Convergence and accuracy of kernel-based continuum surface tension models

PDF Version Also Available for Download.

Description

Numerical models for flows of immiscible fluids bounded by topologically complex interfaces possessing surface tension inevitably start with an Eulerian formulation. Here the interface is represented as a color function that abruptly varies from one constant value to another through the interface. This transition region, where the color function varies, is a thin O(h) band along the interface where surface tension forces are applied in continuum surface tension models. Although these models have been widely used since the introduction of the popular CSF method [BKZ92], properties such as absolute accuracy and uniform convergence are often not exhibited in interfacial flow ... continued below

Physical Description

12 pages

Creation Information

Williams, M.W.; Kothe, D.B. & Puckett, E.G. December 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 30 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Numerical models for flows of immiscible fluids bounded by topologically complex interfaces possessing surface tension inevitably start with an Eulerian formulation. Here the interface is represented as a color function that abruptly varies from one constant value to another through the interface. This transition region, where the color function varies, is a thin O(h) band along the interface where surface tension forces are applied in continuum surface tension models. Although these models have been widely used since the introduction of the popular CSF method [BKZ92], properties such as absolute accuracy and uniform convergence are often not exhibited in interfacial flow simulations. These properties are necessary if surface tension-driven flows are to be reliably modeled, especially in three dimensions. Accuracy and convergence remain elusive because of difficulties in estimating first and second order spatial derivatives of color functions with abrupt transition regions. These derivatives are needed to approximate interface topology such as the unit normal and mean curvature. Modeling challenges are also presented when formulating the actual surface tension force and its local variation using numerical delta functions. In the following they introduce and incorporate kernels and convolution theory into continuum surface tension models. Here they convolve the discontinuous color function into a mollified function that can support accurate first and second order spatial derivatives. Design requirements for the convolution kernel and a new hybrid mix of convolution and discretization are discussed. The resulting improved estimates for interface topology, numerical delta functions, and surface force distribution are evidenced in an equilibrium static drop simulation where numerically-induced artificial parasitic currents are greatly mitigated.

Physical Description

12 pages

Notes

OSTI as DE00677171

Source

  • 13. US national congress of applied mechanics, Gainesville, FL (US), 06/21/1998--06/26/1998; Other Information: Supercedes report DE99000777; PBD: [1998]

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE99000777
  • Report No.: LA-UR--98-2268
  • Report No.: CONF-9806154--
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 677171
  • Archival Resource Key: ark:/67531/metadc711755

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • May 5, 2016, 6:24 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 30

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Williams, M.W.; Kothe, D.B. & Puckett, E.G. Convergence and accuracy of kernel-based continuum surface tension models, article, December 1, 1998; New Mexico. (digital.library.unt.edu/ark:/67531/metadc711755/: accessed October 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.