Measurement of the deuteron electric and magnetic form factors at Jefferson Lab

PDF Version Also Available for Download.

Description

The results from an experiment to measure the electric, A(Q{sup 2}), and magnetic, B(Q{sup 2}), form factors of the deuteron at large momentum transfers at the Jefferson Laboratory (JLAB) will be reported. The experiment performed elastic electron scattering from deuterium in coincidence; it has improved the quality of the existing data in the range of overlap and has significantly extended the Q{sup 2} range of the previous A(Q{sup 2}) SLAC data. The range in the squared four-momentum transfer, Q{sup 2}, is 0.7 to 6.0 (GeV/c){sup 2} for the A(Q{sup 2}) measurements and 0.7 to 1.4 (GeV/c){sup 2} for the B(Q{sup ... continued below

Physical Description

56 Kilobytes pages

Creation Information

Petratos, Gerassimos G. June 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The results from an experiment to measure the electric, A(Q{sup 2}), and magnetic, B(Q{sup 2}), form factors of the deuteron at large momentum transfers at the Jefferson Laboratory (JLAB) will be reported. The experiment performed elastic electron scattering from deuterium in coincidence; it has improved the quality of the existing data in the range of overlap and has significantly extended the Q{sup 2} range of the previous A(Q{sup 2}) SLAC data. The range in the squared four-momentum transfer, Q{sup 2}, is 0.7 to 6.0 (GeV/c){sup 2} for the A(Q{sup 2}) measurements and 0.7 to 1.4 (GeV/c){sup 2} for the B(Q{sup 2}) measurements. The measurements used the Continuous Electron Beam Accelerator and Hall-A Facilities of JLAB. Incident electron beams of energy 0.5 to 4.4 GeV and current 10 to 120{mu}A were scattered off a high power (500W) cryogenic deuterium/hydrogen target. Scattered electrons and recoiling deuterons were detected in coincidence using the two 4 GeV/c High Resolution Spectrometers (HRS) in Hall-A. Both HRS's used two planes of scintillators for triggering and timing and a drift chamber system for particle tracking. The electron HRS was also equipped with a gas Cherenkov counter and a lead-glass calorimeter for electron identification. Elastic electron-proton scattering in coincidence was used to calibrate the entire double-arm system. The results will be compared to conventional meson-nucleon physics calculations based on the impulse approximation with the inclusion of meson-exchange-currents, and to predictions of dimensional scaling quark models and perturbative quantum chromodynamics. They are expected to provide a crucial test of nuclear chromodynamics ideas and insights into the transition from the meson-nucleon to quark-gluon descriptions of the two-body nuclear structure.

Physical Description

56 Kilobytes pages

Source

  • 16th European Conference on Few-Body Problems in Physics, Autrans (FR), 06/01/1998--06/06/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: JLAB-PHY-98-05
  • Report No.: DOE/ER/40150-1719
  • Grant Number: AC05-84ER40150
  • Office of Scientific & Technical Information Report Number: 758563
  • Archival Resource Key: ark:/67531/metadc711501

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Feb. 5, 2016, 8:17 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Enlarge

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Petratos, Gerassimos G. Measurement of the deuteron electric and magnetic form factors at Jefferson Lab, article, June 1, 1998; Newport News, Virginia. (digital.library.unt.edu/ark:/67531/metadc711501/: accessed August 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.