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The von >fises stress is often used as the metric for evaluating design margins. particularly for “a

structures made of ductiie materials. While computing the von Mises stress distrilmion in a struc-
tural system due to a deterministic load condition may be straightforward, difficulties arise when
considering random vibration environments. As a result, alternate methods are used in practice.
One such method involves resolving the random vibration environment to an equivalent static
load. This technique. however, is only appropriate for a very small class of problems and can eas-
ily be used incomectly. Monte Carlo sampling of numerical realizations that reproduce the second
order statistics of the input is another method used to address this problem. This technique proves
cornpumtionally inefficient and provides no insight as to the character of the distribution of von
Ylises stress.

This tutorial describes a new methodology to investigate the design reliability of st.mcturalsys-
tems in a random vibration environment. The method provides analytic expressions for root mean
square (R\lS) von Mises stress and for the probability distributions of von Mises stress \vhich can
be evaluated efficiently and with good numerical precision. Further, this new approach has the
important advantage of providing the asymptotic propetiies of the probability distribution. A brief
ovemie~vof the theoretical development of the methodology is presented, foI1owedby detaiIed
instructions on how to impIement the technique on engineering applications. As an exampIe, the
method is applied to a complex finite element model of a Global Positioning Satellite (GPS) sys-
tem. This tutorial presents an efficient and accurate methodology for correctly applying the von
Mises stress criterion to complex computational models. The von Mises criterion is the traditional,
method for determination of structural reliability issues in industry.

Introduction

The primary purpose of finite element stress analysis is to estimate the reliability of engineering
designs. In structural applications, the von Mises stress due to a given load is often used as the
metric for evaluating design margins. For deterministic loads, both static and dynamic, the calcu-
lation of von Mises stress is straightforward, e.g. [6]. For loads modeled as random processes, the
task is differen~ the responses to such loads are themselves random processes and the properties
must be determined in terms of those of both the loads and the system. Hence, both the input and
output quantities exhibit statistical behavior.

There are many wfiysto analyze such systems (see for example [3], [7] or [2]). Typically, when
considering a linear system subject to ductile failure, input forces are specified by their auto spec-
tral densities. In the case of multiple force inputs, the forces may be specified by a cross spectral
density matrix. Herein, it is demonstrated how that information can be used to calculate the prob-
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ability distributions for the von Mises stress at different locations on the body. Computation of the
root mean squared (RNIS) von Mises stress maybe accomplished as part of that calculation.

Theoretical Development

A detailed theoretical development is available in [4,5]; only the equations required for under-
standing the analysis procedure are presented here. Methods to calculate the RMS von Mises
stress are discussed, followed by the primary reIations for development of the probability distrib-
utionfunction (PDF) of von Mises stress at arbitrary locations in the model.

RMS value

When the applied rartdom load involves either forces applied at several locations or forces applied
at one location but in more than one direction, the loads are usually represented by the cross spec-
tral density matrix [1]

s~~(co) = ;~=+[m), T) F(CD,T)*], (1)

where F(o, T) is the finite Fourier transform of the vector of force components sampled over a
period T; (.)~ denotes the matrix transpose; (~) denotes the complex conjugate; and Q.] is the
operator of mathematical expectation. In the case of a single scalar input force, this reduces to the
auto spectral density.

The stress at the point in question can be assembled from the contributions of each mode:

u{?,x) = ~9n(M-’n(h (2)
n

where qn is the nrh modal coordinate and Yn(x) is the stress vector at location x associated
with that mode, comprised of the six non-redundant terms for the stress tensor.

The square of the von Mises stress can be expressed as a quadratic operator on the stress vector

p2(t, x) = C(t, X)TA cT(I,X), (3)

where
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It can be shown (as in [4]) that the RMS von Mises stress can be written as

where B is composed of the modal contributions of the components of the stress modes

Bmn = Y:AYn,

and

‘force

‘Vij= ~ Q.,i’dj+f~(n)dj(n)s~~(n).,.’-

a, a’ n

(4)

(5)

(6)

(7)

Here, ~di is the displacement eigenvector for mode i and degree of freedom a t T is tie samPling
time, SFF(n)a, a, represents the cross correlation input ma~x term and

di(n) =
1

O);– Ci)~+ 2jy163nO)i‘
(8)

with ~i the eigenflequency, (.onthe sample frequency and yi the modaI damping.

Equation 7 represents ail the frequency response of the system and needs to be computed only
once for each model. For a single input, this expression reduces to a frequency weighted sum of
the autospectral density.

. This RMS von Mises stress provides an excellent metric for failure of most ductile materials. Tra-
ditionally, a ‘three-sigma’ rule is applied to this value to arrive at a low probability of failure.
Because the probability distribution function for von Mises stress is not Gaussian, this is only an



approximation. However, it can be shown to be consenative, and is sufficient for many applica-
tions.

Probability distn”bution

To obtain the probability distribution of von Mises stress, begin with the zero time-lag covariance
matrix of modal coordinates rqq = E[q(t)q(r)~], which maybe obtained directly from SFF(OJ)
and the modal response of the structure [7].

A singular value decomposition of rqq can be used to map the modal coordinates into uncorre-
lated variab1es[8]

r ~q = QX2QT, (9)

where X is a diagonal matrix whose dimension is the rank of l_qq, Q is a rectarguk.r matrix hav-
ing the property that QTQ = /r , and lr is the identity whose dimension is the rank of rqq.
Here, only the nonzero terms of %e diago{aI matrix and the corresponding columns of the rota-
tion matrix are retained. The rank of X defines the number of independent modal responses that
participate in the excitation. Defining

~ = X-lQTq, (10)

it is obvious that the components of ~ are independent, identically distributed Gaussian pro-
cesses, each with unit variance. In the new coordinates, ~, the square of the von Mises stress is

/72= pTcp, (11)

where

C = XQTBQX. (12) ~

Matrix C is square, having dimensionality equal to the rank of rqq but possibly much lower
rank. The rank of C is the minimum of the rank of the matrices in the product on the right hand
side of equation 12.

Because C is symmetric, positive semi-definite, it exhibits the following singular value decompo-
sition

C = RD2RT, (13)

where the matrix D is diagonaland has dimension equal to the rank of C, R is a rectangular”
matrix having property that RTR = Ic, and l%is the identity matrix whose dimension is the rank
of C. Wth another change of variable, y = R ~, the square of the von Mises stress becomes



(14)
n

Thedimensionof D isthenumber ofindependent ``stiess prwesses'' attielmation of interest.

The statistics of the von Mises stress are determined via appropriate integration over the joint
probability distribution of the y~‘s. The mean square of the von Mises stress is

(15)
r

which is an alternative method of arriving at the RMS von Mises stress. Note that it is computa-
tionally more compIex than equation 5, but both expressions possess common features. They both
bear two terms, the first of which involves a modal sum and expectation value over the input
range. This term (equation 7 or 9) needs to be calculated only once. The second portion integrates
the stress into the solution at each output location.

When a detailed probability of failure is required, one can calculate the probability of the von
Mises stress being less than some value Y:

“(p <Y) = J ‘~Pr(Yr)~dY/
Z({D},Y)

(16)

where Z( {D }, Y) is the N-dimensional ellipsoid containing points y associated with von Mises
stress less than Y, i.e.

Z({D}, Y) = {y:((yTD2y)C Y2)}, (17)

and N is the rank of D. The integral of equation (16) is generally impossible to evaluate exactly,
but an approximate box quadrature method has been developed. That approximation is described “
in detail in [5], but a numerical implementation is enumerated in the example section below.
Numerical experiments with the procedure indicate that the box quadrature converges with error
on the order of h3 where h is the maximum characteristic dimension of each box.

Numerical Implementation

In this section, exarnpIe calculations to compute the RMS von Mises stress and the probability of
exceeding some maximum sfiess are presented. MSC/Nastran is the anaIysis code used to com-
pute the normal mode response of the structure, and code segments from Matlab or C are utilized
to demonstrate each of the steps of the process; the example calculations are presented for clarity
at the expense of numerical efficiency. The calculations can be divided into two principal steps, A)
the computation of RMS stress at each point (which is computational quite inexpensive), and B)
computation of the probability of failure. Because the second calculation involves a significant
level of computation-d effort, it is typically only performed at portions of the model that exhibit a
stress response that is cIose to yield during step A.



The principal steps in the calculation of the RivlS von Mises stress are:

1.

2.
3.
4
5.

Compute the normal mode response of the structure including both output displacements, @,
and natural (not principal) stress vectors W.
Convefi the modal displacements and stresses into a format readable by Matlab.
Determine the input power spectral density function, PSD(CO).
Compute the modal participation matrix Wti.
For each element in the model, compute Bii and the term by term product of WB. The sum of
all terms in this matrix is the square of the-’vonMises stress.

The principal steps in the calculation of probability of failure follow a similar track (the first three
steps are identical to the Rh4S calculations and need not be repeated):

6. Using the input PSD and the modal displacements, compute the modal participation through
sinkgularvalue decomposition. Truncate modes as appropriate.

7. At each desired output location, transform to new coordinates and compute the probability of
failure.

Note that both calculations are characterized by a two-part analysis: computation of the coupling
of the input force with the modes (which is performed once), and computing the effect at each
output location-

Following are some comments regarding each step in the procedure:

1. Normal Mode Response

The normal mode response should cover the frequency range of interest. Typically, all the modes
in the frequency range are used. The modes which do not contribute significantly to the response
are eliminated in later sections of the process. The natural stresses must also be output on a mode
by mode basis.

2. Convert Data into a Computational Format

All the operations that are performed on the data could be done in Nastran in a DMAP routine.
For simplicity and flexibility, we have chosen an alternative route. Thus, the data must be trans-
lated into a format readabIe by the computational tool of choice. The translation is of course
dependent on the analysis package as well as the computational tool, and we therefore do not pro-
vide tooIs for this here. In the nastran environment, this translation can be performed on either the
output2 fiIe, or on results sent to the punch file. Table 1 lists the contents of the resulting Mat-
lab file for the m distinct modes.

3. Determine the Power Spectral Density

For illustration, a single PSD is assumed and applied at a single input degree of freedom. Clearly
this can be generalized to many different, independent PSDS.The PSD is typically supplied in the
requirements for the analysis. We define this PSD using two matlab vector variables, fval,
which represents the frequencies of definition, and PSD, which represents the magnitude of the
PSD at each frequency value.
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4. Compute the modal participation matti WV.

With the eigenvectors and eigenvalues available from the modal analysis, one can compute the
modal participation matrix as described in equation 7. This is computed once per model.

fval=deltaf*(1:num_freq); % samplxng frequencies
omega=2*pi*fval;
omegaj=2*pi*freqj; % natural frequencies
for j.1:num_modes

D(j, :)=ones(size(omega))./ (~e9aj(j) *OIIM9aj(j)- ...
omega.A2 + 2*sqrt(-l)*omegaj (j)*gamma(j)*omega); “

end
% fdof is the degree of freedom where force is applied
for i=l:num_modes
for j=l:nux_modes

W(i,j)=phi(fdof,i)*phi(fdof,j)●1/deltaf* ..
sum( D(i, :).*conj(D(j,:)).*PSD);

end
end

5. For each element in the mode!, compute Bv and the product of B W.

At each output location, the matrix B is computed from the stress eigenvectors, as outlined in
equation 6. The two matrices are combined term by term, and the square of the von Mises stress is
determined from the sum of the terms.

for elem=l :mm_e 1ems % loop thnl all e1ements
elem_dof=elem*6:elem*6+6;
for i=l:num_modes

for j=l:num_nodes
B(i,j)=psi(elem_dof,i)‘*A*psi(elem_dof,j);

end
end
P2=sum(sum(B. *W));
RMS_stress=sqrt (p2);

end

matlab
symbol description

variable

phi @ m eigenvectors, each of length 3 x number_of_nodes

psi Y m stress eigenvectors, each of length 6 x number of eIements.

freqj o.1/27t m - eigenfrequencies

Table I: Translation Data



For computation of the probability of failure, only the last steps change. If the probability of fail-
ure is to be computed at all output locations, the Rh4S stress can be computed as a by product of
the calculation.

6. Compute the modal pati”cipation

The expectation value of the modal coordinates is then computed as follows.

1[X2,Q]=vm_expect(phi(fdof, :),freq,damp,fval,PSD); .

functaon [X2,Q,alpha]=n_expect (phz,freq,dmp,fval, PSD)

% computes the Singular Value Decomposition of the expectation values of
% the modal coordinates. This is done in the frequency domain.
% Returns: X2 and Q where
% [Q, X2, Q’]=svd( E(al@xa*alpha’) )
M=size(phi,2); %Mis #modes
Nval=size(fml,l);
F-fml*2 ●pi;
wr=freq*2*pi;
ww=zeros (Nval,M);
df=fval (2)-fval(l);
sPSD=sqrt (abs(PSD)●df) .* exp(sqrt (-l)*2*pi*rand(size(PSD) ));
% frequency terms
for j=l:M
ww(:,j)=sPSD./(wr(j) A2-w.*2+sqrt (-l)*2*dmp(j)*wr(j)*w);

end

P=zeros(M,M);
for i=l:M

for j=l:M
P(i,j)=sum(real(conj (ww(:,i)).’ww(:,j)));

end
end
P=P .* (PSD’*PSD);

[Q, X2, Qt]=svd(P);

Thevector X2 is the square ofthe newcoordinate, ~, described in equation (lO). hlodal trunca-
tioncan beperforrned safely at this point. Typically, only components with large contributions
need be kept, say forexample, those terms larger than l/1000ofthelargesttermin X2.

tmp.diag(X2);
n=sum(tmp>tmp(l)/1000); % n is the new rank

. X2=X2(l:n,l:n);
Q=Q(:,l:n);
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7.At each desired output location, transform to new coordinates and compute the probability of
failure.

As described in equation. (10), we transform to a new coordinate system.

I Beta=Q*sqrt (X2); I

At each output location, the probability of failure can be computed. This is an n -dimensional inte-
gral which must be numerically evaluated. The integral is illustrated for two dimensions in Fig. 1,
where the probability of failure is the integral of the gaussian functions outside the elliptical inte-
gration limits. A very accurate representation of this integral uses the C language subroutine
shown below, which approximates the region by a combination of boxes.

.

Figure 1: Box integral approximation.



// recursxve routzne to calculate a lower bound for the zntegral

double slabL(double ●D, int generation,
double remain, double ●xi, int Inner)

{
double ymax=sqrt(remain]/Degeneration] ;

if(generation==4 ) return(erf (ymax/root2 ));

if(D[generation+l] < DIO]*O.01) return(erf (ymax/root2));

double sum=O;
double yl, y2;

yl = o;
int i;

// in the following, it is assumed that xi[Inner] < 1;
for(i=O; i<Inner; i++){
yl = xi[il ●M;
y2 = xi[i+l]*~;
double remain2 = remain - (y2*D[generation])*(y2*D[generation]);
sum += (erf(y2/root2) - erf(yl/root2))*

slabL( D, generation+ 1,
remain2, xi, Inner);

}
return(sum) ;

}

This canbe called with adriverroutine like the following.

// INNER is the number of boxes for the numerical xntegratlon
#define INNER 32
double D[5];
double Yfail; // the failure criteria
// add code here to define the values of D[] and Yfail.
double xi[INNER+2];
for(i=O; i<INNER+2; i++)

xi[i] = double(i)/double(INXl+l) ;
double prob_fail= slabL(D,O,Yfail*Yfail,xi,INNER);

Example Application

To illustrate themethods outlined hereinon an engineering application, consider thedesign ofa
Global Positioning Satellite (GPS) system, which must withstand Iaunch environments specified
byrandom vibration loads. A computational modeIofthe GPS systern,shownin Fig. 2,wascre-
atedtoassessthe design ofthe assembly duringthe launch cycle. Shownin Fig. 3arethecontours
ofRNISvon Mises stress when the input PSD, shown inFig.4, is applied in theZ-direction atthe
base.

Assume that the structure is made of a sin.gIemateriaI that has a yield stress of 50 ksi and that the
system specifications are such that the probability that the von Mises stress exceeds the yield
siress any}vherein the structure must be Jess thm i in i000, e.g.,



P(j>50ksi)c&. (18).

Note that the methods employed here are in no way limited to systems of a single material. As
illustrated in Fig. 3, 3 times the RMS von Mises stress at the accelerometer mount is very close to
the yield stress. As previously discussed, the output von Mises stress does not exhibit Gaussian
behavior. Therefore, the “3-0 rule” is not an appropriate means of determining the reliability of
the structure. However, it can be shown to be a conservative measure, indicating that a more pre-
cise determination of the probability of exceeding the yield stress in warranted.

To determine the exact probability of exceeding the yield stress, one must compute the distribu-
tion of von Mises stress at all finite elements in the accelerometer mount. Shown in F& 5 is the
probability distribution function (PDF) of von Mises stress for the element in the mount that
exhibits the greatest RMS value. Note the extremely non-Gaussian behavior. From this plot, one
computes the probability of exceeding the yield stress at this eIement to be 0.00974. In addition,
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Figure 2: Computational modeI of GPS assembly.



Figure 3: RMS von Mires stress contours @si).

Fig.G ~US~ateS & probabilityof exceedingtheykld stressforeachelementk theaccelerome-

ter bracket. The results are shown as contours of this probability on a logarithmic scrde (e.g., a
value of-4 denotes that the probability of exceeding the yieId stress is leT4).

These results clearly indicate that are-design of the accelerometer mount is necessary if the
mount is to survive the launch environment with the prescribed level of reliability. Figure 7 illus-
trates a simple re-design that should soIve the problem. Upon performing all the calculations a “
second time with the modified model, it is evident that 3 times the RMS von Mises stress is now
far below the yield stress, as shown in Fig. 8. In addition, Figs. 9 and 10 illustrate the PDF of von
Mises stress at the same element and the contours of the log of the probability of exceeding the
yield stress, respectively. From these results, it is apparent that the probability of exceeding the
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Figure 6: Lug of the probability of exceeding the yield stress.
. .

yield stress has reduced to zero (within the limits of numerical precision), thereby achieving the
desired degree of reliability.

An alternative method used to address this problem is to assume single degree-of-freedom
response of the structure, choosing a single mode (typically the one with the highest modaI effec-
tive mass within the bandwidth of the input) to compute an “equivalent static g-field” using Miles’
reIation. Response contributions from other modes are i=nored. To the extent that single degree-
of-freedom behavior is not realized, this method is inaccurate for ascertaining the global dynamic
stress response. Although a careful and proper application of the Miles’ procedure to highly local-
ized regions may capture most of the problem areas (i.e., applying the method to Iodized modes

.
of appendages and other irregularities in the structure), this is rarely done in practice and it is easy
to omit regions of potential failure from the analyses. In contrast to the method of computing the
RMS and probability distributions of von Mises stress presented herein, the application of Miles’
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Figure 7: Finite element mesh of accelerometer mount.

z

X_J

Figure 8: RMS von Mises stress contours for modified design (psi).
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relation to complex structures is a subjective art, not an inclusive and quantitative global proce-
dure.

summary
A process for determining the RMS von Mises stress as well as the probability distributions of
this stress in a linear structure has been outlined. The method has been demonstrated using a com-
plicated finite element model of a GPS system as an example application. The method accurately
computes the stress values at desired locations in the sh-uctureusing a modal superposition ..
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