Cold-Cathodes for Sensors and Vacuum Microelectronics

PDF Version Also Available for Download.

Description

The aim of this laboratory-directed research and development project was to study amorphous carbon (a-C) thin films for eventual cold-cathode electron emitter applications. The development of robust, cold-cathode emitters are likely to have significant implications for modern technology and possibly launch a new industry: vacuum micro-electronics (VME). The potential impact of VME on Sandia`s National Security missions, such as defense against military threats and economic challenges, is profound. VME enables new microsensors and intrinsically radiation-hard electronics compatible with MOSFET and IMEM technologies. Furthermore, VME is expected to result in a breakthrough technology for the development of high-visibility, low-power flat-panel displays. ... continued below

Physical Description

44 p.

Creation Information

Siegal, M.P.; Sullivan, J.P.; Tallant, D.R.; Simpson, R.L.; DiNardo, N.J.; Mercer, T.W. et al. May 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The aim of this laboratory-directed research and development project was to study amorphous carbon (a-C) thin films for eventual cold-cathode electron emitter applications. The development of robust, cold-cathode emitters are likely to have significant implications for modern technology and possibly launch a new industry: vacuum micro-electronics (VME). The potential impact of VME on Sandia`s National Security missions, such as defense against military threats and economic challenges, is profound. VME enables new microsensors and intrinsically radiation-hard electronics compatible with MOSFET and IMEM technologies. Furthermore, VME is expected to result in a breakthrough technology for the development of high-visibility, low-power flat-panel displays. This work covers four important research areas. First, the authors studied the nature of the C-C bonding structures within these a-C thin films. Second, they determined the changes in the film structures resulting from thermal annealing to simulate the effects of device processing on a-C properties. Third, they performed detailed electrical transport measurements as a function of annealing temperature to correlate changes in transport properties with structural changes and to propose a model for transport in these a-C materials with implications on the nature of electron emission. Finally, they used scanning atom probes to determine important aspects on the nature of emission in a-C.

Physical Description

44 p.

Notes

OSTI as DE98005260

Source

  • Other Information: PBD: May 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98005260
  • Report No.: SAND--98-1013
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/654180 | External Link
  • Office of Scientific & Technical Information Report Number: 654180
  • Archival Resource Key: ark:/67531/metadc711369

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 13, 2016, 1:07 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 11

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Siegal, M.P.; Sullivan, J.P.; Tallant, D.R.; Simpson, R.L.; DiNardo, N.J.; Mercer, T.W. et al. Cold-Cathodes for Sensors and Vacuum Microelectronics, report, May 1, 1998; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc711369/: accessed November 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.