NEUTRINO RADIATION CHALLENGES AND PROPOSED SOLUTIONS FOR MANY-TEV MUON COLLIDERS

PDF Version Also Available for Download.

Description

Neutrino radiation is expected to impose major design and siting constraints on many-TeV muon colliders. Previous predictions for radiation doses at TeV energy scales are briefly reviewed and then modified for extension to the many-TeV energy regime. The energy-cubed dependence of lower energy colliders is found to soften to an increase of slightly less than quadratic when averaged over the plane of the collider ring and slightly less than linear for the radiation hot spots downstream from straight sections in the collider ring. Despite this, the numerical values are judged to be sufficiently high that any many-TeV muon colliders will ... continued below

Physical Description

16 pages

Creation Information

KING,B.J. May 5, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Neutrino radiation is expected to impose major design and siting constraints on many-TeV muon colliders. Previous predictions for radiation doses at TeV energy scales are briefly reviewed and then modified for extension to the many-TeV energy regime. The energy-cubed dependence of lower energy colliders is found to soften to an increase of slightly less than quadratic when averaged over the plane of the collider ring and slightly less than linear for the radiation hot spots downstream from straight sections in the collider ring. Despite this, the numerical values are judged to be sufficiently high that any many-TeV muon colliders will likely be constructed on large isolated sites specifically chosen to minimize or eliminate human exposure to the neutrino radiation. It is pointed out that such sites would be of an appropriate size scale to also house future proton-proton and electron-positron colliders at the high energy frontier, which naturally leads to conjecture on the possibilities for a new world laboratory for high energy physics. Radiation dose predictions are also presented for the speculative possibility of linear muon colliders. These have greatly reduced radiation constraints relative to circular muon colliders because radiation is only emitted in two pencil beams directed along the axes of the opposing linacs.

Physical Description

16 pages

Notes

INIS; OSTI as DE00757145

Source

  • STUDIES ON COLLIDERS AND COLLIDER PHYSICS AT THE HIGHEST ENERGIES: MUON COLLIDERS AT 10 TEV TO 100 TEV, MONTAUK, NY (US), 09/27/1999--10/01/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--67408
  • Report No.: KA04
  • Grant Number: AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 757145
  • Archival Resource Key: ark:/67531/metadc711184

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 5, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Nov. 9, 2015, 1:23 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

KING,B.J. NEUTRINO RADIATION CHALLENGES AND PROPOSED SOLUTIONS FOR MANY-TEV MUON COLLIDERS, article, May 5, 2000; Upton, New York. (digital.library.unt.edu/ark:/67531/metadc711184/: accessed December 11, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.