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1.  INTRODUCTION

Nuclear materials safeguard efforts necessitate the use of non-destructive methods to
determine the attributes of fissile samples enclosed in special, non-accessible containers.  To
this end, a large variety of methods has been developed at the Oak Ridge National
Laboratory (ORNL) and elsewhere.1, 2   Usually, a given set of statistics of the stochastic
neutron-photon coupled field, such as source-detector, detector-detector cross correlation
functions, and multiplicities are measured over a range of known samples to develop
calibration algorithms.  In this manner, the attributes of unknown samples can be inferred by
the use of the calibration results.

The sample identification problem, in its most general setting, is then to determine the
relationship between the observed features of the measurement and the sample attributes and
to combine them for the construction of an optimal identification algorithm.  The goal of this
paper is to develop an artificial intelligence (AI) approach to this problem whereby neural
networks (NN) and genetic programming (GP) algorithms are used for sample identification
purposes.  To this end, the time-dependent MCNP-DSP3 Monte Carlo code has been used to
simulate the neutron-photon interrogation of sets of uranium metal samples by a 252Cf-
source.  The resulting sets of source-detector correlation functions, R12(τ) as a function of the
time delay, τ, served as a data-base for the training of the AI algorithms.

The organization of this paper is as follows: Section 2 describes the Monte Carlo simulations
of source-detector cross correlation functions for a set of uranium metallic samples
interrogated by the neutrons and photons from a 252Cf source.  From this database, a set of
features is extracted in Section 3.  The use of neural networks (NN) and genetic
programming to provide sample mass and enrichment values from the input sets of features is
illustrated in Sections 4 and 5, respectively.  Section 6 is a comparison of the results, while
Section 7 is a brief summary of the work.
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2.  252Cf-SOURCE-DRIVEN SIMULATIONS

In the 252Cf-source-driven measurement the source undergoes spontaneous fission emitting
neutrons and gamma rays.  The timing of each spontaneous fission event is recorded in
appropriate time bins.  If fissile material is present inside the sample to be analyzed, the
neutrons emitted by the source will initiate fission chains.  Neutrons and gamma rays from
the source as well as those eventually emitted by the fissile system are measured with two
detectors.  The detection times are also recorded, in time bins of 1 ns.  The uranium sample
to be analyzed is placed between the source and two fast plastic scintillation detectors.  The
source was located at 25.4 cm from the center of the uranium metal sample at a height of
10 cm.  The detectors, 10.16 cm width and height and 5.08 cm thick, are placed one on top of
the other at a distance of 25.4 cm from the center of the sample.

Simulations were performed with cylindrical and spherical samples of seven different masses
(8 kg, 10 kg, 12 kg, 14 kg, 16 kg, 18 kg, and 20 kg).  The different masses were obtained by
increasing the sample radius, both in the case of the cylinders (in which case the height was
kept constant at 20 cm) and in that of the spheres.  For each mass, four different enrichments
were tested ranging from depleted to highly enriched (0.2 wt% 235U, 36.0 wt% 235U,
50.0 wt% 235U, and 93.15 wt% 235U).  Two additional simulations were run for both cylinders
and spheres giving a total of 30 simulations for the cylindrical samples and 30 for the
spherical ones.  An additional simulation run with no sample between source and detectors
will be referred to as the void simulation.

2.1  CROSS-CORRELATION FUNCTIONS

The source-detectors cross-correlation functions [R12(τ)] are generated by correlation of the
source signal with the combined signal from the two detectors, and normalizing to the source
count rate to remove the dependence on the source.

In Figure 2.1 the cross-correlation R12(τ) as a function of the delay time between source
fission and corresponding detection is shown for cylinders of varying enrichment and fixed
mass (20 kg).  The curve consists of two major components:  a first peak due to directly
transmitted gamma rays from the 252Cf fission (the photo peak), and a second, broader peak
due to directly transmitted and scattered neutrons from the source and secondary neutrons
and gamma rays from fission induced inside the uranium sample.  As it can be seen from the
figure, the directly transmitted gamma rays are not very sensitive to the fissile mass since
gamma ray attenuation is not related to fission.  On the other hand, the second peak of the
cross-correlation function depends strongly on enrichment.

In the first part of the second peak the curves show similar behavior for time lags below
20 ns, since the directly transmitted neutrons and secondary photons are not strongly
dependent on enrichment.  Above time lags of about 20 ns, the peak broadens:  neutrons
generated by secondary fission inside the fissile material increase and the number of neutron
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generations increases.  The total path covered by the neutrons before a detection event occurs
also increases.

In Figure 2.3 the cross-correlation function obtained with spherical samples is shown.  The
first peak is much higher than in the case of the cylinders.  This can be explained in terms of
the greater attenuation given by the geometry of the cylindrical samples whereas the
spherical samples allow more gamma rays from the source to reach the detectors directly.

Figures 2.2 and 2.4 show the source-detectors cross-correlation function in the case of
cylinders and spheres of varying mass and constant enrichment (36 wt% 235U).  In this case,
both the gamma peak and the secondary peak height are inversely related to mass:  as the
sample mass increases, so does the attenuation of gamma rays and neutrons.  A similar
relationship was found with other values of enrichment.
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Fig. 2.1.  Source-detectors cross-correlation functions for uranium cylinders of
different enrichments and fixed mass (20 kg).

Fig. 2.2.  Source-detectors cross-correlation function (R12) for uranium cylinders
of varying masses and fixed enrichment (36 %wt 235U).
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Fig. 2.3.  Source-detectors cross-correlation functions for uranium spheres of
different enrichments and fixed mass (20 kg).

Fig. 2.4.  Source-detectors cross-correlation function (R12) for uranium spheres
of varying masses and fixed enrichment (36 %wt 235U).
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3.  SELECTION OF FEATURES FOR THE SAMPLE
IDENTIFICATION ALGORITHM

The selection of features for the sample identification algorithm (SIA) was performed on the
basis of their relationship to sample attributes and of their ability to discriminate between
close numerical values within each attribute group.

The first feature (F1) chosen is the integral of the cross-correlation function at time lags from
0 to 8 ns, normalized to the same integral of the void calculation.  It essentially corresponds
to the normalized area of the first peak of the cross-correlation function.
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A plot of F1 as a function of the sample’s total mass is given in Figures 3.1 and 3.2, for all
values of enrichment.  Figure 3.1 refers to cylinder simulations, while Figure 3.2 refers to
sphere simulations.  As expected, F1 depends only on the sample mass.

The second feature chosen is the integral of the cross-correlation function at time lags from 0
to 100 ns, normalized to the same integral of the void simulation.
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Inspection of Figures 3.3 and 3.4, shows that F2 is sensitive to both the sample’s total mass
and enrichment.

The moments of the cross correlation function were also examined i.e.:
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However, up to n=3, all the moments examined looked very much alike, with the n=1
moment giving the best resolution.  Hence, the average delay time, τ , was selected as the
feature F3, shown in Figures 3.5 and 3.6 for cylindrical and spherical samples, respectively.
This feature is essentially constant for the depleted samples, increases with sample
enrichment and for high enrichments is very sensitive to sample mass.
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Because the asymmetry of the second peak is generated by the neutron induced fission in the
sample, the skewness of the cross correlation function was selected as feature, F4, defined by
the relation below.

σ
µ

3
3

4 =F (3.4)

where σ3 is the cube of the standard deviation and µ3 is the third moment about the mean
value of the distribution.  As shown in Figures 3.7 and 3.8, F4 is especially sensitive to the
lower values enrichment of the samples.
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Fig. 3.1.  Cylindrical samples:  F1 as a function of sample mass (kg) for the four
different enrichments.

Fig. 3.2.  Spherical samples:  F1 as a function of sample mass (kg) for the four
different enrichments.
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Fig. 3.3.  Cylindrical samples:  F2 as a function of sample mass (kg) for the four
different enrichments.

Fig. 3.4.  Spherical samples:  F2 as a function of sample mass (kg) for the four
different enrichments.
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Fig. 3.5.  Cylindrical samples:  F3 as a function of sample mass (kg) for the four
different enrichments.

Fig. 3.6.  Spherical samples:  F3 as a function of sample mass (kg) for the four
different enrichments.
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Fig. 3.7.  Cylindrical samples:  F4 as a function of sample mass (kg) for the four
different enrichments.

Fig. 3.8.  Spherical samples:  F4 as a function of sample mass (kg) for the four
different enrichments.
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4.  APPLICATION OF NEURAL NETWORKS TO NUCLEAR MATERIALS
IDENTIFICATION SYSTEMS

Two three-layered artificial neural networks4, 5, 6 were trained to generate a mapping from
input (F1, F2, F3, and F4) to output (sample’s mass and enrichment).  The well known error
back-propagation algorithm was used for the network’s training.  The activation functions
were chosen to be sigmoidal from the input to the hidden layer and linear from the hidden
layer to the output.  The number of hidden nodes was set to two.

For each NN, the values of learning rate and momentum for the training were optimized by a
genetic algorithm (GA)7 (the choice of these parameters is usually made by a trial and error
approach).  In the GA an initial population of 50 chromosomes, each made up of two genes
coding the quantities of interest, is allowed to evolve according to the rules of mating, cross-
over, and mutation, similarly to what occurs in biological systems.  The objective is to
maximize the fitness function, defined as the inverse of the network’s training error.  After a
predetermined number of generations (100 in our case), the fittest chromosome is elected.

The values of learning rate and momentum selected as described above were then used in
training the neural networks for the prediction of the total mass and enrichment of the
samples on the basis of the four features F1-F4.

4.1  RESULTS

Having chosen a linear transfer function in the output nodes of the NN allows us to express
the network mapping structure in terms of the simple analytical formula below:

Genetic Algorithm

Neural network

Decoding

Network parameters
Learning rate
Momentum

Population of
chromosomes
(bit - strings)

Assignment of
Fitness

Individuals
sorted

Features
F1, F2 , F3,  F4

True
Mass/Enrichment

Predicted
Mass/Enrichment
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where ai, (i=1,2,3), bj, cj, (j=1,…5) are coefficients which depend on the network’s weights,
given in table 4.1, and the output is the sample mass and enrichment.

Table 4.1: Coefficients of equation 4.1 for mass and enrichment prediction in both
spherical and cylindrical samples

a1 48.3 a1 24.9
a2 -28.1 a2 58.9
a3 30.9 a3 -1.81
b1 -156.1 b1 1.09
b2 -33.1 b2 2.85
b3 .0319 b3 .34
b4 .344 b4 1.0
b5 -.0559 b5 -14.97
c1 15.1 c1 -.118
c2 7.71 c2 -5.70
c3 -.28 c3 -.0237
c4 .131 c4 .0255

Cylinder
mass

c5 7.86

Sphere mass

c5 .855
a1 -79.3 a1 -898.3
a2 -202.5 a2 -499.4
a3 213.0 a3 500.1
b1 196.8 b1 -3.18
b2 -1.35 b2 11.7
b3 -30.2 b3 -1.33
b4 -2.93 b4 -2.7
b5 8.96 b5 33..2
c1 16.1 c1 1.14
c2 -30.3 c2 -10.0
c3 -.027 c3 -0.15
c4 -1.82 c4 -.958

Cylinder
enrichment

c5 7.69

Sphere
enrichment

c5 9.80

The sample mass and enrichment predictions obtained with the NN-GA approach are shown
in the following Figures 4.1 – 4.4.  Nineteen simulations, about two thirds of the data
available, were selected for the NN training.  Figures 4.1 and 4.2 refer to cylinder simulations
and sphere simulations, respectively, used during the network training.  The NN were tested
with the remaining 11 cases.  The results are shown in Figures 4.3 and 4.4.  Inspection of
these results shows that the present type of neural network can predict enrichment and mass
values for uranium metallic samples to a very good approximation both in the case of the
training patterns and in the test cases.
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Fig. 4.1.  Neural network prediction of mass and enrichment on the basis of
features F1, F2, F3, and F4:  training set of 19 cases relative to cylinder simulations.  The
true values are shown with the circles and the values predicted by the network with
stars.

Fig. 4.2.  Neutral network prediction of mass and enrichment on the basis of
features F1, F2, F3, and F4:  training set of 19 cases relative to sphere simulations.  The
true values are shown with the circles and the values predicted by the network with
stars.

6 8 10 12 14 16 18 20 22

0

10

20

30

40

50

60

70

80

90

100

mass (kg)

en
ric

hm
en

t %
 w

t

6 8 10 12 14 16 18 20 22

0

10

20

30

40

50

60

70

80

90

100

mass (kg)

en
ric

hm
en

t %
 w

t



16

Fig. 4.3.  Neural network prediction of mass and enrichment on the basis of
features F1, F2, F3, and F4:  test set of 11 cases relative to cylinder simulations.  The true
values are shown with the circles and the values predicted by the network with stars.

Fig. 4.4.  Neural network prediction of mass and enrichment on the basis of the
features F1, F2, F3, and F4:  test set of 11 cases relative to sphere simulations.  The true
values are shown with the circles and the values predicted by the network with stars.
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5.  APPLICATION OF GENETIC PROGRAMMING TO NUCLEAR MATERIALS
IDENTIFICATION SYSTEMS

Genetic Programming (GP) is an evolutionary computation technique that is able to evolve
Lisp programs8, 9 to perform various tasks.  A mathematical expression (just a Lisp sentence)
can be easily expressed in the form of a parse tree.  In Figure 5.1 the mathematical
expression, (x/3.5)*(-y) is shown as a parse tree.

*

/

x1 3.5

 -

x2

Fig. 5.1.  A parse tree

GP technique practicians use it to solve regression problems, i.e., problems in which a data
set in the form of pairs

{ }YX ii
,

describe a sampling of the mathematical expression

)( XfY = .

GP is used to obtain an explicit mathematical expression for the function ƒ with the unique
information given by the data set.

In the following section we will describe a simple version of the GP algorithm similar to the
one used in the present simulations.

5.1  A SIMPLE GENETIC PROGRAMMING ALGORITHM FOR REGRESSION
PROBLEMS

The algorithm works with a population of possible solutions described in parse trees as the
one shown in Figure 5.1. The algorithm performs a set of operations on the initial population
producing a new population which hopefully will include new members which, in average,
will outperform the previous population when solving the problem. The process should be
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repeated many times, and usually a new member is created that totally solves the problem.
Before starting with a more precise description of the algorithm, a few concepts should be
stated:

Fitness value: it is the degree of performance of a mathematical expression.  In this paper a
simple error for each parse tree is used over the data set:

))(__( i
N

i
XevaluationtreeparseError y −−= , (5.1)

where N ranges for all members of the data set.  The error should be maximized to solve the
problem.

Terminal set: is the name for the set of possible values for the leafs of the parse tree.  They
are usually the variables of the problem.  In Figure 5.1 X1 and X2 belong to the terminal set
and when evaluating the expression, they are substituted from values taken from the data set.
Constants are also terminals, as 3.5 in Figure 5.1.  They are created randomly and just once
(see algorithm below).

Function set: is the name of all possible functions and operators that may be used in the
internal nodes of the trees.  In Figure 5.1 *,/, and (-), were used.

Protected division: a division by 0 may crash the algorithm when evaluating an expression.
Instead of using a standard division, GP practitioners use what is called a protected division,
a division operator that when dealing with 0 denominators returns a constant.  In our
experiments a return value of 1 was used.

Closure of the function and terminal sets: a generalization of the concept of protected
division is the concept of closure, which means that each function of the Function set should
be able to handle gracefully all values it might receive as input.

Genetic operations: are operations made on the trees in order to create new trees.  Typical
operations are Reproduction, Mutation and Crossover described below.

Reproduction operator: a new tree is created just making a copy of an existing tree.  The
selection of the parent tree is made at random proportionally to the fitness values of the
existing trees, giving more opportunities to reproduce to the trees with best performances.
The important fact here is that it does not matter how bad a tree is performing because a
chance to reproduce is given to it (this is how natural evolution works, isn’t it?).

Mutation:  a new tree is created just selecting random nodes and substituting their values for
new ones.  Mutation operators may have different versions.  They may imply the substitution
of a node with a node, a leaf with a leaf, a leaf with a branch, or a constant by a new constant
generated around the original one.  This last version is used to fine tune solutions where not
other operator gets better results, and it is needed just a small modification in the constants of
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the mathematical expression.  In Figure 5.2 it is shown an example of the four versions
having as the parent tree the one shown in Figure 5.1.

*

/

x1 3.6

  -

x2

*

/

x1 x1

  -

x2

*

/

x1 3.5

  -

*

/
/

x1 3.5

  -

x2

x3x1

Fig. 5.2.  Four mutations over the tree of Figure 5.1.

Crossover:  it takes two trees and choosing a random crossover point in each tree and
exchanging the subtrees beneath those points produces two offspring.  Figure 5.3 illustrates
the operator.
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Fig. 5.3.  Crossover operation.

Training and test sets: the data from the experiments should be split in two sets.  One, the
training set, is used to generate solutions evaluating the fitness values with it, and the second,
the test set, is used to evaluate the performance of the final solution.

The algorithm comprises eight steps (this version is called steady state11).

1. Initialize the population.  A population of mathematical expressions, parse trees, is
created from scratch at random.  Several important decisions should now be made:

a.  Choose size of operation.
b.  Choose maximum depth of the trees (maximum size of the mathematical

expressions)
c.  Choose values for the function and terminal sets.  In general, one does not know in

advance what are the functions and variables needed to form the tree solution, so
the technician can just make a guess of them.  Also, different probabilities can be
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used when selecting a function or terminal, giving more opportunities to those
elements that are expected to be needed more frequently in the solution.

When creating new branches from a node in a tree, the number of branches must
equal the number of arguments taken by the function or operator in it.  For example,
if the node contains the operator +, the number of branches must be two, while if the
node contains the function sine, the number of branches must be one.  In the case that
the node is a leaf, no more branches can be added from that point.

Random constants are placed in leafs at random.  They are created at this point of the
algorithm, and not in any later points.

2. Randomly choose a subset of the population to take part in a tournament.  A size of
seven trees for a subset is typical.

3. Evaluate the fitness value of each member of the tournament.

4. Select one or two winners, i.e., ones with the best fitness values.

5. Apply genetic operators to the winner or winners of the tournament.  Operators are
selected at random accordingly to some predefined probabilities.

6. Replace the losers in the tournament with the results of the application of the genetic
operators to the winners of the tournament.  Alternatively the replacement can be
made with bad trees selected in the population, or with old trees, trees that have been
being reproduced without changes during many iterations of the algorithm.

7. Repeat steps 2-7 until a termination criterion is met.  The desired termination criterion
is a very low error in the trees of the population, close to 0, but sometimes if the
population is stuck in a local minimum, new iterations can be performed and no
improvement is achieved in a long time.  Then a restart is needed (go back to 1).

8. Choose the best tree in the population as the solution of the problem.

5.2  GP APPLIED TO THE PREDICTION OF THE SAMPLE TOTAL MASS AND
235U ENRICHMENT

The previous GP algorithm was applied to generate a function mapping the features, F1, F2,
F3, and F4, to the sample mass and enrichment.  The parameters of the algorithm were as
follows:

Terminal set: F1, F2, F3, and F4, normalized in [-1, +1], and random constants in (-01., +0.1).
A normalization of the output was also done.  It is important to note that the normalization
was not necessary for the enrichment data, but it was required for the sphere’s to get good
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results.  Similar normalization are done when using other techniques like neural networks.
Random constants were selected with a probability of 28%, while each Fi with 9%.

Function set:  operators +,-,*,/ (protected), selected with equal probabilities of 9%.  The
accumulative probability of selection between terminals and functions in a genetic operation
is 100%.

Population size:  10,000.

Maximum initial size for trees (step 1 of the algorithm):  4 nodes.

Maximum size for trees after any genetic operator:  50 nodes.

Termination criterion:  -0.001 error or 100,000 iterations.  It is important to note that the
criterion based on the number of iterations, which is the criterion that says that the population
of trees cannot be improved in its present configuration and a restart should be done, it is
unlikely reached in these experiments.

Tournament size:  7.  The replacement of bad elements is done within the entire population.

Probabilities for selecting genetic operators:  reproduction 7%, mutation 20%, crossover
73%.

Size of training set:  19 cases.

Size of test set:  11.

The following equations show one example of results obtained for each sample (note that the
features and desired outputs were normalized).  We got many of them with an acceptable
error and this selection was not made under any objective criteria.

CYLINDER:

Mass = (((((F1 - -0,514) * ((F1 - ((((F1 * F1) - F1) + -0,876) / (-0,502 + -0,584))) * -0,58)) *
-0,582) * -0,574) - (((-0,876 - F1) + ((F1 * ((((F1 * F1) - F1) + -0,882) / (-0,49 + -0,544))) *
(F1 * F1))) / (-0,498 + -0,59)))

Enrichment = (((F4 - (-0,014 * (F4 - (-0,014 / F4)))) - (((F2 * 0,748) * ((F3 * 0,366) + (F4 -
(-0,014 / ((F1 + ((F4 - (-0,014 / (F2 - (F4 * F3)))) - (-0,014 * F4))) - (F4 * (F3 / 0,748))))))) *
F3)) + F2)

SPHERE:

Mass = ((-0,204 * ((F2 * (((-0,49 * ((F4 - -0,722) - (F2 * ((-0,49 / -0,88) + F2)))) * (-0,45 /
((((F3 * F2) * ((F2 * F2) - F2)) * ((F3 * -0,722) - F2)) - F2))) - F2)) - F3)) - F2)

(5.2)

(5.3)

(5.4)
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Enrichment = ((((-0,5 + (F4 + (F2 * (F4 - F3)))) * F2) * (F4 * -0,742)) - ((F4 * -0,49) +
((((F4 + F2) - (-0,496 + ((F4 - ((((F4 - F3) - -0,81) * ((F4 - F3) * (F4 + F2))) * F4)) * -0,49)))
+ F2) * -0,54)))

The constants that are found in each equation were created at the initial population and
passed from trees to trees in each iteration of the algorithm through the application of the
genetic operators.  Some of the major achievements of the GP when solving a regression
problem is how it manages to combine constants to create new ones8.

The equations may be simplified, but we didn’t do it.  When simplifying an equation, it is
easy to find introns which is the name for parts of the trees that do not affect the performance
of the tree11.  Examples of introns could be (F1/1) or (F2+0).

After inspection of the above equations, it can be found that:

a). Mass for the cylinder is calculated using just F1.  This simplification can be found in
most of the solutions.  The explanation of this result is that the cylinder intercepts
most of the source photons, thus, the area under the photo peak, normalized to the
same area for the void run, is a measure of the photon attenuation that depends on the
sample mass.  Because for cylinders, the F1 feature depends so strongly on the mass
of the sample, the GP program selected just F1 among the four inputted features.

b). Mass for the sphere is calculated using just F2 and F3.  We have found this kind of
simple dependence in many other solutions.  The spherical sample intercepts less
photons than in the case of the cylindrical sample, thus, F1 does not contain too much
sample mass information.  The F2 feature, on the contrary, contains the mass
information from the photo peak (F1), plus the sensitivity to sample mass imprinted in
the left side of the second peak.  The third feature, F3, is also selected by the program
for its high sensitivity to sample mass at high sample enrichments.

For both spherical and cylindrical samples, the equations constructed by the GP algorithm to
determine the sample enrichment depend only on the F2, F3, and F4 features because of the F1
feature exclusive dependence on sample mass.

Figs. 5.4 – 5.7 show the results from the application of equations (5.2) up to (5.5) to
cylindrical and spherical samples, respectively.

For both samples the mass prediction is very accurate in and out of the training set.  The
sample enrichment prediction is within a 4% band for enrichments above 15%.  The error
increases as the enrichment decreases towards the depleted case.  A significant property of
the (GP) algorithms is its capability to select and then combine in an explicit fashion a given
set of features for optimal attribute determination.

(5.5)
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Fig. 5.4.  Genetic Programming: prediction of mass and enrichment on the
basis of features F1, F2, F3 and F4: training set of 19 cases relative to cylinder
simulations.  The true values are shown with the circles and the values predicted by
the algorithm with stars.

Fig. 5.5.  Genetic Programming: prediction of mass and enrichment on the
basis of features F1, F2, F3 and F4: training set of 19 cases relative to sphere
simulations.  The true values are shown with the circles and the values predicted by
the algorithm with stars.
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Fig. 5.6.  Genetic Programming: prediction of mass and enrichment on the
basis of features F1, F2, F3 and F4: set of 11 cases used for testing relative to cylinder
simulations.  The true values are shown with the circles and the values predicted by
the algorithm with stars.

Fig.5.7.  Genetic Programming: prediction of mass and enrichment on the
basis of features F1, F2, F3 and F4: set of 11 cases used for testing relative to sphere
simulations.  The true values are shown with the circles and the values predicted by
the network with stars.
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6.  COMPARISON OF RESULTS

In order to make a more meaningful comparison of the results we applied a standard
regression to predict the mass and enrichment of the cylindrical and spherical samples.
Tables 6.1 and 6.2 summarize the error for the three techniques for both training and test
cases. The error measure used is:

Table 6.1: Error results for the cylindrical samples

Error
real predicted

real

i i
i

i
i

=
−

Cylinder PREDICTED BY GP PREDICTED BY NN PREDICTED BY Regression
27

Table 6.2: Error results for the spherical samples

The tables show that NN and GP are comparable and more effective than regression in
solving the prediction problem.  NN and GP are capable of dealing with non-linear problems
and this is demonstrated in the case of the enrichment for both configurations, cylinder and
sphere, in which the linear solution, the regression, performs very poorly, indicating that the
problem is strongly non-linear.

MASS ENRICH MASS ENRICH MASS ENRICH
Training 0.71% 1.67% 0.22% 2.07% 3.05% 14.81%

Test 1.34% 2.16% 0.81% 2.14% 2.69% 12.68%
Extra 0.45% 8.18% 0.13% 9.05% 1.87% 10.52%

Sphere PREDICTED BY GP PREDICTED BY NN PREDICTED BY Regression
MASS ENRICH MASS ENRICH MASS ENRICH

Training 0.17% 2.95% 0.27% 2.20% 1.95% 21.37%
Test 0.15% 2.38% 0.27% 4.59% 2.18% 14.71%

Extra 0.38% 14.00% 0.72% 13.33% 1.08% 43.40%
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We have found non remarkable differences in the performance between the artificial
intelligence techniques. Two cases (rows labeled as ‘Extra’ samples in the Tables 6.1 and
6.2, and bottom two rows in Tables 6.3 and 6.4) of the test sets had enrichment values
selected outside of the training set range.  These can be used to test the overfitting of the
models.  The error in predicting these enrichment values range from 8% to 14%, indicating
that some overfit has taken place.  This can be explained by considering that there were only
four values of enrichment in the training set, covering a wide range of enrichment: from
depleted to highly enriched uranium.  Better results can be obtained by adding more cases to
the training set.

Tables 6.3 and 6.4 show the prediction results and error for both AI techniques (GP and NN)
compared to the linear regression for cylinders and spheres, respectively.

Table 6.3: Results for uranium cylinders: NN, GP, and regression predictions.
Training cases are shown in gray, test cases in white.

REAL PREDICTED BY GP ERROR PREDICTED BY NN ERROR PREDICTED BY RegreERROR
MASS ENRICH MASS ENRICH MASS ENRICH MASS ENRICH MASS ENRICH MASS ENRICH MASS ENRICH

8.00 0.20 8.0 -0.03 0.02 0.23 8.0 -0.09 0.00 0.29 8.6 14.23 0.6 14.03
10.00 0.20 9.9 0.23 0.08 0.03 10.0 0.88 0.01 0.68 10.5 14.36 0.5 14.16
12.00 0.20 11.9 0.63 0.12 0.43 12.0 1.30 0.04 1.10 12.5 7.23 0.5 7.03
14.00 0.20 14.0 0.47 0.01 0.27 14.0 -0.25 0.03 0.45 14.1 -0.96 0.1 1.16
16.00 0.20 16.0 1.48 0.04 1.28 16.0 -0.06 0.02 0.26 15.8 -8.05 0.2 8.25
18.00 0.20 17.8 2.18 0.24 1.98 17.8 0.20 0.20 0.00 17.1 -12.70 0.9 12.90
20.00 0.20 20.2 -0.18 0.17 0.38 20.0 0.57 0.00 0.37 18.6 -19.80 1.4 20.00

8.00 36.00 8.0 36.20 0.01 0.20 8.0 36.79 0.01 0.79 8.2 37.40 0.2 1.40
10.00 36.00 10.0 36.56 0.02 0.56 10.0 35.82 0.03 0.18 10.2 42.57 0.2 6.57
12.00 36.00 11.9 37.54 0.13 1.54 12.0 37.25 0.02 1.25 12.6 42.76 0.6 6.76
14.00 36.00 14.0 34.85 0.02 1.15 14.0 35.12 0.04 0.88 14.4 40.42 0.4 4.42
16.00 36.00 16.0 35.58 0.01 0.42 16.0 36.28 0.00 0.28 16.4 40.25 0.4 4.25
18.00 36.00 17.7 34.90 0.34 1.10 17.9 36.43 0.13 0.43 18.1 38.77 0.1 2.77
20.00 36.00 19.8 35.01 0.17 0.99 20.1 39.43 0.06 3.43 19.8 41.67 0.2 5.67

8.00 50.00 8.0 51.94 0.00 1.94 8.0 46.45 0.02 3.55 7.9 43.54 0.1 6.46
10.00 50.00 10.1 49.06 0.05 0.94 10.0 49.50 0.04 0.50 10.0 52.34 0.0 2.34
12.00 50.00 12.0 51.12 0.01 1.12 12.0 50.52 0.01 0.52 12.5 55.34 0.5 5.34
14.00 50.00 14.2 50.28 0.18 0.28 14.1 48.35 0.11 1.65 14.5 54.75 0.5 4.75
16.00 50.00 16.0 50.23 0.02 0.23 16.1 47.82 0.08 2.18 16.6 53.02 0.6 3.02
18.00 50.00 17.9 50.89 0.10 0.89 18.0 47.63 0.03 2.37 18.4 52.20 0.4 2.20
20.00 50.00 20.7 52.47 0.67 2.47 20.4 50.22 0.43 0.22 20.4 54.75 0.4 4.75

8.00 93.15 8.0 92.45 0.02 0.70 8.0 92.30 0.02 0.85 7.0 69.83 1.0 23.32
10.00 93.15 10.1 93.53 0.08 0.38 10.0 94.32 0.03 1.17 9.1 84.38 0.9 8.77
12.00 93.15 11.9 93.51 0.10 0.36 12.0 93.23 0.01 0.07 11.6 89.51 0.4 3.64
14.00 93.15 14.2 93.71 0.22 0.56 14.0 92.71 0.02 0.45 13.8 92.79 0.2 0.36
16.00 93.15 16.2 95.09 0.25 1.94 16.0 93.61 0.03 0.46 16.0 93.74 0.0 0.59
18.00 93.15 17.6 92.77 0.38 0.38 17.8 91.47 0.20 1.68 17.9 91.69 0.1 1.46
20.00 93.15 20.1 92.94 0.15 0.21 20.0 93.33 0.00 0.18 20.0 92.32 0.0 0.83
15.00 65.00 15.0 68.93 0.00 3.93 15.0 64.51 0.01 0.49 15.6 69.32 0.6 4.32
17.00 15.00 16.9 17.61 0.14 2.61 17.0 21.75 0.03 6.75 17.0 19.09 0.0 4.09
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Table 6.4: Results for uranium spheres: NN, GP, and regression predictions.  Training
cases are shown in gray, test cases in white.

REAL PREDICTED BY GP ERROR PREDICTED BY NN ERROR PREDICTED BY Regre ERROR
MASS ENRICH MASS ENRICH MASS ENRICH MASS ENRICH MASS ENRICH MASS ENRICH MASS ENRICH

8,00 0,20 8,0 2,04 0,00 1,84 8,0 0,49 0,02 0,29 7,8 31,08 0,25 30,88
10,00 0,20 10,0 -0,85 0,03 1,05 10,0 -1,90 0,01 2,10 10,3 18,43 0,28 18,23
12,00 0,20 12,0 -1,09 0,04 1,29 12,0 -2,76 0,00 2,96 12,5 7,86 0,47 7,66
14,00 0,20 14,0 0,05 0,04 0,15 14,0 -1,24 0,02 1,44 14,4 -0,31 0,43 0,51
16,00 0,20 16,0 0,40 0,00 0,20 16,1 -0,32 0,10 0,52 16,2 -7,30 0,25 7,50
18,00 0,20 18,0 -0,01 0,02 0,21 18,1 0,50 0,07 0,30 17,9 -13,73 0,14 13,93
20,00 0,20 20,0 -0,19 0,04 0,39 20,0 -0,10 0,01 0,30 19,4 -21,25 0,65 21,45
8,00 36,00 8,0 33,77 0,02 2,23 8,0 34,14 0,04 1,86 7,7 41,67 0,29 5,67

10,00 36,00 10,0 35,95 0,02 0,05 10,0 36,14 0,00 0,14 10,2 35,97 0,24 0,03
12,00 36,00 12,0 37,54 0,03 1,54 12,0 36,82 0,02 0,82 12,4 34,22 0,45 1,78
14,00 36,00 14,0 35,15 0,01 0,85 14,0 35,38 0,04 0,62 14,4 33,19 0,41 2,81
16,00 36,00 16,0 35,99 0,04 0,01 16,1 35,10 0,07 0,90 16,3 36,76 0,30 0,76
18,00 36,00 18,0 37,44 0,02 1,44 17,9 34,82 0,13 1,19 18,0 43,12 0,03 7,12
20,00 36,00 20,0 33,15 0,02 2,85 20,1 34,19 0,06 1,82 19,6 49,50 0,40 13,50
8,00 50,00 8,0 51,73 0,01 1,73 8,0 42,75 0,04 7,25 7,3 53,82 0,68 3,82

10,00 50,00 10,0 53,13 0,00 3,13 10,0 49,36 0,04 0,64 9,9 49,56 0,10 0,44
12,00 50,00 12,0 47,52 0,02 2,48 12 48,79 0,00 1,21 12 45,09 0,14 4,91
14,00 50,00 14,0 50,71 0,00 0,71 14,0 51,36 0,02 1,36 14,2 48,61 0,18 1,39
16,00 50,00 16,0 51,70 0,01 1,70 16 49,85 0,05 0,15 16 52,98 0,10 2,98
18,00 50,00 17,9 52,04 0,05 2,04 18 48,71 0,01 1,29 18 59,77 0,17 9,77
20,00 50,00 20,0 47,02 0,03 2,98 19,9 48,14 0,07 1,87 19,5 67,54 0,48 17,54
8,00 93,15 8,0 91,80 0,01 1,35 8 91,65 0,04 1,50 7 66,48 0,54 26,67

10,00 93,15 10,0 93,57 0,05 0,42 10 92,28 0,03 0,87 10 71,82 0,04 21,33
12,00 93,15 12,0 92,58 0,01 0,57 12,0 91,28 0,02 1,87 12,2 80,42 0,25 12,73
14,00 93,15 14,0 92,14 0,03 1,01 14 93,23 0,05 0,08 14 90,07 0,30 3,08
16,00 93,15 16,0 93,33 0,02 0,18 16 91,97 0,01 1,18 16 94,54 0,22 1,39
18,00 93,15 18,0 95,31 0,02 2,16 17,9 91,02 0,06 2,14 18,1 95,40 0,05 2,25
20,00 93,15 20,0 93,27 0,03 0,12 20 92,40 0,03 0,75 20 94,09 0,12 0,94
17,0 40,00 17,1 47,20 0,10 7,20 17,2 46,64 0,18 6,64 17,2 48,94 0,23 8,94

9,0 15,00 9,0 14,50 0,00 0,50 9,0 14,31 0,01 0,69 9,0 29,93 0,05 14,93
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7.  SUMMARY AND CONCLUSIONS

Monte Carlo simulations of the source-detector cross correlation function for various sample
shapes, mass, and enrichment values have been performed to serve as a training set for two
artificial intelligence algorithms (AI): neural networks (NN) and genetic programming (GP).
The input presented to the AI algorithm has been in the form of features extracted from the
physical properties of the cross-correlation functions related to mass (beam attenuation) and
to enrichment (fission induced pulse broadening).  Both the NN and GP algorithms have
shown good capabilities and robustness for mass and enrichment predictions of uranium
metal samples.

These results serve as a proof of principle for the application of combined stochastic and AI
methods to safeguards procedures.
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