Picosecond Nonradiative Processes in Neodymium-doped Crystals and Glasses: Mechanism for the Energy Gap Law

C. Bibeau
S. A. Payne

This paper was prepared for submittal to the Optical Society of America Advanced Solid State Lasers and Radiative Processes and Dephasing in Semiconductors Topical Meetings Coeur d'Alene, ID February 2-4, 1998

September 29, 1997

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.
DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.
Picosecond Nonradiative Processes
in Neodymium-doped Crystals and Glasses:
Mechanism for the Energy Gap Law*

Camille Bibeau and Stephen A. Payne
University of California
Lawrence Livermore National Laboratory
P.O. Box 808 L-441
Livermore, CA 94550
Tel. (510) 422-7798, Fax (510) 423-6195

Abstract

We present measurements of the $^4G_{7/2}$ emission lifetime for 26 Nd-doped materials. A model of nonradiative decay based on dipole-dipole energy transfer is developed and found to be supported by our data.

*This work was performed under the auspices of the Division of Materials Science of the Office of Basic Energy Sciences, U. S. Department of Energy, and by the Lawrence Livermore National Laboratory under contract W-7405-ENG-48.
Picosecond Nonradiative Processes in Neodymium-doped Crystals and Glasses: Mechanism for the Energy Gap Law

Camille Bibeau and Stephen A. Payne
University of California
Lawrence Livermore National Laboratory
P.O. Box 808 L-441
Livermore, CA 94550
Tel. (510) 422-7798, Fax (510) 423-6195

Introduction
It has been extensively verified in the past that the nonradiative decay rate between rare earth energy levels is predominantly determined by the energy gap and the particular host medium. The energy gap law is embodied in the simple expression for the nonradiative rate:

\[
W_{nr} = \frac{1}{\tau_0} \exp(-\beta \cdot p),
\]

where \(\tau_0\) and \(\beta\) are constants characteristic of the host medium, and \(p = \frac{\Delta E}{\hbar \nu_{max}}\) is the number of phonons needed to bridge the gap. The expression \(\hbar \nu_{max}\) is related to the highest phonon frequency of the host medium and \(\Delta E\) is the energy gap between the populated rare earth state and the next energetically lower level. The constant, \(\beta\), is related to the details of the electron-phonon coupling. In nearly all cases reported in the literature, eqn. (1) is regarded as adequately describing the measured decay rates over several orders of magnitude [1-3].

In the present paper we report the nonradiative decay rates of the \(4I_{11/2}\) state of Nd\(^{3+}\) in 26 different crystals and glasses, with the goal of providing a data base relevant to the relaxation rate of the \(4I_{11/2}\) state which has a similar energy gap as the \(4G_{7/2}\) state [4]. The \(4I_{11/2}\) state of Nd\(^{3+}\) is a particularly important one from a practical point of view, since it can potentially "bottleneck" during lasing and give rise to transient absorption at the laser wavelength (constituting loss).

Much of the motivation for establishing this correlation is that emission lifetimes are much simpler to measure and can be widely applied to numerous Nd-doped crystals and glasses, while the pump-probe technique used to directly assess the \(4I_{11/2}\) decay time is complex to set up and execute.

The relevant energy levels are depicted in Fig. 1, where the \(\tau_{5/2}, \tau_{7/2}, \) and \(\tau_{11/2}\) lifetimes are identified on the diagram along with the 532 nm pump wavelength and the \(-600\) nm detection wavelength. One of the details that must be handled in the numerical analysis of the data is the effect of the overlapping \(-600\) nm emission arising from the \(4G_{5/2}, 2G_{7/2}\) states on the measured results (i.e. \(\tau_{5/2}\), as depicted in Fig. 1. The numerical analysis and resulting fits to the data will be discussed.

Experimental

The picosecond emission lifetimes [4] were measured using the time-correlated single photon counting system together with a Coherent mode-locked laser producing \(-90\) psec pulses at \(76\) MHz and then doubled to \(532\) nm. The sample emission was detected at \(-600\) nm with a monochromator followed by a multichannel plate photomultiplier (MCP-PMT). The (deconvoluted) temporal resolution of the data is about \(50\) psec. For the case of the fluoride samples, the lifetimes of \(-10\) nsec were too long to be measured with the time-correlated photon-counting apparatus. To handle these longer lifetimes, we employed a conventional set-up consisting of a Q-switched Nd:YAG laser (12 nsec pulsewidth), along with a monochromator, oscilloscope, and MCP-PMT.

Results

The results of the emission lifetime experiments are contained in Table 1. Based on an analysis of the best fit to the data, the uncertainty in the value of the \(\tau_{7/2}\) lifetimes is \(\Delta \tau_{7/2} (<1\) ns) = \(\pm 50\) ps for data with lifetimes less than 1 ns and \(\Delta \tau_{7/2} (>1\) ns) = \(\pm 200\) ps for data with lifetimes greater than 1 ns.

Many of the trends that can be gleaned from the data in Table 1 are expected. For the case of the fluorides, the \(\tau_{7/2}\) values are the longest, being 4,000 - 41,000 psec. This is anticipated, since their phonon frequencies are the lowest among the hosts listed, being \(<600\) cm\(^{-1}\). Whereas the phosphate and silicate glasses are in the range of 150 to 250 psec owing to the rather high vibrational frequencies of the SiO\(_4\) and PO\(_4\) anions. It is noteworthy that comparisons of previous \(\tau_{7/2}\) measurements in the literature are satisfactory,
including [5]: 1400 versus 1090 psec for YAlO₃; 370 versus 200 psec for Y₃Al₅O₁₂; and 8400 psec versus 9100 psec for LiYF₄; 56,400 psec versus 41,000 psec for LaF₃.

Table 1. Emission lifetimes of the ⁴G₇/₂ excited state (τ₇/₂)

<table>
<thead>
<tr>
<th>Name</th>
<th>Formula</th>
<th>τ₇/₂, psec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphate</td>
<td>P₂O₅+Al₂O₃⁺ modifiers</td>
<td>228</td>
</tr>
<tr>
<td>LG-750</td>
<td></td>
<td>215</td>
</tr>
<tr>
<td>APG-1</td>
<td></td>
<td>210</td>
</tr>
<tr>
<td>APG-x</td>
<td></td>
<td>210</td>
</tr>
<tr>
<td>APG-2</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>LG-812</td>
<td>P₂O₅+fluorides⁺ modifiers</td>
<td>-1400</td>
</tr>
<tr>
<td>Silicate</td>
<td>SiO₂+Al₂O₃⁺ modifiers</td>
<td>215</td>
</tr>
<tr>
<td>LG-660</td>
<td></td>
<td>210</td>
</tr>
<tr>
<td>LG-650</td>
<td></td>
<td>245</td>
</tr>
<tr>
<td>Sol-gel</td>
<td>SiO₂</td>
<td></td>
</tr>
<tr>
<td>Vanadate</td>
<td>YVO₄</td>
<td>190</td>
</tr>
<tr>
<td>Tungstate</td>
<td>CaWO₄</td>
<td>510</td>
</tr>
<tr>
<td>Oxide</td>
<td>YAlO₃</td>
<td>1090</td>
</tr>
<tr>
<td>YAG</td>
<td>Gd₃Sc₂Ga₃O₁₂</td>
<td>715</td>
</tr>
<tr>
<td>GGG</td>
<td>Gd₃Al₅O₁₂</td>
<td>200</td>
</tr>
<tr>
<td>GSGG</td>
<td>Gd₃Ga₅O₁₂</td>
<td>530</td>
</tr>
<tr>
<td>LLGG</td>
<td>La₃Lu₂Ga₅O₁₂</td>
<td>1200</td>
</tr>
<tr>
<td>Apatites</td>
<td>C-FAP</td>
<td>70</td>
</tr>
<tr>
<td>S-FAP</td>
<td>Sr₃PO₄F</td>
<td>175</td>
</tr>
<tr>
<td>C-VAP</td>
<td>Ca₅(VO₄)F</td>
<td>200</td>
</tr>
<tr>
<td>S-VAP</td>
<td>Sr₂(VO₄)F</td>
<td>330</td>
</tr>
<tr>
<td>Fluorides</td>
<td>ZBLAN</td>
<td>18,000</td>
</tr>
<tr>
<td>YLF</td>
<td>LiYF₄</td>
<td>9100</td>
</tr>
<tr>
<td>Na₃Sc₂Li₃F₁₂</td>
<td>Na₃Sc₂Li₃F₁₂</td>
<td>4000</td>
</tr>
<tr>
<td>KY₃F₁₀</td>
<td>KY₂F₁₀</td>
<td>9000</td>
</tr>
<tr>
<td>YF₃</td>
<td>YF₃</td>
<td>22,000</td>
</tr>
<tr>
<td>LaF₃</td>
<td>LaF₃</td>
<td>41,000</td>
</tr>
</tbody>
</table>

Analysis and Discussion

As mentioned earlier, measurements of the ⁴G₇/₂ population decay time have long been suspected to be similar in magnitude to that of the ⁴I₁₁/₂ level of Nd³⁺. Using the ⁴I₁₁/₂ lifetimes from a direct measurement in [7] we find that the ⁴I₁₁/₂ and ⁴G₇/₂ lifetimes are correlated with each other to within about a factor of two, across a variety of different host media. This concurrence is reasonable, since some differences in the energy gap and perhaps the electron-phonon coupling may be expected, in addition to the experimental and analytical uncertainties. Furthermore, due to the small difference in the size of the energy gap for a given host medium, this data offers some experimental validation that the specific characteristics of the electronic states (symmetry, crystal field interactions, spin, etc.) do not strongly influence the nonradiative decay rate.

Another theory of nonradiative decay derives the multi-phonon rate on basis of energy-transfer theory, as originally described by Forster [6] and Dexter [7]. With the assumption that dipole-dipole interactions dominate the process, and that the phonon absorption ωₚ(λ) is a slowly varying function compared to the emission cross section spectrum σₑ(λ), we derive that:

$$ W_{nr} = \frac{2c}{3} \int \frac{\sigma_m d\lambda}{V_{min}} \alpha_{ph}, \quad (2) $$

where V_{min} is the minimum volume that is non-absorbing in nature (centered on the rare earth ion), n is the refractive index, and c is the speed of light. This expression essentially emerges from the well-known Forster-Dexter spectral overlap integral between the emitting and absorbing species, and a volume integration over a uniform acceptor (phonon) concentration, (a derivation similar to other reports in the literature [8-11]). It is also noteworthy however, that the multi-phonon absorption spectrum is commonly described with an exponential expression expression [12,13]:

$$ \alpha_{ph} = A_{host} \exp \left(-\gamma_{host} \frac{\nu_{ph}}{\nu_{char}}\right), \quad (3) $$

where ν_{ph} is the phonon frequency, ν_{char} is a characteristic phonon frequency of the host material, and γ_{host} and A_{host} are other host-dependent constants.

So if we combine eqns. (3) and (4), we can suggest an alternative route to deriving the form of the energy gap law:
where we have identified ν_{ph} as ν_{gap}. The γ_{host} parameter turns out to be similar for many crystals, for instance being in the range of 4-5 for alkali and alkaline-earth halide crystals [13]. The main point to note regarding eqn. (4) is that the exponentiated factor in square brackets only contains information concerning the host medium, while the rare earth properties are exclusively represented in the pre-exponential factor – implying that we may expect reasonably good adherence to the form of the energy-gap law, eqn. (1).

We can explore the validity of eqn. (4) by inputting reasonable estimates for the terms in the pre-exponential factor and deducing the magnitude of this constant. Using $\nu_{\text{min}} = 5 \times 10^{14}$ cm$^{-1}$, $\nu_{\text{host}} = 20,000$ cm$^{-1}$ (average from ref. [13]), and $\sigma_{\text{em}} A = 1.8 \times 10^{-25}$ cm2, we obtain a value of 0.6 \times 1012 sec$^{-1}$, or $\tau_0 = 1.7$ psec, which is defined from eqn. (1) as:

$$1/\tau_0 = \pi \frac{2c/3}{(2\pi)^2} \int \sigma_{\text{em}} \frac{d\lambda}{\nu_{\text{min}}} A_{\text{host}}.$$

(5)

We are now in a position to compare this calculation to the data in Table 1, where we use the energy gap (ΔE_{max}) and highest phonon frequencies (ν_{max}) to calculate number of phonons $p = \Delta E_{\text{max}} / \nu_{\text{max}}$. If we also group all of the phosphate glasses into a single datum, and all of the silicates into a second one, then there are potentially ten usable points. Finally, if the LaF$_3$ result is eliminated because of its strongly nonexponential character, the results of the exercise may be displayed as shown in Fig. 3, where we have plotted the nonradiative decay time, $\tau_{1/2}$, against the number of phonons, p. The data is then fitted to the reciprocal of the energy gap law with the result of the numerical fit yielding $\tau_0 = 3.3$ psec and $\beta = 3.1$. We are very encouraged by this result because it may be compared with theoretical calculation of $\tau_0 = 1.7$ psec noted above in connection with eqn. (5). Now, if we associate γ_{host} with β, and ν_{max} with ν_{gap}, the $\beta = 3.1$ value from Fig. 3 appears to be within the range of what one may expect from the energy-transfer theory of nonradiative decay encompassed in eqn. (4), since the phonon spectra of many materials is characterized by $\gamma_{\text{host}} = 4-5$.

The concurrence of these different approaches in estimating τ_0 is remarkable, and is an implicit statement of the robustness of the energy gap law in general, as well as good support for the energy-transfer mechanism of nonradiative decay.

Acknowledgments

We would like to thank Christopher Marshall, Gary Wilky, Howard Powell and Bill Krupke for their suggestions throughout this project.

*This work was performed under the auspices of the Division of Materials Science of the Office of Basic Energy Sciences, U. S. Department of Energy, and by the Lawrence Livermore National Laboratory under contract W-7405-ENG-48.
