</td>
<td>914, 913</td>
</tr>
<tr>
<td>Ramsay, D.</td>
<td>University of Manitoba</td>
<td>885, 813</td>
</tr>
<tr>
<td>Ramsey, W. D.</td>
<td>University of Manitoba</td>
<td>906</td>
</tr>
<tr>
<td>Rangacharyulu, C.</td>
<td>University of Saskatchewan</td>
<td>936</td>
</tr>
<tr>
<td>Rankowitz, S.</td>
<td>Brookhaven National Laboratory</td>
<td>821</td>
</tr>
<tr>
<td>Ransom, R.</td>
<td>Rutgers University</td>
<td>885</td>
</tr>
<tr>
<td>Rasin, V.</td>
<td>INR-Russia</td>
<td>906</td>
</tr>
<tr>
<td>Ratner, L.</td>
<td>Brookhaven National Laboratory</td>
<td>925, 880</td>
</tr>
<tr>
<td>Read, K.</td>
<td>University of Tennessee</td>
<td>910</td>
</tr>
<tr>
<td>Reber, E.</td>
<td>Idaho National Engineering Laboratory</td>
<td>877</td>
</tr>
<tr>
<td>Redin S. I.</td>
<td>Yale University</td>
<td>821</td>
</tr>
<tr>
<td>Redlinger, G.</td>
<td>TRIUMF</td>
<td>787</td>
</tr>
<tr>
<td>Reece, K.</td>
<td>Brookhaven National Laboratory</td>
<td>880</td>
</tr>
<tr>
<td>Reed, J.</td>
<td>Syracuse University</td>
<td>856</td>
</tr>
<tr>
<td>Rehak, P.</td>
<td>Brookhaven National Laboratory</td>
<td>865</td>
</tr>
<tr>
<td>Reid, J.</td>
<td>Vanderbilt University</td>
<td>864</td>
</tr>
<tr>
<td>Reiley, P.</td>
<td>University of Texas</td>
<td>941, 896</td>
</tr>
<tr>
<td>Reimer, P. E.</td>
<td>University of Illinois-Urbana-Champaign</td>
<td>924</td>
</tr>
<tr>
<td>Relyea, D. R.</td>
<td>Princeton University</td>
<td>787</td>
</tr>
<tr>
<td>Remsberg, L. P.</td>
<td>Brookhaven National Laboratory</td>
<td>910, 909, 900, 866</td>
</tr>
<tr>
<td>Ren, Y.</td>
<td>University of Houston</td>
<td>904</td>
</tr>
<tr>
<td>Reshetin, A.</td>
<td>INR - Russia</td>
<td>906</td>
</tr>
<tr>
<td>Riley, P. J.</td>
<td>University of Texas-Austin</td>
<td>871</td>
</tr>
<tr>
<td>Rind, O.</td>
<td>Boston University</td>
<td>821</td>
</tr>
<tr>
<td>Ritchie, J. L.</td>
<td>University of Texas-Austin</td>
<td>871</td>
</tr>
<tr>
<td>Ritter, H. G.</td>
<td>Lawrence Berkeley National Laboratory</td>
<td>895</td>
</tr>
<tr>
<td>Ritter, J.</td>
<td>University of Illinois-Urbana-Chapaign</td>
<td>924</td>
</tr>
<tr>
<td>Roberts, B. L.</td>
<td>Boston University</td>
<td>821</td>
</tr>
<tr>
<td>Robinson, D. K.</td>
<td>Case Western Reserve University</td>
<td>856</td>
</tr>
<tr>
<td>Robmann, P.</td>
<td>University of Zurich</td>
<td>865</td>
</tr>
<tr>
<td>Romero, J.</td>
<td>University of California-Davis</td>
<td>895</td>
</tr>
<tr>
<td>Roos, P. G.</td>
<td>University of Maryland</td>
<td>931, 907</td>
</tr>
<tr>
<td>Rosati, M.</td>
<td>Brookhaven National Laboratory</td>
<td>910, 877</td>
</tr>
</tbody>
</table>
Rose, A. Vanderbilt University 941
Roser, T. Brookhaven National Laboratory 932, 925, 880, 850
Rössle, R. Freiburg University 813
Rotondo, F. S. Yale University 896, 864
Rowland, D. Texas A&M University 900
Roy, J. TRIUMF 787
Rozon, M. TRIUMF 787
Rozon, M. University of Alberta 813
Ruangma, A. University of Maryland 917
Rubin, P. University of Richmond 935, 871
Rusek, A. Brookhaven National Laboratory 931, 930, 907, 906, 905, 885
Rusek, A. University of New Mexico 813
Russ, D. University of Maryland 917
Russell, G. Los Alamos National Laboratory 938
Russell, J. J. University of Massachusetts-Dartmouth 850
Russo, G. University of Catania 896
Rusek, A. Brookhaven National Laboratory 929
Rust, D. R. Indiana University 852
Ryabchikov, D. I. Inst. For High Energy Physics, Protvino, Rusia 852
Ryan, J. Massachusetts Institute of Technology 866
Ryskulov, N. Budker Institute for Nuclear Physics 821

S

Sachelashvili, T. HEP Inst. Tbilisi State University 865
Sadler, M. Abilene Christian University 914, 913, 909, 890
Saito, N. University of Kyoto 813
Saito, N. RIKEN 925
Sajai, E. Osaka University 929
Sakai, H. University of Tokyo 925
Sakamoto, S. KEK 821
Sakitt, M. Brookhaven National Laboratory 856
Sako, H. Institute for Nuclear Study-University of Tokyo 866
Sakrejda, I. Lawrence Berkeley Laboratory 896
Sandberg, J. Brookhaven National Laboratory 821
Sanders, R. Brookhaven National Laboratory 821
Sandweiss, J. Yale University 941, 864
Sangster, T. C. Lawrence Livermore National Laboratory 910, 866
Sanjari, A. University of Notre Dame 852
Sarracino, J. Los Alamos National Laboratory 933, 920
Sarycheva, L. I. Moscow State University 852
Sasao, N. Kyoto University 926
Sasaki, T. Osaka University 787
Sato, R. Osaka University 929
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith, A. J. S.</td>
<td>Princeton University</td>
<td>787</td>
</tr>
<tr>
<td>Smith, G.</td>
<td>TRIUMF</td>
<td>926</td>
</tr>
<tr>
<td>Smith, G. A.</td>
<td>Penn State University</td>
<td>864</td>
</tr>
<tr>
<td>Smith, J.</td>
<td>Rensselaer Polytechnic Institute</td>
<td>852</td>
</tr>
<tr>
<td>Smith, P. T.</td>
<td>Indiana University</td>
<td>852</td>
</tr>
<tr>
<td>Snead, C. L.</td>
<td>Brookhaven National Laboratory</td>
<td>939,903</td>
</tr>
<tr>
<td>Snydstrup, L.</td>
<td>Brookhaven National Laboratory</td>
<td>821</td>
</tr>
<tr>
<td>Sobolewski, Z.</td>
<td>Syracuse University</td>
<td>856</td>
</tr>
<tr>
<td>Soldatov, A.</td>
<td>Institute for High Energy Physics-Protvino</td>
<td>852</td>
</tr>
<tr>
<td>Solodov, E.</td>
<td>Budker Institute for Nuclear Physics</td>
<td>821</td>
</tr>
<tr>
<td>Soltz, R.</td>
<td>Lawrence Livermore National Laboratory</td>
<td>933,910,866</td>
</tr>
<tr>
<td>Soluk, R.</td>
<td>TRIUMF</td>
<td>787</td>
</tr>
<tr>
<td>Sonderegger, P.</td>
<td>CERN</td>
<td>896</td>
</tr>
<tr>
<td>Sonnadara, U.</td>
<td>University of Pittsburgh</td>
<td>877</td>
</tr>
<tr>
<td>Sorensen, S.</td>
<td>University of Tennessee</td>
<td>910</td>
</tr>
<tr>
<td>Soukas, A.</td>
<td>Brookhaven National Laboratory</td>
<td>880,821</td>
</tr>
<tr>
<td>Spinelli, P.</td>
<td>University of Bari</td>
<td>864</td>
</tr>
<tr>
<td>Spinka, H.</td>
<td>Argonne National Laboratory</td>
<td>925,914,913,880</td>
</tr>
<tr>
<td>Srivastava, B. K.</td>
<td>Purdue University</td>
<td>895,864</td>
</tr>
<tr>
<td>Stachel, J.</td>
<td>SUNY at Stony Brook</td>
<td>877</td>
</tr>
<tr>
<td>Stanislaus, S.</td>
<td>Valparaiso University</td>
<td>924,914,913</td>
</tr>
<tr>
<td>Stanskas, J.</td>
<td>University of Maryland</td>
<td>917</td>
</tr>
<tr>
<td>Starinsky, N.</td>
<td>McGill University</td>
<td>877</td>
</tr>
<tr>
<td>Starostin, A.</td>
<td>Petersburg Nuclear Physics Institute</td>
<td>924,914,913,890</td>
</tr>
<tr>
<td>Staudenmaier, H. M.</td>
<td>University of Karlsruhe</td>
<td>924,914,913</td>
</tr>
<tr>
<td>Steadman, S. G.</td>
<td>Massachusetts Institute of Technology</td>
<td>866</td>
</tr>
<tr>
<td>Stearns, R.</td>
<td>Vassar College</td>
<td>813</td>
</tr>
<tr>
<td>Stephens, G. S. F.</td>
<td>Massachusetts Institute of Technology</td>
<td>917,866</td>
</tr>
<tr>
<td>Stevens, A. J.</td>
<td>Brookhaven National Laboratory</td>
<td>787</td>
</tr>
<tr>
<td>Stienike, D. L.</td>
<td>University of Notre Dame</td>
<td>852</td>
</tr>
<tr>
<td>Stillman, A.</td>
<td>Brookhaven National Laboratory</td>
<td>821</td>
</tr>
<tr>
<td>Stokely, C.</td>
<td>Rice University</td>
<td>896</td>
</tr>
<tr>
<td>Stone, E. C.</td>
<td>Caltech</td>
<td>869</td>
</tr>
<tr>
<td>Stone, N.</td>
<td>Lawrence Berkeley National Laboratory</td>
<td>895</td>
</tr>
<tr>
<td>Stone, J. R.</td>
<td>Princeton University</td>
<td>787</td>
</tr>
<tr>
<td>Stotzer, R.</td>
<td>University of New Mexico</td>
<td>885,865,813</td>
</tr>
<tr>
<td>Strand, R. C.</td>
<td>Brookhaven National Laboratory</td>
<td>926,787</td>
</tr>
<tr>
<td>Streitmatter, R. E.</td>
<td>Goddard Space Flight Center</td>
<td>934</td>
</tr>
<tr>
<td>Stringfellow, B. C.</td>
<td>Purdue University</td>
<td>864</td>
</tr>
<tr>
<td>Suda, T.</td>
<td>Tohoku University</td>
<td>929</td>
</tr>
<tr>
<td>Sugarbaker, E.</td>
<td>Ohio State University</td>
<td>896</td>
</tr>
<tr>
<td>Sugimoto, S.</td>
<td>INS-University of Tokyo</td>
<td>787</td>
</tr>
<tr>
<td>Sukaton, R.</td>
<td>Carnegie-Mellon University</td>
<td>813</td>
</tr>
<tr>
<td>Sulak, L. R.</td>
<td>Boston University</td>
<td>821</td>
</tr>
<tr>
<td>Sulanke, T.</td>
<td>Indiana University</td>
<td>852</td>
</tr>
<tr>
<td>Sum, V.</td>
<td>University of Manitoba</td>
<td>885,813</td>
</tr>
<tr>
<td>Supek, I.</td>
<td>R. Boskovic Institute</td>
<td>931,914,913,907</td>
</tr>
<tr>
<td>Sutherland, B. M.</td>
<td>Brookhaven National Laboratory</td>
<td>919,898</td>
</tr>
<tr>
<td>Sutter, R.</td>
<td>Brookhaven National Laboratory</td>
<td>931,929,909,907,906,905,890,885,856,813</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Sutton, C. S.</td>
<td>Mt. Holyoke College</td>
<td>850</td>
</tr>
<tr>
<td>Švarc, A.</td>
<td>Ruder Boskovic Institute</td>
<td>914, 913, 890</td>
</tr>
<tr>
<td>Svirida, D. N.</td>
<td>Inst. for Theoretical and Experimental Physics-Moscow</td>
<td>925</td>
</tr>
<tr>
<td>Symons, J.</td>
<td>Lawrence Berkeley National Laboratory</td>
<td>895</td>
</tr>
<tr>
<td>Syphers, M.</td>
<td>Brookhaven National Laboratory</td>
<td>925, 880</td>
</tr>
<tr>
<td>Szarska, M.</td>
<td>Institute of Nuclear Physics-Krakow</td>
<td>868</td>
</tr>
<tr>
<td>Szymanski, J.</td>
<td>Indiana University Cyclotron Facility</td>
<td>813</td>
</tr>
<tr>
<td>Taeger, S. A.</td>
<td>University of Notre Dame</td>
<td>852</td>
</tr>
<tr>
<td>Takagui, M.</td>
<td>University of São Paulo</td>
<td>877</td>
</tr>
<tr>
<td>Takahashi, J.</td>
<td>Wayne State University</td>
<td>896</td>
</tr>
<tr>
<td>Takehashi, T.</td>
<td>Tohoku University</td>
<td>930</td>
</tr>
<tr>
<td>Takeutchi, F.</td>
<td>Kyoto-Sangyo University</td>
<td>906, 885, 813</td>
</tr>
<tr>
<td>Tallerico, T.</td>
<td>Brookhaven National Laboratory</td>
<td>821</td>
</tr>
<tr>
<td>Tamagawa, T.</td>
<td>INS-University of Tokyo</td>
<td>929, 906, 905</td>
</tr>
<tr>
<td>Tamagawa, Y.</td>
<td>Fukui University</td>
<td>787</td>
</tr>
<tr>
<td>Tamura, H.</td>
<td>INS-University of Tokyo</td>
<td>930, 929, 917, 906, 905</td>
</tr>
<tr>
<td>Tamura, K.</td>
<td>Osaka University</td>
<td>929</td>
</tr>
<tr>
<td>Tanaka, M.</td>
<td>Brookhaven National Laboratory</td>
<td>850</td>
</tr>
<tr>
<td>Tang, J.</td>
<td>University of Texas</td>
<td>896</td>
</tr>
<tr>
<td>Tang, L.</td>
<td>CEBAF</td>
<td>931, 907</td>
</tr>
<tr>
<td>Tang, L.</td>
<td>Hampton University</td>
<td>930, 929</td>
</tr>
<tr>
<td>Tanida, K.</td>
<td>INS-University of Tokyo</td>
<td>930, 906</td>
</tr>
<tr>
<td>Tannenbaum, M. J.</td>
<td>Brookhaven National Laboratory</td>
<td>866</td>
</tr>
<tr>
<td>Teige, S.</td>
<td>Indiana University</td>
<td>852</td>
</tr>
<tr>
<td>Teng, L.</td>
<td>Argonne National Laboratory</td>
<td>880</td>
</tr>
<tr>
<td>Tepikian, S.</td>
<td>Brookhaven National Laboratory</td>
<td>880</td>
</tr>
<tr>
<td>Themann, H.</td>
<td>Rice University</td>
<td>896</td>
</tr>
<tr>
<td>Thern, R. E.</td>
<td>Brookhaven National Laboratory</td>
<td>880</td>
</tr>
<tr>
<td>Thiessen, A.</td>
<td>Los Alamos National Laboratory</td>
<td>931, 907</td>
</tr>
<tr>
<td>Thomas, J.</td>
<td>Lawrence Livermore National Laboratory</td>
<td>910, 866</td>
</tr>
<tr>
<td>Thompson, A.</td>
<td>Dublin Inst. For Advanced Studies</td>
<td>893</td>
</tr>
<tr>
<td>Thompson, D. R.</td>
<td>University of Notre Dame</td>
<td>852</td>
</tr>
<tr>
<td>Thompson, J.A.</td>
<td>University of Pittsburgh</td>
<td>865</td>
</tr>
<tr>
<td>Thompson, P.</td>
<td>Brookhaven National Laboratory</td>
<td>821</td>
</tr>
<tr>
<td>Thompson, R.</td>
<td>Bechtal Nevada</td>
<td>939, 933</td>
</tr>
<tr>
<td>Thowe, T. G.</td>
<td>Brookhaven National Laboratory</td>
<td>864</td>
</tr>
<tr>
<td>Timmermans, C.</td>
<td>University of Minnesota</td>
<td>821</td>
</tr>
<tr>
<td>Tineknel, M. L.</td>
<td>Purdue University</td>
<td>864</td>
</tr>
<tr>
<td>Tippens, W. B.</td>
<td>Brookhaven National Laboratory</td>
<td>931, 907</td>
</tr>
<tr>
<td>Tippens, W. B.</td>
<td>University of California-Los Angeles</td>
<td>924, 914, 913, 909, 890</td>
</tr>
<tr>
<td>Todosow, M.</td>
<td>Brookhaven National Laboratory</td>
<td>939</td>
</tr>
</tbody>
</table>

182
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toldo, F.</td>
<td>Brookhaven National Laboratory</td>
<td>821</td>
</tr>
<tr>
<td>Tominaka, T.</td>
<td>RIKEN</td>
<td>880</td>
</tr>
<tr>
<td>Toropin, A. N.</td>
<td>Institute for Nuclear Research</td>
<td>940</td>
</tr>
<tr>
<td>Torun, Y.</td>
<td>Brookhaven National Laboratory</td>
<td>910</td>
</tr>
<tr>
<td>Trbojevic, D.</td>
<td>Brookhaven National Laboratory</td>
<td>932</td>
</tr>
<tr>
<td>Trentalage, S.</td>
<td>University of California-Los Angeles</td>
<td>925,</td>
</tr>
<tr>
<td>Tricoma, A.</td>
<td>University of Catania</td>
<td>896</td>
</tr>
<tr>
<td>Trifimovl, A.</td>
<td>Boston University</td>
<td>821</td>
</tr>
<tr>
<td>Truoel, P.</td>
<td>University of Zurich</td>
<td>865</td>
</tr>
<tr>
<td>Trzaska, M.</td>
<td>SUNY at Stony Brook</td>
<td>877</td>
</tr>
<tr>
<td>Trzupek, A.</td>
<td>Institute of Nuclear Physics-Krakow</td>
<td>868</td>
</tr>
<tr>
<td>Tsalov, D.</td>
<td>Pennsylvania State University</td>
<td>850</td>
</tr>
<tr>
<td>Tsoupas, N.</td>
<td>Brookhaven National Laboratory</td>
<td>925,</td>
</tr>
<tr>
<td>Tsvetkov, I. O.</td>
<td>J.I.N.R., Dubna</td>
<td>850</td>
</tr>
<tr>
<td>Turcot, A. S.</td>
<td>TRIUMF</td>
<td>787</td>
</tr>
<tr>
<td>Ufimtsev, A.</td>
<td>Institute for High Energy Physics-Serpukhov</td>
<td>880</td>
</tr>
<tr>
<td>Ukai, K.</td>
<td>INS-University of Tokyo</td>
<td>787</td>
</tr>
<tr>
<td>Ullmann, J.</td>
<td>Los Alamos National Laboratory</td>
<td>939</td>
</tr>
<tr>
<td>Underwood, D.</td>
<td>Argonne National Laboratory</td>
<td>925,</td>
</tr>
<tr>
<td>Urner, D.</td>
<td>University of Illinois</td>
<td>821</td>
</tr>
<tr>
<td>van Asselt, W.</td>
<td>Brookhaven National Laboratory</td>
<td>880</td>
</tr>
<tr>
<td>VanBibber, K. A.</td>
<td>Lawrence Livermore National Laboratory</td>
<td>933</td>
</tr>
<tr>
<td>Van Buren, G.</td>
<td>Massachusetts Institute of Technology</td>
<td>941,</td>
</tr>
<tr>
<td>van Oers, W.</td>
<td>University of Manitoba</td>
<td>854</td>
</tr>
<tr>
<td>Vardanyan, I. N.</td>
<td>Moscow State University</td>
<td>906,</td>
</tr>
<tr>
<td>Vasiliev, A. N.</td>
<td>Institute for High Energy Physics-Protvino</td>
<td>813</td>
</tr>
<tr>
<td>Vazquez, M.</td>
<td>Brookhaven National Laboratory</td>
<td>898</td>
</tr>
<tr>
<td>Videbaek, F.</td>
<td>Brookhaven National Laboratory</td>
<td>866</td>
</tr>
<tr>
<td>Viola, V. E.</td>
<td>Indiana University</td>
<td>900</td>
</tr>
<tr>
<td>Visser, G.</td>
<td>Space Science Laboratory</td>
<td>896</td>
</tr>
<tr>
<td>Voloshin, S.</td>
<td>University of Pittsburgh</td>
<td>877</td>
</tr>
<tr>
<td>von Walter, P.</td>
<td>University of Heidelberg</td>
<td>821</td>
</tr>
<tr>
<td>Vongpaseuth, T.</td>
<td>SUNY at Stony Brook</td>
<td>877</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td>Code</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Waddington, C. J.</td>
<td>University of Minnesota</td>
<td>934, 869, 868</td>
</tr>
<tr>
<td>Wakasa, T.</td>
<td>University of Tokyo</td>
<td>925</td>
</tr>
<tr>
<td>Waldren C.</td>
<td>Colorado State University</td>
<td>919, 898</td>
</tr>
<tr>
<td>Wales, W. D.</td>
<td>University of Pennsylvania</td>
<td>940</td>
</tr>
<tr>
<td>Wang, F.</td>
<td>Columbia University</td>
<td>866</td>
</tr>
<tr>
<td>Wang, H.</td>
<td>University of California-Riverside</td>
<td>917</td>
</tr>
<tr>
<td>Wang, S.</td>
<td>Kent State University</td>
<td>895</td>
</tr>
<tr>
<td>Wang, Y.</td>
<td>Columbia University</td>
<td>866</td>
</tr>
<tr>
<td>Watanabe, N.</td>
<td>Japan Atomic Energy Research Institute</td>
<td>938</td>
</tr>
<tr>
<td>Ward, H.</td>
<td>University of Texas-Austin</td>
<td>931, 907</td>
</tr>
<tr>
<td>Ward, T.</td>
<td>U. S. Department of Energy</td>
<td>939</td>
</tr>
<tr>
<td>Ware, C. B.</td>
<td>University of Texas-Austin</td>
<td>871</td>
</tr>
<tr>
<td>Watanabe, N.</td>
<td>Japan Atomic Energy Research Institute</td>
<td>838</td>
</tr>
<tr>
<td>Waters, L.</td>
<td>Los Alamos National Laboratory</td>
<td>939</td>
</tr>
<tr>
<td>Wefel, J. P.</td>
<td>Louisiana State University</td>
<td>868</td>
</tr>
<tr>
<td>Weinstein, R.</td>
<td>University of Houston</td>
<td>904</td>
</tr>
<tr>
<td>Wells, R.</td>
<td>Ohio State University</td>
<td>895</td>
</tr>
<tr>
<td>Welsh, R.</td>
<td>University of Michigan</td>
<td>896</td>
</tr>
<tr>
<td>Welsh, R.</td>
<td>College of William and Mary</td>
<td>935, 924, 871</td>
</tr>
<tr>
<td>Wessels, J.</td>
<td>SUNY at Stony Brook</td>
<td>877</td>
</tr>
<tr>
<td>Westphal, A.</td>
<td>University of California-Berkeley</td>
<td>915</td>
</tr>
<tr>
<td>Weyer, H.</td>
<td>Paul Scherrer Institute</td>
<td>865</td>
</tr>
<tr>
<td>Weygand, D. P.</td>
<td>Brookhaven National Laboratory</td>
<td>852</td>
</tr>
<tr>
<td>Wieder, M.</td>
<td>Freiburg University</td>
<td>813</td>
</tr>
<tr>
<td>White, D.</td>
<td>Rensselaer Polytechnic Institute</td>
<td>852</td>
</tr>
<tr>
<td>White, D. B.</td>
<td>University of California-Los Angeles</td>
<td>914, 913, 909, 890</td>
</tr>
<tr>
<td>Whitfield, J.</td>
<td>Carnegie-Mellon University</td>
<td>896, 895</td>
</tr>
<tr>
<td>Whitten, C.</td>
<td>University of California-Los Angeles</td>
<td>925</td>
</tr>
<tr>
<td>Whohn, F.</td>
<td>Iowa State University</td>
<td>941</td>
</tr>
<tr>
<td>Widenbeck, M. E.</td>
<td>Caltech</td>
<td>934</td>
</tr>
<tr>
<td>Wienands, U.</td>
<td>TRIUMF</td>
<td>880</td>
</tr>
<tr>
<td>Wienold, T.</td>
<td>Lawrence Berkeley National Laboratory</td>
<td>895</td>
</tr>
<tr>
<td>Wilczynska, B.</td>
<td>Institute of Nuclear Physics-Krakow</td>
<td>868</td>
</tr>
<tr>
<td>Wilczynski, H.</td>
<td>Institute of Nuclear Physics-Krakow</td>
<td>868</td>
</tr>
<tr>
<td>Williams, N.</td>
<td>Brookhaven National Laboratory</td>
<td>880</td>
</tr>
<tr>
<td>Willutzki, H. J.</td>
<td>Brookhaven National Laboratory</td>
<td>852</td>
</tr>
<tr>
<td>Wilson, J.</td>
<td>University of Houston</td>
<td>940</td>
</tr>
<tr>
<td>Wilson, K.</td>
<td>Wayne State University</td>
<td>896</td>
</tr>
<tr>
<td>Winn, D.</td>
<td>Fairfield University</td>
<td>821</td>
</tr>
<tr>
<td>Winter, D.</td>
<td>Columbia University</td>
<td>910</td>
</tr>
<tr>
<td>Wise, J.</td>
<td>Northwestern University</td>
<td>852</td>
</tr>
<tr>
<td>Witkowski, M.</td>
<td>Rensselaer Polytechnic Institute</td>
<td>935, 852</td>
</tr>
<tr>
<td>Witt, R.</td>
<td>Kent State University</td>
<td>895</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Witzig, C.</td>
<td>Brookhaven National Laboratory</td>
<td>787</td>
</tr>
<tr>
<td>Wohl, F. K.</td>
<td>Iowa State University</td>
<td>864</td>
</tr>
<tr>
<td>Wojciki, S. G.</td>
<td>Stanford University</td>
<td>871</td>
</tr>
<tr>
<td>Wolfe, M.</td>
<td>University of New Mexico</td>
<td>906</td>
</tr>
<tr>
<td>Wolfe, F.</td>
<td>University of Rochester</td>
<td>865</td>
</tr>
<tr>
<td>Wolin, E.</td>
<td>College of William and Mary</td>
<td>813</td>
</tr>
<tr>
<td>Wolter, W.</td>
<td>Institute of Nuclear Physics-Krakow</td>
<td>917</td>
</tr>
<tr>
<td>Woodruff, D.</td>
<td>Massachusetts Institute of Technology</td>
<td>917</td>
</tr>
<tr>
<td>Woody, C.</td>
<td>Brookhaven National Laboratory</td>
<td>926</td>
</tr>
<tr>
<td>Worm, S.</td>
<td>University of Texas-Austin</td>
<td>871</td>
</tr>
<tr>
<td>Worstell, W.</td>
<td>Boston University</td>
<td>821</td>
</tr>
<tr>
<td>Wosiek, B.</td>
<td>Institute of Nuclear Physics-Krakow</td>
<td>868</td>
</tr>
<tr>
<td>Wozniak, K.</td>
<td>Institute of Nuclear Physics-Krakow</td>
<td>868</td>
</tr>
<tr>
<td>Wright, A.</td>
<td>Rensselaer Polytechnic Institute</td>
<td>852</td>
</tr>
<tr>
<td>Wright, D. M.</td>
<td>Lawrence Livermore National Laboratory</td>
<td>933</td>
</tr>
<tr>
<td>Wu, J. Y.</td>
<td>Pennsylvania State University</td>
<td>850</td>
</tr>
<tr>
<td>Wu, Y.</td>
<td>Columbia University</td>
<td>866</td>
</tr>
<tr>
<td>Wuosmaa, A.</td>
<td>Argonne National Laboratory</td>
<td>917</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Xiang, H.</td>
<td>University of California-Riverside</td>
<td>917</td>
</tr>
<tr>
<td>Xiong, H.</td>
<td>Wayne State University</td>
<td>866</td>
</tr>
<tr>
<td>Xu, G.</td>
<td>University of California-Riverside</td>
<td>877</td>
</tr>
<tr>
<td>Xu, Q.</td>
<td>University of California -Riverside</td>
<td>917</td>
</tr>
<tr>
<td>Xu, Z.</td>
<td>Yale University</td>
<td>866</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yagi, K.</td>
<td>University of Tsukuba</td>
<td>866</td>
</tr>
<tr>
<td>Yamamoto, A.</td>
<td>National Laboratory for High Energy Physics (KEK)</td>
<td>821</td>
</tr>
<tr>
<td>Yamamoto, E.</td>
<td>University of California at Los Angeles</td>
<td>941</td>
</tr>
<tr>
<td>Yamamoto, K.</td>
<td>Kyoto University</td>
<td>906</td>
</tr>
<tr>
<td>Yang, X.</td>
<td>Columbia University</td>
<td>885</td>
</tr>
<tr>
<td>Yang, T. C-H.</td>
<td>NASA Johnson Space Center</td>
<td>910</td>
</tr>
<tr>
<td>Yao, H.</td>
<td>Massachusetts Institute of Technology</td>
<td>866</td>
</tr>
<tr>
<td>Yates, G. J.</td>
<td>Los Alamos National Laboratory</td>
<td>919</td>
</tr>
<tr>
<td>Yennello, S. J.</td>
<td>Texas A&M University</td>
<td>898</td>
</tr>
<tr>
<td>Yepes, P.</td>
<td>Rice University</td>
<td>900</td>
</tr>
<tr>
<td>Yershov, A. A.</td>
<td>Moscow State University</td>
<td>896</td>
</tr>
<tr>
<td>Yoder N. R.</td>
<td>Indiana University</td>
<td>852</td>
</tr>
<tr>
<td>Yokkaichi, S.</td>
<td>University of Kyoto</td>
<td>900</td>
</tr>
<tr>
<td>Yokosawa, A.</td>
<td>Argonne National Laboratory</td>
<td>813</td>
</tr>
<tr>
<td>Yokoya, K.</td>
<td>KEK</td>
<td>880</td>
</tr>
</tbody>
</table>
Z

Zajc, W. A.
Zeller, M.
Zeps, V.
Zeps, V.
Zhang, W. N.
Zhang, Y.
Zhang, Y.
Zhao, D.
Zhao, K.
Zhu, F.
Zhu, Q.
Zhu, Y.
Zieminska, D.
Ziliak, Z.
Zimmerman, D.
Ziock, H.
Zou, C.
Zou, C.
Zumbo, J.
zu Putlitz, G.
Zybert, R.

University of Houston
KEK, National Laboratory for High Energy Physics
KEK, National Laboratory for High Energy Physics
Kyoto University
University of Houston

Columbia University
Yale University
University of Kentucky
Carnegie-Mellon University
Harbin University
SUNY at Stony Brook
Columbia University
Northwestern University
City College of New York
Brookhaven National Laboratory
University of California-Riverside
City College of New York
Indiana University
Indiana University
University of Minnesota
Los Alamos National Laboratory
SUNY at Stony Brook
University of California-Riverside
Los Alamos National Laboratory
University of Heidelberg
University of Birmingham

929
932
787
906, 885
940
910, 866
926, 865
931, 907, 885
813
895
877
910, 877
852
891
866
866
891
852
852
821
933, 920
877
917
933, 920
821
813

186