Higher order discretization methods for the numerical simulation of fluidized beds

PDF Version Also Available for Download.

Description

Numerical models of fluidized beds based on the multiphase mass and momentum balance equations for gas and solids phases continue to be developed by several groups of researchers around the world. It has been demonstrated that the same set of equations is able to describe a wide range of fluidization conditions, ranging from bubbling to circulating fluidized beds. The results of bubbling bed simulations, plots of void fraction distribution, show the formation and propagation of high void fraction regions, called bubbles. This study shows that these problems are numerical artifacts of using first order accurate discretization schemes and coarse grids ... continued below

Physical Description

7 p.

Creation Information

Syamlal, M. January 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Numerical models of fluidized beds based on the multiphase mass and momentum balance equations for gas and solids phases continue to be developed by several groups of researchers around the world. It has been demonstrated that the same set of equations is able to describe a wide range of fluidization conditions, ranging from bubbling to circulating fluidized beds. The results of bubbling bed simulations, plots of void fraction distribution, show the formation and propagation of high void fraction regions, called bubbles. This study shows that these problems are numerical artifacts of using first order accurate discretization schemes and coarse grids and are not due to a fundamental difficulty with the theory. This study was motivated by the observation that the shape of the gas hold up profile described by Sokolichin et al. is similar to that of the shape of bubbles in a fluidized bed. Second-order accurate discretization schemes were included in a multiphase flow model of fluidized beds called MFIX. It is shown here that the bubble shape predicted with a second order accurate scheme is rounded. The simulations were conducted for long durations (5 s) and the results did not show the fountain formation at the bed surface. It appears that the fountain formation is caused by coarse grids and low physical viscosity of the solids phase.

Physical Description

7 p.

Notes

OSTI as DE98051221

Source

  • Annual meeting of the American Institute of Chemical Engineers (AIChE), Los Angeles, CA (United States), 16-21 Nov 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98051221
  • Report No.: DOE/FETC/C--98/7305
  • Report No.: CONF-971113--
  • Office of Scientific & Technical Information Report Number: 650122
  • Archival Resource Key: ark:/67531/metadc711702

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1997

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Nov. 10, 2015, 7:47 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Syamlal, M. Higher order discretization methods for the numerical simulation of fluidized beds, article, January 1, 1997; United States. (digital.library.unt.edu/ark:/67531/metadc711702/: accessed November 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.