Low-pressure, single-point grout injection for tank heel sludge mixing and in-situ immobilization

PDF Version Also Available for Download.

Description

This report describes tests conducted in an approximately 9-ft diameter test tank situated outside the 336 building in Hanford`s 300 area. The tests were performed to measure the ability of jets of grout slurry to mobilize and mix simulated tank sludge. The technique is intended for in situ immobilization of tank waste heels. The current approach uses a single, rotated, larger-diameter nozzle driven at lower pressure. Due to the larger diameter, the potential for plugging is reduced and the effective radius around an injection point over which the jet is effective in mobilizing sludge from the tank bottom can be ... continued below

Physical Description

45 p.

Creation Information

Whyatt, G.A. & Hymas, C.R. September 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 18 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This report describes tests conducted in an approximately 9-ft diameter test tank situated outside the 336 building in Hanford`s 300 area. The tests were performed to measure the ability of jets of grout slurry to mobilize and mix simulated tank sludge. The technique is intended for in situ immobilization of tank waste heels. The current approach uses a single, rotated, larger-diameter nozzle driven at lower pressure. Due to the larger diameter, the potential for plugging is reduced and the effective radius around an injection point over which the jet is effective in mobilizing sludge from the tank bottom can be made larger. A total of three grout injection tests were conducted in a 9-ft diameter tank. In each case, a 2-in. layer of kaolin clay paste was placed on a dry tank floor to simulate a sludge heel. The clay was covered with 4 inches of water. The grout slurry, consisting of Portland cement, class F fly ash, and eater, was prepared and delivered by an offsite vendor. In the third test, the sludge in half of the tank was replaced by a layer of 20x50 mesh zeolite, and bentonite clay was added to the grout formulation. After injection, the grout was allowed to set and then the entire grout monolith was manually broken up and excavated using a jack hammer. Intact pieces of clay were visually apparent due to a sharp color contrast between the grout and clay. Remaining clay deposits were collected and weighed and suspended clay pieces within the monolith were photographed. The mobilization performance of the grout jets exceeded expectations.

Physical Description

45 p.

Notes

INIS; OSTI as DE98059321

Source

  • Other Information: PBD: Sep 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98059321
  • Report No.: PNNL--12001
  • Grant Number: AC06-76RL01830
  • DOI: 10.2172/665969 | External Link
  • Office of Scientific & Technical Information Report Number: 665969
  • Archival Resource Key: ark:/67531/metadc712013

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • June 14, 2016, 7:43 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 18

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Whyatt, G.A. & Hymas, C.R. Low-pressure, single-point grout injection for tank heel sludge mixing and in-situ immobilization, report, September 1, 1998; Richland, Washington. (digital.library.unt.edu/ark:/67531/metadc712013/: accessed July 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.