Detecting corrosion in plastic encapsulated micro-electronics packages

PDF Version Also Available for Download.

Description

In the past, most defense microelectronics components were packaged in ceramic, hermetic enclosures. PEMs are not hermetic because the plastic molding compounds are permeable to moisture. This lack of hermeticity creates an unknown liability, especially with respect to corrosion of the metallization features. This potential liability must be addressed to ensure long-term reliability of these systems is maintained under conditions of long-term dormant storage. However, the corrosion process is difficult to monitor because it occurs under the encapsulating plastic and is therefore not visible. The authors have developed techniques that allow them to study corrosion of Al bondpads and traces ... continued below

Physical Description

2 p.

Creation Information

Sorensen, N.R.; Braithwaite, J.W.; Peterson, D.W. & Sweet, J.N. August 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In the past, most defense microelectronics components were packaged in ceramic, hermetic enclosures. PEMs are not hermetic because the plastic molding compounds are permeable to moisture. This lack of hermeticity creates an unknown liability, especially with respect to corrosion of the metallization features. This potential liability must be addressed to ensure long-term reliability of these systems is maintained under conditions of long-term dormant storage. However, the corrosion process is difficult to monitor because it occurs under the encapsulating plastic and is therefore not visible. The authors have developed techniques that allow them to study corrosion of Al bondpads and traces under relevant atmospheric corrosion conditions. The cornerstone of this capability is the ATC 2.6, a microelectronic test device designed at Sandia National Laboratories. Corrosion tests were performed by exposing test chips to aggressive environments. The electrical response of the ATC indicated an increase in bondpad resistance with exposure time. Note that the change in resistance is not uniform from one bondpad to another. This illustrates the stochastic nature of the corrosion process. The change in resistance correlated with visual observation of corrosion of the bondpads on the unencapsulated test chips.

Physical Description

2 p.

Notes

OSTI as DE98007220

Source

  • 194. meeting of the Electrochemical Society, Boston, MA (United States), 1-6 Nov 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98007220
  • Report No.: SAND--98-1510C
  • Report No.: CONF-981108--
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 674757
  • Archival Resource Key: ark:/67531/metadc712014

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • June 13, 2016, 7:11 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sorensen, N.R.; Braithwaite, J.W.; Peterson, D.W. & Sweet, J.N. Detecting corrosion in plastic encapsulated micro-electronics packages, article, August 1, 1998; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc712014/: accessed December 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.