Stress corrosion cracking of Fe-Ni-Cr-Mo, Ni-Cr-Mo and Ti alloys in 90{degrees}C acidic brince

PDF Version Also Available for Download.

Description

Susceptibility to stress corrosion cracking (SCC) of candidate materials for the inner container of the multi-barrier nuclear waste package was evaluated by using wedge-loaded precracked double- cantilever-beam (DCB) specimens in deaerated acidic brine (pH at 2.70) at 90{degrees}C. Materials tested include Alloys 825, G-30, C-4, 625 and C-22; and Ti Grade- 12. Duplicate specimen of each material was loaded at different initial stress intensity factor (K) values ranging between 23 and 46 ksi/in. Both metallography and compliance method were used to determine the final crack length. The final stress intensity for SCC (K{sup ISCC}) was computed from the measured final ... continued below

Physical Description

9 p.

Creation Information

Roy, A.K.; Fleming, D.L. & Lum, B.Y. November 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 19 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Susceptibility to stress corrosion cracking (SCC) of candidate materials for the inner container of the multi-barrier nuclear waste package was evaluated by using wedge-loaded precracked double- cantilever-beam (DCB) specimens in deaerated acidic brine (pH at 2.70) at 90{degrees}C. Materials tested include Alloys 825, G-30, C-4, 625 and C-22; and Ti Grade- 12. Duplicate specimen of each material was loaded at different initial stress intensity factor (K) values ranging between 23 and 46 ksi/in. Both metallography and compliance method were used to determine the final crack length. The final stress intensity for SCC (K{sup ISCC}) was computed from the measured final wedge load and the average crack length. The results indicate that in general, the final crack length measured by metallography and compliance was very close to each other, thus, providing very similar K{sup ISCC} values. While tests are still ongoing, the preliminary results suggest that, compared to other five alloys tested, Alloy 825 may exhibit the maximum tendency to SCC.

Physical Description

9 p.

Notes

INIS; OSTI as DE98058331

Other: FDE: PDF; PL:

Source

  • Corrosion `98, San Diego, CA (United States), 22-27 Mar 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98058331
  • Report No.: UCRL-JC--128477
  • Report No.: CONF-980316--
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 674990
  • Archival Resource Key: ark:/67531/metadc711916

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 1997

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 6, 2017, 6:21 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 19

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Roy, A.K.; Fleming, D.L. & Lum, B.Y. Stress corrosion cracking of Fe-Ni-Cr-Mo, Ni-Cr-Mo and Ti alloys in 90{degrees}C acidic brince, article, November 1, 1997; California. (digital.library.unt.edu/ark:/67531/metadc711916/: accessed September 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.