A Database Prototype Has Been Developed to Help Understand Costs in Photovoltaic Systems

Larry M. Moore
Sandia National Laboratories

Abstract
High photovoltaic (PV) system costs hinder market growth. An approach to studying these costs has been developed using a database containing system, component and maintenance information. This data, which is both technical and non-technical in nature, is to be used to identify trends related to costs. A pilot database exists at this time and work is continuing. The results of this work may be used by the data owners to improve their operations with the goal of sharing non-attributable information with the public and industry at large.

The published objectives of the DOE PV program are to accelerate the development of PV as a national and global energy option, as well as ensure U.S. technology and global market leadership. Our approach to supporting these objectives is to understand what drives costs in PV applications. This paper and poster session describe work-in-progress in the form of a database that will help identify costs in PV systems.

In an effort to address DOE's Five-Year PV Milestones, a program was established in the summer of 1999 to study system costs in three PV applications - solar home lighting, water pumping, and grid-tied systems. This work began with a RFQ requesting data from these types of systems. Creating a partnership with industry and other system organizations such as Non-Government Organizations (NGOS) was the approach chosen to maintain a close tie to the systems in the field. Nine participants were selected as partners, who provided data on their systems. Two activities are emphasized in this work. For the first, an iterative approach of developing baseline reliability and costs information with the participants was taken. This effort led to identifying typical components in these systems as well as the specific data (metrics) that would be needed in any analysis used to understand total systems costs. This data came to be defined in terms of system characteristics and component attributes in addition to how and why the system failed. The second major effort, which is still in progress, is the creation of a relational database for storage, review and analysis of this data. A database model was created using the following database requirements as a framework for present and future use:

- Modular structure to support future additions
- Each System has one owner
- Make simple associations at the component level
- Allow multiple components to be tracked with a system
- Allow multiple failures to be documented as a result of a maintenance visit

The cost drivers in these systems are technical as well as non-technical in nature. Technical reliability is used in a 'soft' interpretation of the definition. The initial analysis is expected to provide trend information and set in place efforts to provide more accurate information for future studies.
costs include system design, installation, maintenance and component design. Was the system well-designed given state-of-the-art practices for this application? Anecdotal stories circulate describing installations by the inexperienced. Can these problems be identified using available data? Maintenance includes the results of not maintaining a system as well as providing incorrect care. In addition, fielded systems show some components perform better than others. Can quantitative support for this experience be developed? A substantial effort was taken to define categories of how a system failed. This work relied on the experience of the nine participants in the study with the realization that these definitions and categories will evolve as our experience with the data increases. The non-technical issues are sometimes described as institutional in nature. In some applications such as solar home lighting, experience has shown these issues can dominate system costs. Education, training, usage patterns, gender and customs create a collection of problems that can sometimes overwhelm the technical aspects of fielding the PV system.

At this time a minimum set of metrics is being used in the analysis to identify trends in the data. This data can be summarized as follows:

- **System Identification**
- **System Installation Date**
- **Date System Failed and Repaired**
- **Costs (labor, parts, travel)**
- **Failure Mode**
 - What failed?
 - Why did the failure occur?

The most complete data sets are being used at this time in the pilot data analysis. Initial discussions with the data owner(s) have provided a guide to focus the early analysis efforts. As development of the analysis routines proceeds the iterative process of sharing information with the data owners will focus the evolving charts and tables that identify the information needed to understand the costs in these systems. The eventual goal will be to combine information from various applications and provide public information that will help the PV community and yet protect the proprietary interests of all who participate in the project.

A collection of lessons-learned has emerged from the work-in-progress. This experience is non-technical in nature at this time and reflects the difficulty in establishing a useful database. The lessons-learned can be summarized as follows:

- Customer understanding of their systems and feedback are critical to helping minimize system maintenance.
- Data collection is sometimes very difficult—simple worksheets are best because they are used.
- Attention to non-technical issues maybe important to cost reduction.
- Small data sets exist at this time for some partners—there is general interest in developing this information for future collaboration.
- Ability to track system history is believed to be valuable for tracking cost contributions.
- Additional up-front planning for data collection and sharing reduces effort of translating data for entry into database. Translating data from owner for input to database is tedious and time consuming.

In summary, reducing costs can accelerate the market expansion of PV systems. An approach to studying these costs has been developed using a database containing system, component and maintenance information. This data, which is both technical and non-technical in nature, is to be used to identify trends that help understand costs in the systems. A pilot database exists at this time and work is continuing. The results will be available to data owners to improve their operations with the goal of sharing non-attributable information to the public and industry at large.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
DEVELOPMENT OF ELECTRICALLY INSULATING COATINGS FOR SERVICE IN A LITHIUM ENVIRONMENT

K. Natesan, M. Uz, and S. Wieder

ET-212, Energy Technology Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439, U.S.A.

(630) 252-5103
(630) 252-3604
natesan@anl.gov

Coatings and Coated Particles (C06), Chemical Reactions (C04), Compatibility and Corrosion (C08), Electrical Properties (E01), Liquid Metals (L03)
Abstract

Several experiments were conducted to develop electrically insulating CaO coatings on a V-4Cr-4Ti alloy for application in an Li environment. The coatings were developed by vapor phase transport external to Li, and also in-situ in an Li-Ca environment at elevated temperature. In the vapor phase study, several geometrical arrangements were examined to obtain a uniform coating of Ca on the specimens, which were typically coupons measuring 5 to 10 x 5 x 1 mm. After Ca deposition from the vapor phase, the specimens were oxidized in a high-purity argon environment at 600°C to convert the deposited metal into oxide. The specimens exhibited insulating characteristics after this oxidation step. Several promising coated specimens were then exposed to high-purity Li at 500°C for 48-68 h to determine coating integrity. Microstructural characteristics of the coatings were evaluated by scanning electron microscopy and energy-dispersive X-ray analysis. Electrical resistances of the coatings were measured by a two-probe method between room temperature and 700°C before and after exposure to Li.

1. Introduction

Blanket-design studies revealed that electrically insulating duct walls will be required to reduce the magnetohydrodynamic (MHD) pressure drop in liquid-metal-cooled blankets used in high-magnetic-field fusion devices. As a result, development of insulator coatings was recommended as the most appropriate approach for resolving this issue [1]. The major requirements for a viable insulator coating are

- Chemical compatibility in liquid metal.
- Chemical compatibility with structural metal.
- Adequate electrical insulating characteristics.
- Stability under irradiation environment.
- Long-term stability, including self healing, under thermal cycling conditions.
Based on a review of available information on electrical resistivity values and lithium compatibility, several oxide and nitride candidate materials have been identified for application as insulator coatings. Oxides were generally considered initially as the preferred candidates to meet the specified criteria; however, only a limited number of oxides are stable in Li [2]. Nitrides are generally more stable than the oxides in Li; however, many of the nitrides do not exhibit high electrical resistivity. For example, both VN and TiN are stable in Li but exhibit low resistivity. Similarly, most carbides and silicides do not exhibit adequate resistivity. Therefore, oxides such as CaO, Y2O3, MgAl2O4, and Y3Al2O12, and nitrides such as AlN and BN, were considered as potential candidates primarily because of their thermodynamic considerations and electrical resistivities. Argonne National Laboratory has been developing CaO and AlN coatings on V-alloy substrates for application in V-Li advanced blanket systems. This paper will discuss the procedures used for CaO coating development, microstructural characteristics of those coatings, and electrical resistivity data for the coatings as a function of temperature. The results will be used to assess the applicability of these coatings in a V-Li self-cooled fusion reactor blanket.

2. Experimental Procedure

2.1. Thermal/chemical coating process

Experiments were conducted to develop Ca-rich coatings by using a thermal/chemical deposition process [3,4]. V-alloy specimens were exposed to a pack of fine Ca pellets at 700-800°C. The specimens were either completely enclosed within the pack or hung above the pack material in a static Ar environment. The temperature dependence of the vapor pressure of Ca showed that above 700°C, the Ca vapor pressure is >0.1 torr, sufficient to deposit a layer of Ca on the specimens. Several geometrical arrangements were examined to obtain a uniform coating of Ca on the specimens, which were typically coupons measuring 5 to 10 x 5 x 1 mm. The exposure time in the deposition process ranged from 100 to 200 h. Upon deposition of Ca, the specimens were oxidized in an Ar environment to oxidize the Ca deposit. The oxidized specimens exhibited poor adherence of the oxide to the substrate, and the oxide layer was patchy and fairly thin. A two-probe method was used to measure the electrical resistance of these specimens by deposition of Au over 2 x 2 mm areas and use of Pt wire for the electrical leads. The specimen assembly was inserted in a furnace, and resistance was measured in an Ar environment between room temperature and =700°C.

The coated specimens exhibited insulating characteristics after this oxidation step. X-ray diffraction studies on these specimens showed good correlation between high resistance values at room temperature and a high concentration of Ca in oxide form. Calcium concentrations in the
range of 60-80 wt.% were obtained on several specimens. However, coating thickness in a given specimen or among various specimens was not uniform; in some specimens, coating spallation was noted. The results also showed that Ca deposition via vapor phase transport is possible but that the coating thickness and the adhesive bonding of the coating to the substrate after a single deposition/oxidation procedure was not adequate to produce the desired insulating characteristics. Additional experiments, with several procedural modifications, were conducted and, finally, a double deposition/oxidation treatment seemed to produce a thicker coating that was more adherent and exhibited adequate insulating characteristics at room temperature.

2.2. In-situ coating development in-situ in Li-Ca mixture

In earlier studies, scoping tests were conducted by exposing small coupons of V alloys at various temperatures to Li containing various concentrations (2-50 at.%) of calcium [5-7]. A range of conditions (temperature, oxygen pressure, and time) was investigated to determine those that provided better coating characteristics. In initial investigations, "CaO" coatings were obtained by reacting V alloy coupons in Li-Ca mixtures in small capsules (<0.1 L) at 400-1000°C. CaO coatings 10 μm thick were successfully formed on vanadium alloys. In this case, microcracks were observed at room temperature, but spallation of the coating was not observed. Some of the coated specimens from these experiments, even with nonuniform thicknesses and cracks, were used in resistivity measurements to compare the resistances of the in-situ coatings with those of the coatings developed by the thermal/chemical process.

2.3. Liquid-metal exposures

Two static liquid-Li systems were used for studies on compatibility of insulator coatings. The systems were filled with 15 L of high-purity (99.97 wt.%) Li. Concentrations of trace impurities of Na, Ca, K, Fe, Si, and Cl in Li were <50 ppm, and N concentration in the Li was 80 ppm. Coupon specimens of CaO-coated samples were exposed in the liquid Li at 500°C. Weight change was measured to establish corrosion rates for the coatings as a function of time. After exposure, the specimens were examined by a scanning electron microscope (SEM) equipped with an energy-dispersive X-ray (EDX) analyzer, and also by X-ray diffraction. The coated specimens were examined to evaluate coating integrity, microstructural changes in coatings, coating/substrate interactions, and electrical insulation characteristics of the coatings.

3. Results and Discussion

3.1. Coatings developed by thermal/chemical process
Figure 1 shows typical SEM photomicrographs of cross sections of two V-4Cr-4Ti alloy specimens after a double Ca deposition/oxidation treatment. Coating thicknesses in these specimens were 15 to 30 µm. EDX analysis of the specimen surfaces showed the coatings to be CaO and also revealed the virtual absence of any elements from the substrate alloy. Figure 2 shows a typical EDX spectrum of the coating surface and indicates primarily Ca and O peaks. Cross sections of several specimens were analyzed as a function of depth for constituent elements of the coating and substrate. Depth profiles for two of the coated specimens are shown in Figs. 3a and 3b; the profiles indicate coating thicknesses of 16 and 34 µm, respectively. The coating composition in both specimens was predominantly CaO, and negligible amounts of substrate elements were detected in the coating region. The difference in scale thickness between the two specimens is due to the proximity of different specimens in the Ca pack. Both specimens, after double Ca and oxidation treatment, were exposed to Li of normal purity at 500°C for 68 h.

The variation in the product of resistance times area (i.e., R x A, which is equivalent to the product of resistivity times coating thickness) as a function of temperature obtained on specimens of V-4Cr-4Ti alloy with Ca deposition/oxidation and with Ca deposition/oxidation and redeposition of Ca was discussed in Ref. 4. Those results showed that the as-coated specimen (with a double Ca and oxidation treatment) had resistance values of 10^4 to $10^5 \, \text{Ω-cm}^2$. In this study, resistance measurements were made on specimens that were double-Ca/oxidation-treated and subsequently exposed to liquid Li of normal purity at 500°C for 68 h. Figure 4 shows the variation in R x A as a function of temperature obtained on a CaO-coated and Li-exposed specimen of V-4Cr-4Ti alloy. The figure shows that R x A values are $>10^7 \, \text{Ω-cm}^2$ from room temperature to 200°C; the value gradually decreases to $\approx 5 \times 10^6 \, \text{Ω-cm}^2$ as temperature is increased from 200 to 540°C. The specimen was maintained isothermally at $\approx 540°C$ for ≈ 6 h, after which it was further heated to $\approx 700°C$. Even at 700°C, the specimen exhibited an R x A value of $10^4 \, \text{Ω-cm}^2$, at least two orders of magnitude higher than that required in a fusion device using a Li blanket. Figure 5 shows variation in R x A as a function of exposure time obtained on a CaO-coated and Li-exposed specimen of V-4Cr-4Ti alloy. It is evident that the coating had R x A values of 10^5 and $10^4 \, \text{Ω-cm}^2$ at 541 and 702°C, respectively.

3.2. Coatings developed in-situ

Specimens of V-4Cr-4Ti alloy with a coating of CaO developed in-situ in an Li-Ca environment were examined to characterize the microstructure and coating resistance. Figure 6 is an SEM photomicrograph of the surface of a "CaO"-coated V-4Cr-4Ti alloy specimen after exposure to an Li environment. The surface region consisted of Li₂O as the outer layer (characterized by a rough, light-toned texture) and a Ca-enriched inner layer (a smooth gray
Figure 7 shows the variation in $R \times A$ as a function of temperature for this specimen. The value for $R \times A$ at temperatures up to $\approx 300^\circ$C is more than the minimum needed, but decreases substantially as temperature rises to 614°C. Maintaining the specimen at 614°C for extended periods seems to improve the resistance of the coating; a further increase in temperature to 713°C results in a slight reduction in resistance. In the cooling portion of the cycle, the resistance values are at least two orders of magnitude higher than in the heating portion of the cycle, with a probable inference of coating consolidation/densification and subtle change in chemistry of the coating during the heating portion of the cycle. Figure 8 shows the variation in $R \times A$ value as a function of time for the same coated specimen. The results indicate that the resistance values for the coating in the cooling part of the cycle are substantially higher than in the heating portion of the cycle, even though the coating is maintained nominally at the same temperature (e.g., $336/339$ and $539/538^\circ$C) during both the heating and cooling portions of the cycle. Additional experiments are planned in which multiple heating/cooling cycles will be conducted on the same coated sample to evaluate whether the coating characteristics become stabilized and to see whether the coating resistance attains a stable value at each isothermal condition, irrespective of heating or cooling cycle. Further, in-situ measurement of coating resistance (the next logical step to evaluate simultaneously the coating resistance and Li compatibility) is also planned.

4. Summary

We have developed CaO coatings by a thermal/chemical vapor deposition process and by an in-situ approach in a liquid Li-Ca environment. Results showed that thick adherent coatings can be fabricated by thermal/chemical vapor deposition, especially if a double Ca treatment is applied. Coatings were also developed by the in-situ approach, but the coatings were much thinner than desired. Furthermore, the coating composition was nonuniform, with significant presence of V in several locations on the coated surface. Extensive microstructural analysis of the coatings developed by the thermal/chemical process showed almost 100% CaO over a coating thickness of 20-30 μm; electrical resistance (measured by the two-probe method) of the coatings was at least two orders of magnitude higher than the minimum required for blanket application. Electrical resistance of in-situ-developed coatings was adequate at temperatures up to $\approx 350^\circ$C, but decreased substantially at higher temperatures. The results obtained in this study indicate that CaO is a viable coating for V-Li advanced blankets, but needs significant additional effort, especially from the standpoint of structure/composition relationship to its electrical resistance. Furthermore, in-situ measurement of Li resistance is required to simultaneously evaluate coating integrity, resistance, and Li compatibility.

Acknowledgments
This work was supported by the U.S. Department of Energy, Office of Fusion Science, under Contract W-31-109-Eng-38. D. L. Rink assisted with microstructural analysis and resistance measurements of the coated specimens.

References

Fig. 1. SEM photomicrographs of cross sections of two V-4Cr-4Ti alloy specimens after double Ca deposition/oxidation treatment.
Fig. 2. EDX spectrum of surface of V-4Cr-4Ti alloy specimen after double Ca deposition/oxidation treatment.

Fig. 3. Elemental concentrations as a function of coating thickness for V-4Cr-4Ti alloy specimens after double Ca deposition/oxidation treatment: (a) coating thickness = 16 μm; (b) coating thickness = 34 μm.

Fig. 4. Product of resistance times area as a function of temperature for V-4Cr-4Ti alloy with double Ca deposition/oxidation after 68-h exposure in Li environment at 500°C.

Fig. 5. Product of resistance times area as a function of time for V-4Cr-4Ti alloy with double Ca deposition/oxidation after 68-h exposure in Li environment at 500°C.
Fig. 6. SEM photomicrograph of surface of V-4Cr-4Ti alloy specimen with "CaO" coating developed in-situ in Li-Ca mixture.

Fig. 7. Product of resistance times area as a function of temperature for V-4Cr-4Ti alloy with "CaO" coating developed in-situ in Li-Ca environment.

Fig. 8. Product of resistance times area as a function of time for V-4Cr-4Ti alloy with "CaO" coating developed in-situ in Li-Ca environment.