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Abstract 
Numerical models for flows of immiscible fluids bounded by topologically complex 

interfaces possessing surface tension inevitably start with an Eulerian formulation. 
Here the interface is represented as a color function that abruptly varies from one 
constant value to another through the interface. This “transition region”, where the 
color function varies, is a thin O(h) band along the interface where surface tension 
forces are applied in continuum surface tension models. Although these models have 
been widely used since the introduction of the popular CSF method [BKZ92], properties 
such as absolute accuracy and uniform convergence are often not exhibited in interfacial 
flow simulations. These properties are necessary if surface tension-driven flows are to 
be reliably modeled, especially in three dimensions. Accuracy and convergence remain 
elusive because of difficulties in estimating first and second order spatial derivatives 
of color functions with abrupt transition regions. These derivatives are needed to 
approximate interface topology such as the unit normal and mean curvature. Modeling 
challenges are also presented when formulating the actual surface tension force and its 
local variation using numerical delta functions. In the following we introduce and 
incorporate kernels and convolution theory into continuum surface tension models. 
Here we convolve the discontinuous color function into a mollified function that can 
support accurate first and second order spatial derivatives. Design requirements for the 
convolution kernel and a new hybrid mix of convolution and discretization are discussed. 
The resulting improved estimates for interface topology, numerical delta functions, and 
surface force distribution are evidenced in an equilibrium static drop simulation where 
numerically-induced artificial “parasitic currents” are greatly mitigated. 

1 INTRODUCTION 

The central theme of continuum surface tension models is the formulation of surface tension 
effects as a localized volumetric force. This representation is quite different from earlier 
numerical models of interfacial phenomena, where surface tension is applied as a discrete 
boundary condition. In continuum models, surface tension acts on fluid elements every- 
where within interface transition regions via the application of smoothly-varying forces. The 
integral effect of these forces recovers the surface tension boundary condition in the limit 
of an infinitely thin interface transition region. This basic formulation falls under the gen- 
eral class of immersed interface methods [LL94] whose origin dates back to the pioneering 
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work of Peskin [Pes77]. Continuum surface tension approaches are attractive when modeling 
topologically complex interfacial flows that experience merging and/or breakup. The chal- 
lenge, however, is the development of continuum models that do not concede reductions in 
accuracy or convergence rate in return for the needed robustness. We strive to remove these 
concessions in this work. 

In continuum surface tension formulations such as the CSF model, interfacial surface 
phenomena are replaced with smoothly varying volumetric forces derived by integrating 
surface tension forces per unit area over the interface surface. Surface tension is expressed 
as a volumetric force F, satisfying 

where x, are points on the interface, I?. The interface integral is over F, which is an arc 
length in two dimensions or a surface in three dimensions. The delta function is a product 
of one-dimensional delta functions (having units of inverse length): 

S(x - 
i 

The surface tension force per unit interfacial area, f,, is given by [BKZ92]: 

f, = O K i i  + V,O , (3)  
where o is the surface tension coefficient, V, is the surface gradient [BKZ92], n is the 
interface unit normal, and K is the mean interfacial curvature, given by [Wea27]: 

K = - v - h .  (4) 
The first term in (3) is a force acting normal to the interface, proportional to the curvature 

K.  The second term is a force acting tangential to the interface toward regions of higher 
surface tension coefficient (a) .  The normal force tends to smooth and propagate regions of 
high curvature, whereas the tangential force tends to force fluid along the interface toward 
regions of higher O. Although o does typically exhibit some dependence upon temperature 
and the presence of impurities ( e g ,  surfactants), we will assume o to be constant in this 
work, hence neglect the tangential force. 

In most Eulerian (fixed-grid) methods for interfacial flows, a color function C delineates 
the presence/absence of different fluids in the domain, hence C serves as a Heaviside function 
for some fluid. For this work, C is taken to be the fluid volume fractions f. The volume 
fractions f, while smoothly varying, nevertheless transition abruptly through the interface, 
hence estimating the first and second order spatial derivatives necessary for computing n 
and K is prone to noise and inaccuracies [BKZ92]. One solution is to first smooth f until its 
abrupt transition widens enough to support standard first and second order discretization 
stencils. In the original CSF model, volume fractions f are first convolved with a kernel 
K to  yield a mollified function f. A quadratic B-spline was chosen for K in the CSF 
model [BKZ92], but this choice is by no means unique. Given the mollified function 7, 
interface normals are computed in a straightforward manner, 



using standard forms for the discrete gradient operator. Once interface normals are obtained, 
curvatures follow easily from (4). 

Since introduction of the CSF model, alternate kernels have been explored by others 
striving for higher fidelity estimates of interface normals n and curvatures K .  Examples 
are the Gaussian kernel [Mon92], the cubic and quintic B-splines [Mort97, Rud98, Morr971, 
the Nordmark kernel [AP95], and the Peskin kernel [BMC97,BAM98]. Many of these same 
kernels are appropriate for discrete approximations to  the surface integral in (l), where they 
represent smooth, finite-width Dirac delta functions (6). Other notable approximations to  
6 are Peskin's cosine function [Pes771 and its subsequent modified forms that have been 
embraced in front tracking [JT97] and level set [SS97] methods. 

We begin in Section 2 with a brief discussion of kernels and convolutions, after which we 
introduce a new kernel that has been specifically devised for continuum surface tension mod- 
els. Next, in Section 3, we use this kernel and a hybrid mix of convolution and discretization 
techniques to demonstrate accuracy and high convergence rate for estimating curvatures 
along a simple interface. Finally, in Section 4, we test our new continuum model on an 
equilibrium static drop [BKZ92, KRM961, which is known to seed parasitic currents [LNS94] 
that can compromise solution quality. We conclude in Section 5 with suggestions for future 
work that will insure the necessary evolution of continuum surface tension models. 

2 KERNELS AND CONVOLUTIONS 

2.1 Convolution Model 
In the convolution model, a discontinuous color function is convolved with a kernel ( K )  
in order to  smooth or "mollify" the discontinuities. In this work, the color function is 
represented by the volume fraction distribution f ,  but it could easily be the signed distance 
in level set methods, the phase field in phase field methods, or the indicator function in front 
tracking methods. The convolution of f with K at the point 2, given by, 

yields the mollified function f (z ) .  
The effect of a convolution is illustrated with the following 2-D example. Consider a 

circular drop, centered in a 4 x 4 domain, represented with a volume fraction field initialized 
to one and zero inside and outside the circle, respectively. For those cells containing the 
circular interface, f is set to a value between zero and one, in proportion to  the cell volume 
truncated by the circle. The volume fraction field f ,  shown in Figure 1(a), undergoes a 
variation a t  the interface that is too abrupt for interface topology (n and K )  discretizations 
to be reliable. If f is convolved, on the other hand, the resulting smooth approximation to 
the interface readily admits spatial derivatives. The convolved f, following the prescription 
in (6), yields a smooth volume fraction distribution, as shown in Figure lb .  The mollified 
transition region is now defined as those cells having a discrete f between zero and one. 

It is important to note that if K has continuous partial derivatives of all orders n _< k ,  
then f also has continuous partial derivatives of all orders n 5 k ,  Le., for any integer k ,  if 
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(a) Discontinuous color function, f (b) Convolved color function, fl 
Figure 1: Discontinuous and convolved volume fractions for a unit circle on a 4 x 4 domain. 

K E Ck then f E Ck. In short, if K can be differentiated n times, then f = K * f can also 
be differentiated n times, even i f f  is a discontinuous function. 

In practice, there are a variety of ways to approximate the convolution integral. We 
currently approximate the convolution integral in (6 )  with a simple midpoint rule: 

K * f (5) = K(z' - z)f(x') dx' M K(z:  - z)f(z:) Ax:. (73 
i 

A useful property common to all convolutions is that the derivatives of the convolution 
can be evaluated by simply convolving the scalar function with the differentiated kernel. For 
example, given a = (al,a2,aS), where each ai is an integer, the spatial derivative of the 
convolved function f is given by 

daf = aa(K * f) = (8°K) * f = 1 f(z')d*K(z' - z ) d x ' ,  

where d a  = (a/azl)'-Y1 (a/a~t.,)"~((d/dx3)~~ = n(a/a~i)~~ . 
R 

i 

As an example, for z = (z, y, z )  and a = (1,0,0), the first derivative of the convolution with 
respect to x is given by 

This operation will prove to be useful for estimating interface normals n, as shown later. 

2.2 Choosing a Kernel 
Choosing a kernel K that meets our design requirements is important for the practical use 
of convolutions in continuum surface tension modeling. Many types of kernels have been 
explored in the past, e.g., Gaussians, splines, smooth polynomials, cosine curves, etc. The 
portion of the domain over which the kernel is nonzero is called the support or domain of 
dependence of the kernel and is denoted by S t l .  We let E be representative of the support of 
the kernel, e.g., for a function with circular support, E is the radius of support. Since the 
kernel is also a function of E ,  we adopt the notation of K ( z ,  E )  for the kernel. For this work, 
we find that the kernel K ( ~ , E )  should 



(a) K N ( T , E  = 0.4) (b) Ks(T, = 0.4) 
Figure 2: The Nordmark and eighth degree kernels on a unit domain. 

(1) have compact support, 

(2) be monotonically decreasing with respect to 1x1, 

(3) be smooth, i.e., for some k 2 1, K E C k ,  

(4) have a normality property, i.e., Jo K ( z ,  E ) &  = 1, 

(5) and approach the Dirac delta function S ( x )  in the limit lRll -+ 0. 

Properties (1) and (2) are desired, but not required. For example, one may ignore (1) with a 
kernel having the entire domain s1 in its support (e.g., a Gaussian), but this tends to violate 
the locality associated with interfacial surface tension. Kernels that are non-monotonic, i.e., 
lacking property (2), tend to develop highly singular oscillations as Q -+ 0. Kernel “smooth- 
ness”, property (3), requires that the kernel be Ck, as defined in Section 2.1. Properties (3) 
and (4) are necessary (but not sufficient) conditions for consistency and stability of the nu- 
merical convolution for a continuous function [AP95]. Property (5) is somewhat redundant, 
as it will always be satisfied if the first four properties are satisfied. I t  is not clear at this 
time if an additional radial symmetry property be required of the kernel, but all kernels we 
have studied to date are radially symmetric. 

Two example kernels are illustrated in Figure 2, namely the Nordmark ( K N )  ker- 
nel [Nor911 and a new eighth degree kernel (K8). The K8 kernel satisfies all properties 
above; K N  satisfies all but the monotonicity requirement, as is evident in Figure 2(a). 

The K8 kernel meets our design requirements (for k = 3), and has an additional advan- 
tage over several other kernels by virtue of its continuous third derivative. Its simple form 
is computationally efficient and trivial to implement) which is important since numerical 
integrations in multiple dimensions require many kernel evaluations. Our K8 kernel is a 
monotonic eighth-degree polynomial function of the form: 

.. 

if r < E ;  

otherwise, 
(9) 

where A is a normalization constant that ensures Jsl Ks(r, E ) &  = 1. A plot of this kernel 
(for E = 0.4) is shown in Figure 2(b). 
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Figure 3: First and second derivatives of the Kg kernel for different values of the 
support radius E .  A 4 x 4 domain is used with Ax = Ay = 6/10, 

h.3 
Figure 3 demonstrates another very important aspect of kernels. As 1!&I + 0, which corre- 
sponds to  E -+ 0, kernel derivatives tend to  become singular. Resolving discontinuities and 
extrema in the kernel and its derivatives may require excessive numbers of discrete points 
within the kernel radius of support. For any given kernel, then, it is important to understand 
and quantify the relationship between the limits of 1 Q 1  + 0 and Ax + 0. For example, in 
Figure 3 it is apparent that second derivative extrema values are growing at a much faster 
rate than those for the first derivative (note the different plot scales). Growth of these 
singularities is even more severe for non-monotonic kernels. Any numerical convolution of 
second order and higher derivatives, therefore, requires many discrete points within T < E 

to yield accurate approximations to the actual convolution. Table 1 provides evidence for 
this tendency, where discretization errors for the numerical second derivative convolution are 
quite large, even with many discrete points within the radius of support. 

Avoiding Singularities in the Kernel Derivatives 



(dK8/dx) * f (dK8/&/)  * f (a2K8/dx2) * f ( d 2 K g / d g 2 )  * f Value of 
Convolution I t  I I I 

Analvtic 11 -4.75514 -2.86529 16.5622 2.00181 1 
12.4195 -0.97652 

%Error 1.337 2.114 25.013 - 148.78 
Numeric -4.69157 -2.80470 

Analytic -1.96967 -5.47108 -5.1 65 73 -1.24848 
Numeric - 1.96 178 -5.44712 -5.84872 -1.83220 
% Error 0.4006 0.4379 -13.222 -46.75 
Analytic 4.03704 4.10382 2.29008 1.97206 
Numeric 4.03189 4.10329 2.24012 2.52696 
% Error -0.1276 -0.0129 -2.182 28.14 

Table 1: Discretization errors in the convolution integral, taken at the point of 
maximum error in the curvature approximation along a unit circle ( E  = 0.2) 

3 DETERMINING INTERFACE TOPOLOGY 

A color function distribution (e.g., volume fractions f )  that possesses an abruptly-varying 
transition region presents challenges for accurate estimates of interface topology. As stated 
in Section 1, the original CSF approach for determining interface topology was to esti- 
mate n and K with standard first and second order spatial discretization of the discrete 
convolved volume fractions f [BKZ92]. While straightforward in practice, this approach 
is prone to inaccuracies, especially under mesh refinement, where convergence can be elu- 
sive [KRM96]. We have therefore pursued alternate approaches, which, similar to  other 
recent works [Mort97, Rud98, Morr97, BMC97, BAM981, constitutes a hybrid method for es- 
timating n and K that involves both convolutions and standard discretization techniques. 

In our hybrid prescription, consistently accurate and convergent estimates for K are pos- 
sible, following from (4), except that the interface normals used in (4) are convolved normals 
n resulting from convolution of f with the kernel first derivative as prescribed in (8). It is 
tempting to estimate curvatures via convolution of kernel second derivatives (as in [AP95]) 
but, as Table 1 shows, it is verp difficult to estimate second derivative convolution integrals 
with an acceptable level of accuracy unless the support radius E is a t  least an order of mag- 
nitude greater that hx. As shown in Table 1, discretization errors for the second derivative 
convolution can be quite large, while errors associated with the first derivative convolution 
are only a fraction of a percent. Results in Table 1 also indicate that even for ~ / h x  = 16. 
second derivative convolutions are not well resolved. This is unacceptable for any reasonable 
implementation. For the same problem, €/Ax = 4 provides much more accurate approxi- 
mations of the first derivative convolution. We feel this evidence justifies the approach of 
the hybrid method. In fact, the hybrid method has proven effective a t  predicting curvatures 
ranging over several orders of magnitude while using only €/Ax = 4. 

In our hybrid method, convolved interface normals are computed with our K s  kernel 
rather than the K N  kernel as proposed by Aleinov and Puckett [AP95]. This is principally 
because K N  is non-monotonic and highly peaked, therefore requiring large values of €/Ax. 
As mentioned in Section 2.2, K8 meets all our kernel properties, and it also delivers a larger 
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0.00625 I 64 1 0.0032083-02 1 2.712 

Table 2: Unit circle curvature errors, using the hybrid method, where curvatures 
are estimated by discretizing normals that are convolved with &(r, E = 0.4). 

A X  

0.05000 
0.02500 
0.01250 
0.00625 

E ~ X  1 o~~8~;;r-l 1 Convergence Rate 
4.923633-01 

2.555 
32 0.069073-01 3.601 
64 0.007353-01 3.232 

Table 3: Unit circle curvature errors, using the hybrid method, where curvatures 
are estimated by discretizing normals that are convolved with KN(T,  E = 0.4). 

efective smoothing radius since it approaches zero as r + E more slowly than other kernels 
such as K N  (see Figure 2). Examples of the performance of hybrid method are given in 
Tables 2 and 3, where curvature estimates of a unit circle on a 4 x 4 domain indicate that 
both absolute accuracy (L" error) and high convergence rate are achievable. This is in 
contrast to the same hybrid method using KN instead of Ks, where high convergence rates 
are possible, but not without unacceptably large absolute errors. The L" errors in Table 3 
are twenty to fifty times greater than those in Table 2. 

4 SURFACE FORCE FORMULATION 

4.1 The CSF Form 
Perhaps more difficult than estimating interface topology is the formulation of the volumetric 
surface tension force F,. This requires a discrete approximation to  the interface integral 
in (1)) yielding a force F, that smoothly varies through the defined interface transition 
region. The original CSF model postulated that F, be expressed as 

F, z f, Sr, where 6r = (Vf 1 , t 10) 
hence the discrete interface delta function 6r approximates the interface integral as simply 
the gradient magnitude of the unmollified color function (volume fraction f). Here I? denotes 
the interface region where lVfl is nonzero. I; denotes the mollified transition region where 
lVil and 6~ are nonzero. Note that since I' C r, then 6r c 6 ~ .  

In devising a surface force in the form of (10)) an additional approximation is often made 
by further convolving the force F,, which (for constant a) assumes one of two general forms: 

..... - ( ?;, 6r = aEn 6r if K is smoothed ; 
A 

f, 6~ = ai;;fi ST; if the transition region is also widened. 
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Smoothing K effectively defines curvatures off of the interface. These “off-interface,’ cur- 
vatures, denoted by E ,  can be constructed in various ways. One can smooth the existing 
interface curvatures, K ,  over any portion of the domain by convolving the interface curva- 
tures with some kernel. Of course, the resulting distribution, Z, is very sensitive to the kernel 
choice. iE can also be constructed by applying the same method used to  estimate K (e.g., our 
hybrid method) in f ,  the mollified transition region. If a convolution (or hybrid) method is 
used to estimate Z, the kernel radius of support ( e )  should be several cells wider than the 
transition region, f .  (For examples of K estimations via both approaches, see Figure 4(b).) 
In the first form for Fs above, surface forces still reside only within the transition region, 
I?. In the second form, surface forces are applied throughout the mollified transition region 
through the application of 61;. Experience has shown, however, that convolved forces @, 
must be used with caution, as too much (or incorrect) smoothing can violate the locality of 
surface tension and lead to erroneous surface pressures induced by the forces. 

4.2 3-D Equilibrium Static Drop 
A 3-D equilibrium static drop problem serves as an ideal test for the investigation of different 
surface force formulations. An 83 domain, partitioned with 403 cells, is occupied by two 
inviscid, incompressible fluids: a drop fluid and a background fluid. The drop fluid resides 
inside a spherical drop of radius R = 2 is centered in the domain. The background fluid, 
having one-tenth the drop density, occupies the remainder of the domain. Surface tension 
along the drop/background fluid interface is the sole force. The correct solution is a zero 
velocity field and a pressure field rising inside the drop to a value of 2a/R = a. Computed 
velocity fields for three different force forms are shown in the vector plots of Figure 5. Results 
are shown for one and fifty computational time steps (6t 0.001) in the zy-plane through 
the drop center. 

The first force form follows the original CSF prescription, where surface forces F, given 
by (10) are applied within the transition region, I?. The other two forms invoke some 
smoothed force Fs applicable within the mollified transition region, F. For the CSF force, 
the discretization stencil used to determine 6r = lVfl results in a smooth function centered 
in the transition region, as seen in Figure 4(a). Note that in this case, 6r remains nonzero 
within i; and not just I?. For the method I force, curvatures K are found only in I’ using 
the hybrid method described in Section 3. They are then convolved into a mollified Z that 
enables curvatures to be defined throughout the wider f;. The K convolution, performed 
using a special singular kernel having infinite support, yields a E that varies smoothly from 
near zero at the edges of i; to a maximum value equal to the original K at the interface, 
as shown in Figure 4(b). The 6~ used for method I is trivial: equal to unity inside and 
zero elsewhere, as shown in Figure 4(a). For the method I1 force, curvatures Z throughout 
f; are found by directly applying the hybrid curvature method discussed in Section 3 to 
contours of f .  In this case, K. correctly exhibits the inverse radius dependence expected for 
a spherical interface, as seen in Figure 4(b). The 6~ used for method I1 is smoothly varying 
through f and zero outside, attaining a maximum value along the actual interface, as shown 
in Figure 4(a). Given the forms chosen for the interface delta function and curvature, it  is 
informative to  examine the product 261; in r, as shown Figure 4(c) for all three methods. 
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Figure 4: Three models for the variation of the interface delta function S?;, smoothed 
curvature k ,  and their product S?;k through the mollified interface transition region f’. 

This variation shows how the surface force prescribed in either (10) or (11) is applied. As 
expected, the CSF force F, is nonzero only within I?, whereas the F, forces are nonzero 
throughout the wider jy\ region. 

It is evident in Figure 5 that both methods I and I1 reduce the static drop parasitic 
current strength (relative to the CSF model) by significant factors (three to five). Both 
the increased accuracy curvature estimates as well as a more smoothly-varying force F, in 
a wider transition region T are responsible for these improved results. It is not clear at 
this time, however, which effect is most important, but other verification measures such as 
reproducing the correct pressure jump will guide further model development. For this case, 
the CSF pressure jump errors (5%) are the smallest after one time step, but these errors grow 
with time (to 25% after 50 steps) because of the false flow dynamics, whereas the errors for 
methods I (40%) and I1 (20%) remain constant. We also plan to closely monitor the kinetic 
energy of this system, but non-solenoidal velocity filters for our colocated flow algorithm 
must be added before this data is meaningful [RKP98]. 

5 CONCLUSIONS AND SUMMARY 

Despite the widespread use of continuum surface tension models in modeling surface ten- 
sion effects along topologically complex interfaces, accuracy and convergence remain elusive. 
Convolution methods, on the other hand, especially those used in conjunction with standard 
discretization techniques, can greatly alleviate this problem. Accurate, high-order estimates 
of interfacial curvature are possible for convolution kernels that satisfy certain important 
design requirements. A new eighth-order order kernel K8 satisfies these requirements, is 
easy to implement, and generates accurate results for acceptable ratios of support radius 
to mesh spacing. Convolution methods can also be applied to surface force distributions, 
yielding static drop results that represent a large improvement over the original CSF model. 

Much algorithm work and model development remains, however. First, surface force 
forms resulting from a direct quadrature of the interface integral in (1) must be investi- 
gated [AP95, Rud98, BMC971. Other so-called “reduced” force forms [SS97, RKP981 should 
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Figure 5: Velocity distributions in an zy plane through the drop center. Plots (a)-(e) 
are after one time step, t = 0.001, while plots (d)-(f) are after 50 time steps, t M 0.05. 

also be investigated, as these forms result from energy considerations in which forces are es- 
timated from the spatial gradients of surface free energies [Jac98]. Second, additional kernel 
properties such as variable support size and shape must be scrutinized. Third, the hybrid 
technique must be tested on more realistic interfaces having curvatures that vary rapidly 
along the interface (e.g., a sine curve). Finally, a systematic assessment of the impact of grid 
shape and mesh/interface orientation on accuracy and convergence is needed. These issues 
are currently under investigation. 
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