Large-Signal Injection-Level Spectroscopy of Impurities in Silicon

PDF Version Also Available for Download.

Description

Deep level defects in silicon are identified by measuring the recombination lifetime as a function of the injection level. The basic models for recombination at deep and shallow centers is developed. The defect used for the theoretical model is the well-known interstitial Fe ion in silicon. Data are presented on silicon samples ranging in defect content from intentionally Fe-doped samples to an ultra-pure float-zone grown sample. These data are analyzed in terms of the injection-level spectroscopy model.

Physical Description

vp.

Creation Information

Ahrenkiel, R. K. & Johnston, S. W. October 16, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Deep level defects in silicon are identified by measuring the recombination lifetime as a function of the injection level. The basic models for recombination at deep and shallow centers is developed. The defect used for the theoretical model is the well-known interstitial Fe ion in silicon. Data are presented on silicon samples ranging in defect content from intentionally Fe-doped samples to an ultra-pure float-zone grown sample. These data are analyzed in terms of the injection-level spectroscopy model.

Physical Description

vp.

Notes

OSTI as DE00007136

Source

  • Presented at the National Center for Photovoltaics Program Review Meeting, Denver, CO (US), 09/08/1998--09/11/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00007136
  • Report No.: NREL/CP-520-25628
  • Grant Number: AC36-83CH10093
  • Office of Scientific & Technical Information Report Number: 7136
  • Archival Resource Key: ark:/67531/metadc711694

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 16, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • March 31, 2016, 3:02 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ahrenkiel, R. K. & Johnston, S. W. Large-Signal Injection-Level Spectroscopy of Impurities in Silicon, article, October 16, 1998; Golden, Colorado. (digital.library.unt.edu/ark:/67531/metadc711694/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.